0

1
0

文字

分享

0
1
0

奈米下的慢光

活躍星系核_96
・2012/04/03 ・1146字 ・閱讀時間約 2 分鐘 ・SR值 566 ・九年級

-----廣告,請繼續往下閱讀-----

文︱Y.F.

光速減慢並不是一件神奇的事情。在日常生活中的光速雖然已經減慢,但是比起我們步行、車速、高鐵速度等還是來的快。若能發生光追著我們跑,甚至是把光停止下來,這是多麼不可思議的事。物理學家們絞盡腦汁利用任何介質達成光停止的任務。然而,把光停止下來有甚麼好處呢?現今美國研究團隊已經成功利用奈米尺度下的矽晶片做為安全的量子網路基礎。

在1990年,人類已經成功利用不透明的介質將光停止下來;這些不透明介質通常是利用原子來實現。物理學家將光停止下來的原理如下:當一道雷射光照射原子時,雷射光將被原子吸收,若今日同時在加入一道雷射光,此時原子對於雷射光並不吸收反而穿透,因此光對原子而言產生了透明效應。此現象稱為「電磁波引發透明效應」(Electromagnetically Induced Transparency),簡稱EIT。

在1999年,美國科學家發現,使用鈉(Na)的冷原子氣體,來實現慢光現象。從EIT現象發現使光脈衝每秒17公尺只有2×106次,比起光在真空中每秒17公尺3×1012次來的慢了許多。兩年後,物理學家進一步將EIT系統的雷射關閉,使光脈衝處於停止的狀態,經數微秒後,光脈衝有效的被鈉(Na)原子所儲存,直到再次把雷射打開,存在原子理的光將再次被釋放出來。在EIT系統中,使得光速減慢的原因在於光的群速度光;光的群速度為平均光波所傳遞光的能量。這些有效的光速減慢或光停止的現像可以讓我們可以用來在訊號處理中使用,而發展量子記憶資訊學家們便利用此現象作為量子網路。

-----廣告,請繼續往下閱讀-----

為了防止竊取者近而發展出量子網路,量子網路是利用量子力學中的隨機性來傳遞訊息,不同於現今傳遞訊息的方式。在量子世界中,一旦對它為量測時,它的相位即損壞。基於此原因,訊號若要被儲存在記憶體中,是不能有任何紀錄殘留。因此,光將成為量子資訊中重要的載體而慢光效應可以做為量子資訊的記憶體。

以往物理學家們實現慢光效應或光停止現象建立在於原子身上。如今一位位於加州理工學院物理學家Oskar Painter及他的學生們提出:慢光效應可以簡單製作在利用奈米尺度下的矽晶片。晶片蝕刻的研究人員表示,在矽晶片上做了小洞並且將溫度降至絕對零度9度以上,當光脈衝靠近系晶片時,這些小孔洞將會變形,並且更緊密的排在一起。

執行EIT系統,Painter’s group利用不同的光脈衝照射在矽晶片上,當兩道雷射光作拍頻後照射,該這些小孔就會產生音叉般的震動,而振動頻率就如同原子的共振頻率。研究人員指出,在這樣的架設系統下,可以將光減速到光速每秒40公尺,比起光在真空的速度每秒299’792’458公尺慢了許多。

如此般的進展,對於量子資訊學家來說是一項很大的突破。位於西班牙巴賽羅邦中的光子科學研究所的Hugues de Riedmatten 表示,「在我看來,這是一項令人振奮的發展。」 他也提到,「這在量子記憶體上是一個很重要的一步,並且可以為許多的量子技術上的應用。」

-----廣告,請繼續往下閱讀-----

參考資料:ScienceNow: Light Slows at the Nanoscale [16 March 2011]

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
愛因斯坦的光速魔術
賴昭正_96
・2024/10/05 ・7055字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

起初神創造了天地。大地空虛混沌; 深淵的表面一片黑暗;神的靈運行在水面上。神說,「讓它有光」,於是就有了光。 神看見光是好的;神將光明與黑暗分開。 -創世紀 1:3

1905 年愛因斯坦在題為「關於運動物體的電動力學」(On the Electrodynamics of Moving Bodies)的論文引言裡謂:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與它不調和(irreconcilable)的公設,即光在真空中的傳播速率為一與發射體運動狀態無關的定值 c。這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(James Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?

更令人難以相信的是:當時的物理與天文學家因為馬克斯威方程式(Maxwell Equation)的成功,都認為空間充滿了絕對靜止的「以太」,「光速為定值」僅是相對於這一固定的「以太」而言;而愛因斯坦竟初生之犢不畏虎,開宗明義地謂不要爭辯了,我們將光在真空中的速度「公訂」為與發射體運動狀態無關的定值 c!幸運地,在「立即引起了我的熱烈關注」下,當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)立即在柏林大學開始講授相對論,並公開為愛因斯坦的抽象概念理論辯護!由於普朗克的影響,這篇愛因斯坦根本沒想到是「革命性的」、完全改變牛頓之時空觀念的論文終於與量子力學一起開創了近代物理學。

當然,我們現在知道實驗上已經證明了這一「公設」的正確性;愛因斯坦怎麼那麼「神」呢?

-----廣告,請繼續往下閱讀-----
愛因斯坦以大膽創新思維,突破常規,開創物理學新紀元。 圖/wikimedia

「光」逐流

第二次世界大戰結束後不久,愛因斯坦受邀在「在世哲學家圖書館」(Library of Living Philosophers)撰寫一篇知識分子自傳(註一)。在該《自傳筆記》(Autobiographical Notes)裡,愛因斯坦開張寫道:「我坐在這裡是為了在 67 歲時寫一些類似於我自己之訃文的東西」,然後以無與倫比的溫暖和清晰解釋了他的思想路徑:從年輕時對幾何的興趣,轉向馬克斯威、馬赫(Ernst Mach)、和波爾(Niels Bohr)等哲學、科學家對他自己之理論發展的影響。此書是愛因斯坦留給我們的唯一個人自傳筆記,為科學史上的一部經典著作。

在講述導致狹義相對論的發展時,愛因斯坦在《自傳筆記》中回憶道:

…..我在十六歲時就已經遇到了一個悖論:如果我以速度c(真空中的光速)追逐上一束光,我應該觀察到其電磁場將是靜止不前進,只是在空間上振盪而已。然而,無論是根據經驗,還是根據馬克斯威方程組,這現象似乎不存在。(因此)從一開始,我就直覺地清楚看到,從這樣一個觀察者的角度來看,一切都必須按照與相對於地球靜止的觀察者相同的定律發生。第一個觀察者如何知道或能夠確定他處於一快速、等速的運動狀態?從這個悖論中可以看出,狹義相對論的種子已經包含在內。

愛因斯坦如何解決這悖論呢?

一場風暴

愛因斯坦在瑞士專利局任職時,經常與「奧林匹亞學院」(Olympia Academy)的成員討論光速之謎。1905 年 5 月中旬,他突然想到光速之謎的答案就隱藏在用於測量時間的程序中,他回憶說:「我的腦海中掀起了一場風暴」。隔天一大早碰到一位工程師同事就迫不及待地告訴說:「我已經徹底解決了這個問題。對時間概念的分析是我的解決方案:時間不能是絕對的,時間和訊號速度之間存在著密不可分的關係。」

-----廣告,請繼續往下閱讀-----

在風暴中,愛因斯坦匆匆忙忙地在數週內完成了那革命性的狹義相對論論文。在此讓我們看看為什麼他認為「時間和訊號速度之間存在著密不可分的關係」。

愛因斯坦同步程序

要測量光速,必須讓光訊號在已知距離內從一個位置跑到另一個位置,然後透過起點和終點的時鐘讀數之差異來確定傳播時間。因此用於測量傳播時間的時鐘必須同步,否則它們之讀數差異將毫無意義。可是我們卻需要利用光速來同步化兩個不同地方之時鐘,這顯然是「雞生蛋、蛋生雞」的循環邏輯問題。

愛因斯坦的風暴就是他終於想出了可以避免循環邏輯的同步化假想實驗:在 tA 時從 A 發出一道光線,當它在 tB 到達 B 時立刻讓它反射回去,於 t’A 時到達 A;如果

則我們稱 A、B 兩地的時鐘精確地同步化了。例如 A 在 1:00 發出光信號,1:10 收到反射回來的光信號,如果 B 收到光信號的時刻是 1:05(或者將它調到 1:05),那麼 A、B 兩地的時鐘便是同步。今天的物理學家將此方法稱為「愛因斯坦同步程序」( Einstein Synchronization Procedure )。

-----廣告,請繼續往下閱讀-----

光速定值的「公

愛因斯坦接著說:「另外,根據經驗,我們進一步要求

為普適常數(真空中的光速)。」這是根據經驗計算光在兩點間之平均速度的方法,毫不起眼,但卻隱藏著一個非常不尋常的「陰謀」?

邏輯告訴我們:如果我們用另一毫不起眼的 tB 定義去測單方向的光速(A 到 B或 B 到 A),其值一定是 c ( 註二 )!因此愛因斯坦說:「…我們根據定義確定,光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間。」也就是說愛因斯坦在這裡從「平均速度」及「愛因斯坦同步程序」的定義,魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!

為什麼這是個「陰謀」呢?在愛因斯坦的假想實驗中,我們既然不需要知道光的速度,為什麼不用聲音呢?答案很簡單:因為我們知道聲速會受到 A、B 兩點與空氣之相對速度的影響;如果風從 A 吹到 B,那麼 B 收到聲音的時間將比愛因斯坦之 tB 早! 可是那時候幾乎所有的物理學家都相信光是在「乙太」中傳播的(見後),愛因斯坦怎麼知道光速不會受到 A、B 兩點與「乙太」之相對速度的影響?

-----廣告,請繼續往下閱讀-----
愛因斯坦透過同步程序巧妙定義光速,避開了「乙太」的影響。圖/wikimedia

歷史上最「失敗」的實驗

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式━「馬克斯威方程式」━闡釋了當時已知的電磁現象。1865 年,馬克斯威透過其方程式導出電磁波的存在,並證明光事實上就是一種電磁波!光既然是一種波動,那像水波及聲波一樣應該有傳播的媒體(介質),物理學家開始尋找這一稱為「乙太」的媒體,並測試地球在這一媒體中的運動狀態。

這些實驗中最有名的是後來被稱為歷史上最「失敗」的實驗:1887 年,邁克爾森(Albert Michelson)與莫利(Edward Morley)用光干涉儀測量地球與乙太的相對運動速率。邁克爾遜和莫利預計會發現:分道揚鑣的兩道光束在不同時間回到探測器,從而可以計算出地球在乙太中的運動速度。但他們非常失望地發現:無論光向哪個方向傳播,它總是以相同的速度移動,因此下結論説:如果乙太存在,地球與乙太的相對運動速率為零!他們認為這有兩種可能的解釋:(1) 在地球表面之乙太被地球拖著走;或 (2) 根本沒有乙太(參見「乙太存在與否的爭辯」)。但更簡單的解釋應該就是愛因斯坦的不要爭辯「公設」;可是誰敢提出這種違反常識的論調呢?或許只有當時還是默默無聞的瑞士專利局小職員吧?

可是愛因斯坦回憶說:「在我自己的發展中,邁克爾遜的結果並沒有(對我)產生很大的影響。我甚至不記得當我寫第一篇關於這個主題的論文時(1905 年),我是否知道它。」然而愛因斯坦也在許多場合中曾經反覆使用「可忽略不計」、「間接」、「非決定性」等詞彙來形容邁克爾遜實驗對他思想的影響…。看來「愛因斯坦當時是否知道邁克爾遜實驗結果」這個問題將永遠是個懸案。但可以肯定的似乎是:即使愛因斯坦知道邁克爾遜的結果,它對愛因斯坦理論的起源貢獻應該是非常小和間接的,絕對不是他發現相對論的主要推動因素。

事實上前面提到:愛因斯坦根本可以不需要知道,因為在他的時鐘同步程序下,光速一定是定值,與實驗結果或「乙太」是否存在無關。相反地,如果愛因斯坦清楚不用時鐘同步化的邁克爾遜-莫利實驗,那風暴可能就不會產生了!

-----廣告,請繼續往下閱讀-----

時鐘同步化與光速無關

測量單方向光速實際上並不需要同步化的兩個時鐘(即沒有循環論證的問題)。例如 A、B 兩地皆在赤道上,A 在 1:00 發出光信號,B 在收到光信號後等 12 小時再發射回去,如果 A 在收到 B 光信號的時間是 13:04,那麼因為地球 24 小時自轉一次的關係,AB 距離除以 0.02 便是光單方向(相對於宇宙)的速度。在這一個實驗中,A、B 兩地的時鐘根本不必要同步化,只要它們的精確度是一樣就可以了。

人類早在 18 世紀初就已經知道如何製造相當精確及穩定的時鐘:哈里森(John Harrison)是英國的一名木匠,自學了鐘錶製作;在 1720 年代中期,他設計了一系列卓越的精密長殼時鐘,其精確度已經高達一個月僅差一秒(註三)。我們可以將兩個 Harrison-IV 時鐘在 A 處校正,然後慢慢(原則上無限地慢)將其中一個移到它處,不但可以用它來同步化這些地點的時鐘,還可以用來直接測量單方向的光速。

還有,首次確鑿證明地球在動的布拉德利(James Bradley)早在 1729 年就已經透過「星光像差」(stellar aberration)測得高達 0.4% 精確度的光速;而發明「傅科擺」(Foucault pendulum)來證明地球在自轉的傅科(Léon Foucault)則在1862年透過旋轉鏡與單鐘測得 0.6% 精確度的光速。

馬克斯威方程式也告訴我們,不需要使用任何時鐘,透過測量自由空間的磁導率和介電常數即可間接計算光速,完全避開愛因斯坦的循環論證邏輯。事實上馬克斯威 1865 年就是用這兩個實驗數據計算出電磁波的傳播速度為每秒鐘 310740000 公尺,接近當時光速的(傅科)實驗值。馬克斯威認為這不會是巧合,謂:「我們幾乎無法避免這樣的結論:光存在於同一介質的橫向波動中,這是電和磁現象的原因」,因此他預測光是一種電磁波。

-----廣告,請繼續往下閱讀-----

上面這些說明了 20 世紀黎明前,科學家就已經知道了:時間(校時)和訊號速度之間並不存在著密不可分的關係。事實上愛因斯坦更應該知道,因為當他被問到是否站在牛頓的肩膀上時,他回答說:「不,是站在馬克斯威的肩膀上!」所以不知道愛因斯坦是否故意沒想到這些,以便透過陰謀來創造相對論?在今天,愛因斯坦那篇沒有任何參考資料的相對論論文是不可能被接受發表的!

愛因斯坦的規定

在愛因斯坦同步程序下,無論光的實際速度是多少,光速測量起來總是定值 c。難道愛因斯坦不知道這「魔術」充滿了漏洞嗎?一個可能的解釋是 19 世紀末電報線和鐵路將整個歐洲連接成一個巨大的網絡,為了以確保訊息、乘客、和貨物的順利流動,同步時鐘是非常實際的考慮;愛因斯坦是專利局電訊操作設備的技術專家,負責審查時鐘同步的網路電磁設備之專利申請,因此他一定在思考時鐘同步問題,加上經年累月地為光速所困,似乎很自然地便往這牛角尖裡鑽。

愛因斯坦或許因長期研究時鐘同步問題,導致忽視光速測量的漏洞。圖/wikimedia

我們知道魔術是騙人耳目與大腦的,不能用在科學上。光速是可以量的,怎麼可以根據定義確定(光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間)?因此在其 1916 年之科普《相對論:狹義理論與廣義理論》一書中,愛因斯坦辯說:「(假設 M 在 A、B 兩處之正中間)實際上光需要相同的時間穿過路徑 AM 和穿過路徑 BM,這既不是關於光之物理性質的假設(supposition)、也不是假說(hypothesis,註四),而是我可以根據自己的自由意志做出的規定(stipulation),以便得出同時性的定義(註五)」。換句話說,愛因斯坦認為光速恆定是一種「規定」,與物理無關,無需解釋其真偽(註六)。且聽「創相對論紀 1:3」道來:

19 世紀中旬馬克斯威創造了馬克斯威方程式。大地充滿了乙太;深淵的裡面測不出地球的運動;愛因斯坦的靈運行在其中。愛因斯坦說,「讓光速為定值」,於是光就依定值傳播。愛因斯坦看見定速是好的;愛因斯坦將定速與乙太分開。

圖/作者提供

結論

從上面的分析看來,愛因斯坦這「光速為定值的規定」似乎是建基於錯誤的認知上,所以顯然愛因斯坦其實沒有那麼神

-----廣告,請繼續往下閱讀-----

開玩笑的,事實上愛因斯坦是筆者佩服的極少數科學家之一!在「思考別人沒有想到的東西──誰發現量子力學?」一文裡,筆者指出:當普朗克還一直在努力地想讓他的量子解釋能容於古典力學時,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分!也只有愛因斯坦能看出波思(Satyendra Bose)一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的重要性,開創了量子統計力學!更奇怪的是:他被證明是錯的「EPR 悖論(EPR Paradox)」竟推動了許多如量子密碼學、量子計算機、量子資訊理論、量子遠程傳送等的研究;而他自認是一生中最大錯誤的「宇宙論常數」則成為研究近代宇宙的主要工具。……因此筆者總覺得愛因斯坦雖然像常人一樣犯錯,但對物理卻具有一般人所沒有的第六感!或許愛因斯坦心裡早就預感光速應該是定值(註七),其同步程序只是設計出來「證明」光速恆定的妙計?

雖然以卓越教學而備受讚賞的慕尼黑大學理論物理學教授薩默費爾德 ( Arnold Summerfeld ) 曾於 1907 年對愛因斯坦的公設提出「微辭」,但現在物理學家從未公開批評該相對論公設,只是默默地屏棄此一公設,改採將光速恆定作為可以實驗驗證的物理定律(經驗基礎):光速恆定不是規定,而是根基於實驗的自然界基本定律。

如果光相對於愛因斯坦的速度永遠為c, 那麼他將永遠無法隨「光」逐流看到光駐波,愛因斯坦不但終於解決了他16歲時所迷惑的悖論,還開創了相對論!

註釋

(註一)《世哲學家圖書館》系列的第七卷(Paul Arthur Schilpp編輯,美國紐約市 MJF Books 出版,2001 年元月一日重印版)。單行本:《阿爾伯特·愛因斯坦:哲學家-科學家》(Albert Einstein: Philosopher-Scientist;Open Court,3rd edition,December 30, 1998)。

(註二)筆者讀過多次愛因斯坦同步程序,從沒想到被騙;視而不思,真是書呆子一個!

(註三)2023 年初可攜帶型的商業原子鐘精確度高達 10-11%。

(註四)大英百科全書:科學假設是對自然界中觀察到的現像或一組狹窄現象提出初步解釋的想法。

(註五)參見『不用數學就可以解釋──相對論的著名想像實驗「雙胞胎悖論」』。

(註六)這種不顧物理的隨心所欲「規定」使筆者想到了波爾於 1913 年提出的:「電子雖然如行星繞日,但它的軌道卻不能隨便,而必須適合一個新的條件,即量子條件(quantum condition)。在這種軌道條件下的電子是穩定的,它可不服從電磁理論,因此也就不須放射出電磁波。」波爾輕而易舉地用「規定」的方法解決了拉塞福 ( Rutherford ) 原子模型與電磁理論的衝突(參見「原子的構造」)。當然,波爾原子模型的成就不只解決這衝突而已,它事實上解釋了當時存在的部份光譜問題,推動了新力學的迅速發展。同樣地,愛因斯坦的規定不只提出了「同時」是相對的觀念,還開創出一個新的力學。

(註七)用兩個簡單的公設就可推導出當時已知的洛倫茲轉換方程式(Lorentz transformation)、時間膨脹(time dilation)、洛倫茲—傅玆久拉空間收縮(Lorentz-FitzGerald contraction )等公式,這絕對不可能是一個巧合。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
DNA-PAINT:轉瞬標記 奈米解析
顯微觀點_96
・2024/10/03 ・3586字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

DNA-PAINT:易脫落的奈米「漆」

DNA-PAINT 屬於單分子定位顯微術(SMLM)大家族一員,它突破繞射極限的途徑類似 PALM 與 STORM:以閃爍(blinking)的螢光讓多個目標分子的位置輪番呈現,最後將多次定位影像以電腦疊合重建成完整的超解析分子地圖。結合電腦運算輔助和光學成像的統計原理,DNA-PAINT 可以達成極端細緻的 RESI 定位術,清楚區別兩個距離不到 1 奈米的螢光來源。

單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。

DNA-PAINT 的特別之處,在於利用「不牢固」的螢光標記製造閃爍效果。不同於 PALM, STORM 以光調控「固著在目標上」的螢光來源,DNA-PAINT 使用與目標連結力量薄弱的螢光探針,結合目標之後會快速分離。只有在探針與目標結合的瞬間,同時被激發光照射,探針上的螢光團才能發出螢光。目標分子與螢光探針分離後,依然保有和下一個探針結合的能力,因此不必擔心螢光團的放光能力衰退。

-----廣告,請繼續往下閱讀-----
Dna Barcoded Labeling Probes For Highly Multiplexed Exchange Paint Imaging
DNA-PAINT 原理:Docking strand(嵌合序列)附著在人造 DNA 構造上,溶液中漂浮著成像序列(Imager strand),成像序列上的螢光團不容易被激發(膚色)。成像序列與嵌合序列結合時,螢光團才會被激發(橘紅色) 圖片來源:Agasti, Sarit S., et al. Chemical science 8.4 (2017): 3080-3091.

DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。

DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。

因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。

Direct Visualization Of Single Nuclear Pore Complex Proteins Using Genetically‐encoded Probes For Dna‐paint
以 DNA-PAINT 對細胞核膜上的 Nup96 核孔蛋白進行 3D 定位。在圖 a. 中,不同的螢光色彩象徵不同的空間深度。圖 b. 箭頭所指處,則是成對出現的 Nup96 蛋白。比例尺:圖 a. 2000nm, 圖 b. 50 nm. 圖片來源:Schlichthaerle, Thomas, et al. Angewandte Chemie 131.37 (2019): 13138-13142.

核孔複合體(Nuclear Pore Complex)上的 Nup96 蛋白是科學家經常探索的重要目標,即使是超解析顯微術也未能在自然狀態下呈現其構造。隆曼團隊以 RESI 對 Nup96 進行定位,不但清楚定位出符合電子顯微鏡拍攝的 8 對 Nup96 蛋白沿著核孔形成環狀結構,還能清楚呈現每對蛋白之間的 11 奈米的間距。

-----廣告,請繼續往下閱讀-----

結合序列成像(Sequential Imaging)與 DNA-PAINT 兩種技術,RESI 讓科學家得以運用一般門檻的顯微儀器、耗材,就能達到超乎以往想像的定位解析度。而 DNA-PAINT 這種巧妙的定位方法並非一蹴而就,而是數種有趣的技術累積而成。

PAINT 起源:不穩定又不專一的尼羅紅

PAINT(Point Accumulation for Imaging in Nanoscale Topography, 點累積奈米成像術)系列定位法的螢光探針由一個螢光染劑分子與一個分子探針(probe)構成。親和性抗體、寡核苷酸(短小 DNA 片段)都可作為分子探針的材料,再由此探針結合目標分子或其上的抗體。除了 DNA-PAINT, PAINT 家譜上還有 FRET-PAINT, Exchange-PAINT, u-PAINT 等不同特質的成員。

在 2006 年由沙羅諾夫(A. Sharonov)和霍克崔瑟(R. M. Hochstraser)發表的第一代 PAINT 中,僅僅使用螢光染料尼羅紅(Nile Red)為標記。這種染劑在含水溶劑中無法發光,必須進入磷脂層等非極性環境才能展現其螢光活性。

因此尼羅紅無須結合探針,只要以低濃度加入樣本溶液中,就能觀察到其進入細胞膜脂雙層、大型磷脂囊泡(large unilamella vesicles)表層等疏水性環境中,受到激發放出螢光。尼羅紅與磷脂層的親和性不強,很快就會再次脫離,也容易遭到光漂白(photobleaching)而失去螢光,因此可作為一種閃爍的螢光定位標記。

-----廣告,請繼續往下閱讀-----

尼羅紅可以結合所有疏水性(hydrophobic)的構造,無法真的標記特定分子,缺乏分子生物學重視的專一性。但它開啟了 PAINT 以「不牢固螢光染劑」增進解析度的先河。與多數螢光顯微術追求螢光團穩定性與強度的定位技巧背道而馳。

Image 2
圖 a. 以尼羅紅標記磷脂層的直接成像;圖 b. 以 PAINT 技術進行上千次成像重建後的磷脂層定位。兩者定位解析度形成強烈對比。圖 c. 為 uPAINT 概念:接受激發光(綠色)照耀的螢光探針才會發光(紅色),漂浮在激發光範圍外的螢光探針保持黯淡(粉紅),即使未結合目標的探針也能發光,且僅能標記細胞膜表面的目標。圖片來源:Nieves, Daniel J., et al. Genes 9.12 (2018): 621.

4 年後,吉安諾內(G. Giannone)和荷西(E. Hosy)以具目標專一性的配體,例如抗體蛋白,連接螢光團形成螢光探針,達成具有專一性的 PAINT 超解析定位。透過進步的生化技術製作配體,這種技術幾乎可以定位所有類型的目標,因此被命名 universal-PAINT, 簡稱 uPAINT。

uPAINT 可以提升多種目標的定位解析度,但其螢光探針即使游離在溶液中,也能接受激發、放出螢光,形成背景雜訊。且結合螢光染劑的抗體無法穿透細胞膜,因此只能定位細胞膜上的目標。

因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。

-----廣告,請繼續往下閱讀-----

同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。

無限調色的虛擬油漆:Exchange-PAINT

2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。

這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。

他們每次只加入一種成像片段,針對一種目標進行閃爍(blinking)定位,並由電腦套上特定顏色,接著洗去既有成像片段,再加入下一種成像片段。最後將所有目標的獨立定位圖疊合起來,便能得到完整的奈米級定位。

-----廣告,請繼續往下閱讀-----
Multiplexed 3d Cellular Super Resolution Imaging With Dna Paint And Exchange Paint 2
圖 a.為 Exchange-PAINT 概念,每一輪定位針對一種目標,完成後洗去探針,再加入下一種探針進行定位,最後將每一輪的定位影像疊合起來。圖 c., 圖 d. 表現 Exchange-PAINT 的多工能力, 1 個 DNA 摺紙樣本上的 10 種不同目標可以依序定位,賦予顏色(實際上使用相同螢光染劑,不同成像片段),再以電腦重建疊合。每一種目標的定位都進行了 7500 次拍攝。圖 d., 圖 e. 中的比例尺為 25nm. 圖片來源:Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.

只需要一種螢光染劑接上多種成像片段,Exchange-PAINT 便能以基本的實驗設備達到多重目標的超解析定位,不像多重標記的 DNA-PAINT 受限於染劑顏色數目,Exchange-PAINT 的門檻在於互不相干寡核甘酸片段的數目,在實驗中幾乎不可能窮盡。而可以使用一般螢光顯微鏡與螢光染劑達到埃(ångström)解析度的 RESI 技術,就是將 Exchange-PAINT 的多種目標定位應用於單種目標定位,透過不同探針標記同種目標製造發光順序落差,大幅提升解析度。

在「眼見為真」的生物學影像趨勢中,「增加偵測光子數量」是螢光顯微技術提升解析度的基礎光學原理,也是最主流的技術改良方向。而 DNA-PAINT 系列技術跳脫了對光子數量的追求,不受螢光染劑的光漂白及螢光壽命限制,以快速脫落的探針另闢蹊徑,使低成本的超解析影像得以實現,更展現生物物理學蘊藏的廣泛技術可能性。

  • DNA-PAINT 的最新應用:RESI序列成像解析度增強術
  • Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.
  • Agasti, Sarit S., et al.  Chemical science 8.4 (2017): 3080-3091.
  • Nieves, Daniel J., Katharina Gaus, and Matthew AB Baker. Genes 9.12 (2018): 621.
  • Schlichthaerle, Thomas, et al.  Angewandte Chemie 131.37 (2019): 13138-13142.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。