0

6
1

文字

分享

0
6
1

視網膜竟然裝反了!演化留給人類的奇怪結構──《人類這個不良品》

天下文化_96
・2019/01/07 ・2588字 ・閱讀時間約 5 分鐘 ・SR值 496 ・六年級

編按:《人類這個不良品》羅列人體的各種缺陷與設計不良之處,但其實這就是演化自然產生的結果。這些不完美成就了獨一無二的我們,也讓我們照見演化的歷史。

說起自然界中最古怪的動物結構設計,最經典的例子莫過於脊椎動物的視網膜,從魚類到哺乳類動物無一倖免。

前後顛倒的感光細胞

脊椎動物視網膜上的感光細胞似乎裝反了:負責傳遞神經訊號的軸突面向外部光源,負責感光的光受器卻面向眼底。各位可以把感光細胞的模樣想像成麥克風,麥克風一端有聲音接受器,另一端連接負責把訊號傳給揚聲器的纜線。人類的視網膜坐落在眼球的底部,上面所有的小小「麥克風」都裝反了,有纜線的一端朝外面向光源,而接受器朝內面向眼球組織。

頭足動物視網膜中的光受器(上)面向光源;脊椎動物的光受器(下)則不然。雖然這種不合宜的設計逐漸對脊椎動物帶來不利影響,但演化作用已經無力矯正錯誤。圖/出版社提供

這樣的結構,顯然絕非最佳配置。光子必須先穿越整顆感光細胞,才能抵達位於眼底的光受器。這就像你演講時把麥克風拿反了,但只要你調高麥克風的靈敏度,然後大聲說話,麥克風還是能發揮作用,人眼也是一樣的道理。

編按:以上兩段字句做了微調。

感光細胞就像麥克風,傳遞訊號出去的一端就如同纜線,具有光受器的一端就如同聲音接受器。圖/pxhere

此外,光線必須先穿越一層布有血管的薄膜組織,才能抵達光受器,更讓這已經過度複雜的系統更添一筆多餘的複雜性。時至今日,沒有任何一個假說能夠解釋為什麼脊椎動物的視網膜安置在面朝後方的古怪位置。由於突變是演化作用僅有的工具,但要用零星發生的突變來改正這項缺失太過困難,也於是這缺陷成了人眼演化過程的一個死結。

-----廣告,請繼續往下閱讀-----

不是突變救得回來,讓我們接受它、放下它

這讓我想起有一回在家裡安裝家具護板的經驗,這種護板距離地面大概半牆高。那是我第一次動手做木工,結果不如預期。家具護板是一條很長的木條,長邊兩側的結構並不對稱,你必須搞清楚哪一邊朝上,哪一邊朝下。而家具護板也不像冠頂線板或踢腳板那樣,一眼就能看得出來哪邊是上,哪邊是下。

總之,我按照看起來最順眼的方式開始施工:測量、裁切、上漆、懸掛、打釘、補土、再上一次漆,終於大功告成。結果,第一位有緣欣賞我這項木作成品的客人,立刻發現我把護板裝反了:該朝上的地方朝下,該朝下的地方朝上。

反了反了。圖/pxhere

這個例子就跟視網膜裝反了是同樣的道理。在脊椎動物眼睛演化之初,未來將發展成視網膜的感光組織不管朝向任何方向,對動物而言都沒有太大的功能性差異。然而,當眼睛持續演化,出現未來將形成眼球的腔體時,光受器開始往腔體內部移動,最後產生了裝反的視網膜,想要補救為時已晚。

不過,在那當下,有任何可行的補救措施嗎?想讓整個眼球結構翻轉過來,不是幾次突變就能達到的成果,就像我不能直接把家具護板倒轉過來一樣,因為所有的切口和接縫也都會倒轉。除了整個打掉重練,沒有其他方法可以矯正我的失誤。脊椎動物的視網膜也是如此。所以,我接受裝反的家具護板,一如我們的祖先接受裝反的視網膜。

-----廣告,請繼續往下閱讀-----

頭足動物的視網膜就沒有裝反

說來有趣,章魚、魷魚等頭足動物的視網膜就沒裝反。頭足動物和脊椎動物的眼睛結構非常相似,卻源自彼此獨立的演化路徑。大自然造物過程中,至少曾兩次「發明」有如相機一般的眼睛結構,一次在脊椎動物身上,一次在頭足動物身上。至於昆蟲、蜘蛛和甲殼動物,則擁有截然不同的眼睛結構。

章魚、魷魚等頭足動物的視網膜就沒裝反。圖/wiki

頭足動物眼睛演化的過程中,視網膜以比較符合邏輯的方式形成:光受器朝外、面向光源。然而,脊椎動物就沒這麼幸運,至今我們仍受這種僥倖遺留下來的演化產物所苦,倒置的視網膜導致脊椎動物比頭足動物更容易發生視網膜剝離的問題,這是多數眼科醫師同意的論點。

倒置的視網膜還造成視覺盲點

人眼結構還有個值得一提的古怪之處。位於視網膜正中央的視神經盤,是數百萬個光受器細胞軸突聚集形成視神經的地方。想像數百萬個小小麥克風的纜線全部集合成一束,每一根纜線負責將訊號傳遞至大腦,附帶一提,人腦的視覺中心恰好位在腦部的後方, 離眼睛非常遠!

視神經盤有如一個占據視網膜表面的小小圓盤,其中竟然沒有任何光受器細胞,導致人類的兩眼各有一個盲點。因為雙眼可以互補,而腦子會替我們填補影像的空缺,所以我們很少注意到眼睛有盲點,但盲點的存在是千真萬確的事實。各位只要上網搜尋關鍵字:視神經盤盲點,就能找到許多簡單的例證。

-----廣告,請繼續往下閱讀-----
將右眼遮起來,以左眼凝視右側的十字,慢慢將頭靠近螢幕,在某個距離之下左側的圓點消失了,代表此時圓點落入了你的盲點。圖/劉馨香

視神經盤是眼睛必不可少的結構,畢竟視網膜中的軸突必須在某一點匯集。如果視神經盤可以位於眼底較深處,在視網膜後方而非表面,會是比較好的設計。然而,倒置的視網膜導致盲點必然存在,所有脊椎動物無一例外。頭足動物就沒有這個問題,在方位正確的視網膜上,視神經盤不費吹灰之力就能形成於視網膜後方,也不會破壞視網膜的完整結構。

人類若想要有像老鷹一樣銳利的眼睛,或許貪心了點。不過, 希望人眼至少能像章魚眼一樣,應該不是太過分的要求吧?

 

 

本文摘自《人類這個不良品:從沒用的骨頭到脆弱的基因》,2018 年 12 月,天下文化出版。

2019.1.23 P編更新:

-----廣告,請繼續往下閱讀-----

關於本文討論的主題「視網膜倒置」是否是差勁的設計,學界有不同的看法,例如有人認為倒置不是演化上的錯誤,而是因為感光細胞需要大量養分的供應,而接近血管能夠更好地獲得養份、也能降低光照的傷害。另外也有研究者認為這樣讓動物在日間視力更好,相關討論跟說法請參考連結:
1. Quora 上的討論
2. Is Our ‘Inverted’ Retina Really ‘Bad Design’?
3. Here’s Why Your Eyes Seem to Be Wired ‘Backward’

以上資料感謝羅中泉教授補充。

-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
用魚皮「看」自己的長棘毛唇隆頭魚
胡中行_96
・2023/11/02 ・1766字 ・閱讀時間約 3 分鐘

指出旁人面色慘白,比發現自己滿臉通紅容易。不是因為人類生性高傲,自我感覺良好,還專挑別人毛病。只怪眼睛生來有其侷限,視野無法涵蓋全身。相較之下,長棘毛唇隆頭魚(Lachnolaimus maximus)就高招了。牠們用雙眼觀察外界的同時,「魚皮」正在審視自身,完全無需攬鏡自照。[1, 2]

長棘毛唇隆頭魚。圖/Laszlo Ilyes on Wikimedia Commons(CC BY 2.0

長棘毛唇隆頭魚

優游於北大西洋西邊的長棘毛唇隆頭魚,棲地從北卡羅來納、百慕達,一路往南至巴西。[1, 3, 4]牠們採一夫多妻制,1 隻雄魚配上 5 至 15 隻雌魚。剛出生時都是雌性,[4]要具有社交優勢,才可能轉為雄性。[3]如果群體中唯一的雄性消失,那麼體型最大的雌性,就轉換變性別,取而代之。整個改變生理結構的過程,費時約莫2個月;外貌的部份,則在之後仍會持續一段時間。[4]這樣的巨變通常發生在 3 歲,身長 35.5 公分左右的時候,[3, 4]但是依所處情況會有所差異。因此,科學家也曾經記錄到 12 歲的雌性;而已知最老的雄性為 23 歲,全長 63.5 公分。[4]

長棘毛唇隆頭魚無論性別,皆能於1秒內變化體色:白、紅或紅白相間。一方面偽裝隱身,另方面釋放重要的社交訊號。[1]雄性身體的顏色,通常比雌性來得深。[3, 4]

變色機制

某些章魚、烏賊、青蛙、蜥蜴、魚類等,都能透過控制特別的色素細胞,來變換體表的顏色。[1, 5]美國北卡羅來納大學威明頓分校(University of North Carolina Wilmington)的生物學家 Lorian E. Schweikert 等人,在光學顯微鏡下,看到長棘毛唇隆頭魚有黑色(melanophores)、紅色(erythrophores)與黃色(xanthophores)3 種色素細胞(chromatophores),平躺在魚鱗表面,一層薄薄的組織裡。他們還觀察到白、藍兩色,但是用穿透式電子顯微鏡確認時,卻遍尋不著白色素細胞(leucophores)和虹彩色素細胞(iridophores)。[1]

-----廣告,請繼續往下閱讀-----

會改變體色的魚類,靠的是調節兩種條件:一種是色素細胞內部顆粒的聚散,這可以在幾秒或數分鐘內完成;另一種則為色素細胞的數量,需要幾天到數月。[1, 6]長棘毛唇隆頭魚屬於前者,變色僅需 1 秒或更短的時間。當牠的色素顆粒擠成一團,無法發揮擋住光線的作用,光線自然就穿透色素細胞,照射在下面白色的組織上。反過來,這些顆粒若分散而暴露,便會被光線照到。[1]換句話說,聚集的顆粒使色素細胞趨向透明;散開則令顏色變深。[2]

a. 長棘毛唇隆頭魚的顏色;b. & c. 色素顆粒聚集和散開。 圖/參考資料 1,Figure 1(CC BY 4.0

光受器

研究團隊還發現,長棘毛唇隆頭魚的魚皮,跟眼睛的視網膜一樣,具有視蛋白(opsin)。魚皮的 SWS1 視蛋白,坐落在色素細胞和魚鱗之間的光受器(photoreceptor)裡。由於光線要經過色素細胞,才能達到正下方的光受器,因此色素顆粒的分佈,會影響 SWS1 視蛋白接收光線。當色素顆粒散開來,便選擇性地吸收了波長較短的光線;相反地,顆粒聚集會增加光線的穿透,活化光受器裡的SWS1視蛋白。[1]

色素顆粒散開,吸收波長較短的光線;聚集則增加光線的穿透,活化光受器。圖/參考資料1,Figure 7(CC BY 4.0

若是把光受器當作傳統相機的底片,那麼長棘毛唇隆頭魚就像「從裡面拍了魚皮的照片」,參與研究的杜克大學(Duke University)生物學家 Sönke Johnsen 如此形容。這個反饋的機制,會向無法轉頭察看的長棘毛唇隆頭魚,「告知魚皮的外觀」,以確定變色是否成功。[2]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. Schweikert LE, Bagge LE, Naughton LF, et al. (2023) ‘Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change’. Nature Communications, 14, 4642.
  2. Sotelo G. (23 AUG 2023) ‘Hogfish can use their skin to ‘see’ what colour they are, say scientists’. The Guardian, Australia.
  3. Bester C. ‘Lachnolaimus maximus’. Florida Museum, University of Florida, U.S. (Accessed on 24 OCT 20023)
  4. Sipos M. (28 JUN 2021) ‘Fish of Florida: Hogfish (Lachnolaimus maximus) Species Profile’. IFAS, University of Florida, U.S.
  5. Stuart-Fox D. (03 MAY 2013) ‘How do chameleons and other creatures change colour?’. University of Melbourne, Australia.
  6. Sugimoto M. (2002) ‘Morphological color changes in fish: regulation of pigment cell density and morphology’. Microscopy Research Technique, 58(6):496-503.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。