網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
1

文字

分享

0
0
1

魔鏡ㄚ魔鏡:誰是測量宇宙距離最精密的那把尺?

臺北天文館_96
・2012/04/21 ・2340字 ・閱讀時間約 4 分鐘 ・SR值 592 ・九年級

針對距今50~70億年前的宇宙,正在進行著大尺度結構精確測量的BOSS計畫,近日公佈了第一階段觀測結果。它使用的方法是:觀測距離大霹靂僅3萬年的原始聲波如何在宇宙介質裡傳播。物理學家對這個計畫寄予厚望,希望儘早解開「暗物質」形成之謎,目前為止的觀測資料結果顯示,仍支持「暗能量」理論正確。

大約100年前的科學家相信,宇宙是維持在恆定不變的靜態。愛因斯坦的廣義相對論則預測宇宙的時空會延展,不過,當時因為愛因斯坦方程式不能讓宇宙保持在靜態,他在方程式裡加入了宇宙常數。

不久後,天文學家哈柏卻真的觀測到和愛因斯坦最早的相對論一致的現象:宇宙真的在膨脹!於是愛因斯坦又把宇宙常數刪除,他曾說:發明宇宙常數是畢生最大的錯誤。

但1998年時,研究遙遠宇宙裡1a型超新星爆炸現象的天文學家再度發現,宇宙不僅在膨脹,而且由於某種未知的力量或暗能量,膨脹的速度甚至正在加速。這個發現和愛因斯坦的宇宙常數似乎遙相呼應,以至於21世紀的宇宙學最重要的挑戰之一就是要回答:我們需要愛因斯坦的宇宙常數嗎,或是目前已知的重力理論其實不夠完整?

BOSS最受人矚目的原因是它選擇要去精密地觀測距今約50億到70億年前的這段時間,在宇宙史上,一般認為,這似乎正是當初暗能量「即將登場現身」的關鍵時期。

不過,在仔細觀測這段時間之前,科學家們還需要對膨脹的歷史有更完整的了解才行。

原本為暗能量理論提供基礎的觀測法是超新星爆發時的明亮亮度及它的紅移,不過BOSS計畫要觀測的對象卻是另一種:重子聲波震盪(BAO),這種聲波震盪現象的形成最早可追溯到萬物都還同在一大杯極熱的原始湯中的時期,當時受到壓力驅動的波(聲音或音波),在早期宇宙裡傳播。這種音波會產生出一些小囊袋,那是密度以很規律的間隔或周期發生變化的情形 – 也就是表示著震盪或者震動的一種抖動形態。接下來宇宙迅速冷卻,使普通物質和光之間分離、各自前進;普通物質濃縮成氫原子,這種波動印記在各種物質的分布中。從宇宙微波背景輻射(CMB)裡,我們仍然看得到這種溫度波動的現象,科學家也自其中獲得了重子聲波震盪(BAO)的基本尺度。

測量這些重子聲波震盪,可以幫最遠的星系「究竟有多遠」訂定出測量距離的標準,這需要一套工具來完成,而BOSS的設計藍圖正源自於這樣的概念:由於在宇宙的網狀結構裡,密度高峰以頻率次數相當高的週期重複出現,這些密度峰值,就成了測量宇宙的最佳標準尺。

科學家藉由測量兩兩成對的星系之間的角度,可以了解星系們距離我們有多遠 – 角度越窄、距離越遠。一旦距離獲知,年齡也可以經推論而得,這是因為我們已知的光的紅位移作用。在宇宙裡,光會以一定比例的延展來讓物理學家能推論得出:自從光離開其出發點以後,宇宙經歷了多少膨脹。

不過紅位移並非一體適用。因此需要能統計分析數十萬星系紅移值的BOSS,在大樣本之下,BOSS不僅能取得詳細的距離測量,還將紅移值的變動也納入資料系統中。

BOSS的觀測結果仔細提供了距離地球60億光年以外的星系的三維位置,並且精確值達到1.7%,大幅優於先前的結果。

研究人員在接受BBC專訪時告知有關於近期研究的成果:這是一張基本觀測必備的地圖,如果你在一路倒退的時間裏回溯至初始的宇宙,這張圖能讓你明白很多宇宙在成分內容上經歷的變化,譬如:物質變多或變少,延展的速度變化等等,這些都會使星系地圖因而不同。

目前為止,愛因斯坦的廣義相對論以及他加到了方程式裡的宇宙常數都和我們的發現完全吻合。原本宇宙常數的加入是嘗試要使宇宙呈現靜態,不過如果我們把宇宙常數當作異號數,結果就會是加速膨脹了。這麼一來,公式和實際所見,是一模一樣的。

目前的初步成果只佔BOSS預計於2014年完成時將取得的累計普查結果的1/4,屆時將可公佈一個涵括了一百萬個星系的目錄。後續ESA將於2019年啟動BOSS巡天普查計劃的太空版 – Euclid太空計劃。

Euclid的測量對象將更擴大普及到5千萬個星系,並且將距離再延伸到100億光年之遠,希望探知這個目前主導著宇宙膨漲的暗能量,它,和更早期的宇宙兩者間,是否還存有任何更微小的關聯。

不過,目前BOSS的發現雖然和暗能量的宇宙常數模型相當一致,所得的結果畢竟仍是來自於數量有限的資料,因此,該計畫的主要科學家認為:宇宙常數或許只是一個最簡化的解釋,「在探索暗能量機制何時啟動的旅途中,我們才剛剛出發而已。未來如果有任何意料外的結果,沒有人會真的太意外。」

至於各種假說當中,認為暗物質可能根本不存在,或許僅只是因為對重力的特性還不夠了解所造成的誤會而已~關於這種說法,BOSS有什麼解答?

要是重力會在極大尺度上,性質轉而成為互斥,則所有科學家對於宇宙加速膨脹的答案就都迎刃而解!不過,互斥的重力,意味著愛因斯坦的廣義相對論在宇宙極大尺度上會垮台站不住腳 – 歷經一世紀以來,廣義相對論一直經得起各色各樣的任何考驗。

Lawrence Berkeley實驗室的Beth Reid針對上述假設可能性作了一個研究:廣義相對論裡,對於星系應多快速地彼此靠近才能建構這些大尺度、類似泡泡的結構,曾有預言。所以Reid在BOSS的觀測下,針對宇宙大尺度類似泡泡的結構如何增長的模式仔細觀察,個別測量了數十萬個星系的速度,結果發現,即使在大尺度下,星系建構泡泡的模式也仍然精準地遵循著我們已知的那些重力描述 – 再度證明廣義相對論是對的!

Reid說:這也意味著,過去我們對於尺度在太陽系以內能夠掌握的精準度,從現在起,已擴展到1億光年以外的鄰近宇宙地區。(Lauren 譯)

圖片說明:本圖顯示出宇宙在三個不同的時期的樣貌,顯示宇宙如何隨時間而膨脹。最右側有著紅、黃、藍、綠顏色的圖,顯示的是137億年前「宇宙微波背景輻射」記錄。中圖、左圖各分別是宇宙膨脹後,在55億光年遠以及距離今天更近的38億光年遠的2個圖像。製圖: Zosia Rostomian 影像提供:Eric Huff, SDSS和South pole Telescope

資料來源:中研院天文網, 2012.04.16

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
477 篇文章 ・ 13 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

11
5

文字

分享

0
11
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》