0

0
0

文字

分享

0
0
0

團藻:水田裡的夏日花火

MiTalk
・2018/06/13 ・2204字 ・閱讀時間約 4 分鐘 ・SR值 549 ・八年級

江殷儒
中央研究院生物多樣性研究中心 副研究員​
​台灣微生物歲時記

 

直到現在,我依然享受騎乘機車的自在隨意。

初夏時節,騎機車自南港舊庄進入遍植包種茶的淺山地帶後,轉汐碇路可到達石碇。沿途林蔭鬱鬱,山澗處處,令人暑氣全消。沿著靜安路蜿蜒而行,隨著滿山遍野的天燈殘骸漸增,即達平溪十分一帶。進入雙溪後,群山猛然往兩側退去,道路豁然開朗,筆直地進入貢寮。繼續向東行進,嗅聞到海風氣味後,即可到達農田連綿廣衍的田寮洋。

位於新北市東北一隅的生態樂園-貢寮田寮洋。此處的水田在初夏可以找到團藻。記得隨身帶上封口袋與放大鏡。圖/江殷儒提供。

田寮洋面積約200公頃,是雙溪河下游的洪氾平原。雙溪河在此處形成大曲流,可供洪水宣洩。因此,田寮洋具有調節雙溪河水位的功能。

田寮洋以稻田、筊白筍田為構成主體。經由水田耕作的持續干擾,田寮洋得以遠離陸化的命運,長期維持濕地的型態。周遭環繞低矮的丘陵,加上如馬賽克鑲嵌般的水塘與草澤,讓棲地多樣化的田寮洋成為台北盆地重要的生物庇護所,成為許多留鳥的寶貴棲所,亦是候鳥南北遷徙的補給站。跟著水鳥遷徙傳佈的,除了令人聞之色變的禽流感,還有各式各樣的微藻類,肉眼可見、姿態嬌媚的團藻。

-----廣告,請繼續往下閱讀-----
漂浮著的滿江紅的水田或小埤塘,常常可以發現團藻的蹤跡。圖/江殷儒提供。

如果藻類也可以成為神奇寶貝的話,團藻絕對是最值得收服的對象之一。

團藻性喜棲息於富含有機質的靜水域,如淺塘與雨後的暫時性水窪。初夏的田寮洋,在棲息著少量滿江紅的水田裡,很容易發現團藻的蹤跡,甚至會形成極度優勢的藻類純群。團藻與滿江紅要求相似的水質條件;然而,佈滿滿江紅的水田,由於光照缺乏,又會抑制團藻的生長。另一方面,團藻對農藥敏感。因此,棲息著團藻的水田,通常是禁絕或低度用藥的友善耕作水田。

日本東京大學生物科學系野崎久義教授的研究團隊在2016年6月於貢寮田寮洋使用浮游網採集團藻。圖/江殷儒提供。

團藻的藻體是直徑1~5毫米的中空球形群體,是少數肉眼可見的微藻。在野外可以利用透明封口袋採集水田的水樣,於陽光下利用放大鏡貼近封口袋,即可觀察到一顆顆的團藻。也因為極易觀察,顯微鏡之父─荷蘭微生物學家雷文霍克在十八世紀初期即描述過團藻。

分類上團藻屬於綠藻門,這類的藻類由於富含葉綠素 a 和 b,外觀呈現亮綠色。作為最原始的多細胞生物之一,團藻由數百至數萬個單細胞在球體表面排列組成,鑲嵌於由醣蛋白組成的膠質結構。同時,單細胞具有朝外的兩條游動鞭毛及感光用的眼點。

-----廣告,請繼續往下閱讀-----
以光學顯微鏡觀察採集自田寮洋的團藻(Volvox carteri f. nagariensis)之無性球體。G: 無性生殖細胞 (gonidia)。圖片擷取自日本東京大學生物科學系野崎久義教授與中研院生物多樣性研究中心副研究員江殷儒博士合作,甫被接受的論文(1) (江殷儒提供)。

團藻(Volvox spp.)的拉丁字義為「滾動」,顧名思義,放大鏡下的團藻會以優雅的姿態,緩緩地向光照處滾動(影片如下)。這需要令人驚異的協調性。因此,看各自獨立的單細胞,彼此需透過相連的原生質聯絡絲進行緊密的溝通協調。

https://www.youtube.com/watch?time_continue=11&v=nzO-ZSsqc9U

在演化研究上,團藻是相當重要的研究材料。因為團藻可能是單細胞真核生物過渡到多細胞生物的早期生命形式,也是有性生殖發生的起源。日本東京大學生物科學系的野崎久義教授在團藻演化上就有傑出的研究貢獻。

但如果你嘗試連續地培養團藻,難度其實很高,就像企圖強留夏日花火;最後你會在秋天前的某一日發現團藻的藻體萎縮崩潰。

-----廣告,請繼續往下閱讀-----
團藻的生活史。本圖修改自 Nishii 與 Miller 論文之圖二(2)。

藻類往往具有非常複雜的生活史,團藻就是如此。我們肉眼見到的球形群體,其實只是其生活史的一個片段。

在合適的水質條件下,團藻傾向進行無性生殖。群體內少數體型較大的生殖細胞會持續分裂,進而發展成子群體,隨後掉入空腔內。當母群體老化破裂後,子群體們即會釋出到環境中。溫度的劇烈變動及乾燥等理化條件,會促成團藻細胞產生費洛蒙,誘導團藻進入有性生殖,結果便是產生厚壁的休眠孢子,隨後沉入田土中,等待另一個夏天。

這樣的生活史,與水稻田的季節作息相呼應,彷彿團藻是上帝擔憂水稻太過孤單而創造的玩伴。當你漫步於夏日的田寮洋,除了利用望遠鏡觀察遠處的水鳥,不妨彎下腰,拿起放大鏡,仔細觀察田水中的寂靜角落,或許你也能發現那美麗炫目的團藻。

參考文獻

-----廣告,請繼續往下閱讀-----
  1. Nozaki H, Ueki N, Takusagawa M, Yamashita S, Misumi O, Matsuzaki R, Kawachi M, Chiang YR, Wu JT. Morphology, taxonomy and mating-type loci in natural populations of Volvox carteri in Taiwan. Bot Stud. 2018 Apr 3;59(1):10.
  2. Nishii I, Miller SM. Volvox: simple steps to developmental complexity? Curr Opin Plant Biol. 2010 Dec;13(6):646-53.

本文轉載自MiTalkzine,原文《初夏田寮洋的團藻

歡迎訂閱 微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG





-----廣告,請繼續往下閱讀-----
文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
人工智慧的「黑箱作業」,類神經網路如何將生物分類的?
MiTalk
・2019/06/08 ・4467字 ・閱讀時間約 9 分鐘 ・SR值 543 ・八年級

  • 作者/吳育瑋 臺北醫學大學醫學資訊研究所助理教授

這篇文章是我在讀到 Nature Methods 在 2018 年 3 月 5 日刊登的文章「Using deep learning to model the hierarchicalstructure and function of a cell」1後,在臉書 MiTalk 社團寫下的三篇短文的整理集結。在這三篇短文中,我簡要地介紹了目前人工智慧的技術基礎「類神經網路」的概念,再將其延伸到這篇文章提及的系統生物學研究,並解釋目前類神經網路之所以被稱為「黑盒子」的原因,以及這項系統生物學研究處理黑盒子的手法。

資訊輸入和輸出,如何用「類神經網路」做出無人車?

我們先來聊聊目前機器學習中最火紅的演算法「類神經網路」究竟是什麼東西?

動物的神經元大致上都有著可以接受來自其他神經元的訊號的樹突 (dendrite),以及可以傳送訊號給其他神經元的軸突 (axon)。類神經網路的單位神經元架構與生物的神經元類似:都有著數個可以接受其他神經元的「輸入 (Input)」,以及數個傳送訊號給其他神經元的 「輸出 (Output)」。將一大堆這樣子的神經元連結起來,就是類神經網路了。

當然,這種連結也不是亂連的。類神經網路通常會分成好幾「層」,而每一層與每一層之間的神經元都會緊密連結著 (fullyconnected),以下我用個實際的例子來說明這所謂的「層」是怎麼回事。

在 1989 年的時候,卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN 2。這台無人車的主要架構有三個:一台在車子前面隨時拍照的照相機或攝影機,一台執行類神經網路運算的電腦,以及由電腦控制的方向盤,請參考下圖:

-----廣告,請繼續往下閱讀-----
  • 第一層(最底層):照相機照出來的 30 x 32 個 pixel 的影像,以及8 x 32 個雷射距離測定器像。總共輸入單位是 30 x 32 + 8 x 32 = 1216 個。
  • 第二層(中層):由 29 個類神經網路神經元構成的隱藏層(最初期的設計只有4 個)。
  • 第三層(最上層):45 個輸出神經元,代表著方向盤要打那個角度;每個神經元代表一個角度,例如第一個神經元代表方向盤往右打 30 度,第二個代表方向盤往右打 28 度,依此類推。

卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN。圖片取自:LVINN 論文2

這麼簡單的類神經網路,就已經可以讓這台車在路上以 60 英哩的速度行駛了。可見得類神經網路機器學習的威力。

那麼類神經網路是怎麼訓練的呢?簡單地說,我們在訓練類神經網路時,必須要給它一組(通常是數量很多的一大組)已經知道正確答案的訓練樣本,讓類神經網路之間的神經元連結可以自動透過輸入訊號與正確答案的比對調整自身的參數。這樣的訓練會持續上數千或甚至數百萬次,直到正確率無法再提昇為止。比如說 ALVINN 無人車的訓練就是在真人開車時,將每張相機照出來的圖片與人類開車者的方向盤角度(也就是正確答案)進行連結,並持續調整參數直到答案錯誤率很低為止。

換句話說,ALVINN 這台無人車所做的事,就是模仿人類的開車行為。

-----廣告,請繼續往下閱讀-----

除了無人車,「類神經網路」也能區分生物種類?

在上一段我們解釋了何謂類神經網路。一句話總結的話就是類神經網路就是連結在一起的人工神經元,而且可以透過無數次訓練盡量提高執行任務(比如說下棋或預測天氣)的準確率。在這一段中我將提到類神經網路與生物網路之間的關係

類神經網路通常是由許多的「層」數以及每一層內的「神經元」數量所構成的;然而究竟需要多少層網路,或是每一層網路需要多少神經元,則沒有一定的準則。

我認為這是類神經網路最關鍵,卻也最難以決定的參數。舉例來說,先前提到過的自駕車 ALVINN 總共只有一層網路(不考慮輸入與輸出層的話),且這一層只包含 29 個神經元節點。但是現在如 Tesla 或其他品牌自駕車的類神經網路絕對比這個架構複雜許多。我們在設計類神經網路的時候,甚至需要不停地 trial-and-error 後才能決定「最佳」的網路架構,而這裡的「最佳」理所當然是由預測準確率來決定的。

那麼這和微生物或生命科學有什麼關係呢?這要先從一篇Nucleic Acids Research 論文3 講起。在這篇論文中,卡內基美隆的研究人員試圖透過類神經網路試圖研究不同的細胞(比如說胚胎分化時期的 early-2-cell、late-2-cell、8-cell、16-cell,或不同種類的細胞如 fibroblast、BMDC、以及上皮細胞等),並查看這些細胞的基因表現是否有著明顯的差異。他們的研究標的是不同研究團隊定序出來的 single-cell RNASeq 資料。

簡單來說,他們希望將許多人體內不同種類細胞的 RNASeq 資料透過類神經網路處理後,能夠過濾雜訊,留下最清楚的基因表現訊號。其最終目的當然是透過分群演算法視覺化看出每種細胞的區別

-----廣告,請繼續往下閱讀-----

舉例來說,在論文的圖中,我們可以看到不同的人類細胞在經過類神經網路處理後,能夠有著最大化的分群效果;而且群與群之間大致上距離都相當遠,顯示出基因的表現量的確會隨著細胞的不同而不同。

不同細胞的基因表現差異視覺化。圖片取自:Nucleic Acids Research 論文3

在同一項研究中,研究人員也發現如果小心地設計類神經網路架構,並將其與生物意義結合的話,將能達到最好的效果。這裡說的與生物意義結合的意思,指的是在設計的類神經網路層級中考慮到生物網路的數量以及結構。

他們首先算出這些基因表現量資料,並將資料建成 protein-protein interaction (PPI) 與 protein-DNA interaction (PDI) 的網路系統,並找出裡面總共有 348 個彼此之間有關聯的子網路;而就在找出「348」這個神奇數字後,研究人員就將類神經網路的隱藏層設計成兩層,且各有著 348 個神經元節點,分別代表這 348 組 PPI 與PDI 子網路。他們發現這樣子的類神經網路設計將能達到最理想的分群效果。

-----廣告,請繼續往下閱讀-----

好的。到底我之所以鋪了類神經網路和生物意義這些梗要幹嘛呢?當然最主要的目的就是要說明 2018 年 Nature Methods的論文1 到底在講什麼。這篇論文雖然也是走類神經網路路線,但是他們網路的設計相當極端:完全按照生物的代謝途徑 (metabolic pathway) 來設計神經元的分佈(作者群在另一篇論文中提到他們就是受到這一篇 Nucleic AcidsResearch 的論文啟發而設計出這種奇妙的架構的)。

換句話說,這篇系統生物學的論文設計的類神經網路事實上已經不太有傳統的「隱藏層」的概念,而是完全按照代謝途徑連結人工神經元。透過這個方法,他們的類神經網路中總共包含了酵母菌的 2526 個子網路系統,分別代表不同的細胞代謝途徑。在經過訓練與比較後,這個經過特殊設計的網路結構可以準確地透過不同的基因表現預測酵母菌的細胞生長,並且預測的準確率比傳統數層緊密連結的類神經網路還要好上許多。

神秘的黑盒子,「類神經網路」是怎麼運作的?

在類神經網路的世界中,常常會聽到一個說法:以類神經網路為基礎架構的人工智慧預測模型是「黑盒子  (black box)」。這裡的黑盒子當然不是飛機出事後可以撿回來分析的那個,而是無法打開無法分析而且完全不曉得裡面到底在幹嘛的系統。為什麼會有這種說法呢?一切都要從類神經網路模型是如何訓練的開始講起。

黑盒子系統就像骰骰子一樣,即使知道力學原理,我們還是無法得知骰盅內部到底發生了什麼?圖/pixabay

-----廣告,請繼續往下閱讀-----

在類神經網路的世界中,每一個神經元可以接收來自數十甚至數百個神經元的訊號,並且可以傳送訊號給數十到數百個其他神經元。這種連接方式讓類神經網路的參數異常地多,且輕易就可以上到百萬千萬甚至億這種等級。我再次拿 ALVINN,那台 1989 年的無人車來當例子好了。

ALVINN 的輸入層有 1216 個神經元節點,中間的隱藏層有 29 個神經元,而輸出層有 45個神經元。這個相對來說架構非常簡單的類神經網路的參數就有 1216 X 29 X 45 = 1586880 個參數要考慮了,更別提其他
更複雜的深度學習類神經網路模型了。

事實上,參數數量多還在其次,真正的關鍵在於類神經網路的訓練方式。在訓練類神經網路時,我們往往會做以下兩件事:

  1. 『 隨機』初始化類神經網路中的『所有』參數
  2. 隨著每個樣本的預測對錯微調所有的參數

我來用實際生活案例舉個例子好了。假設你要登一座山,目標是山頂。這座山每個地方的地型都完全不一樣。所以從 A 點上山和從不一樣的 B 點或 C 點上山的路都不盡相同。假設隨機把你放在這座山邊的某一點,要你朝著山頂為目標前進。這時候你的每一步就都會是在「那個當下」最佳的往山頂路線。所以從不同的點上山路線就有可能會差異極大,雖然最後都能到山頂就是了。

-----廣告,請繼續往下閱讀-----

類神經網路的黑盒子,就是來自這個初始化與細微調整。因為參數太多,而且微調整的方式會隨著初始位置的不同而不同,所以一個調整好的類神經網路雖然可以達到不錯的預測成果,但是幾乎沒有人知道為什麼能夠達到這個預測效果。

  • 題外話,這個議題已經受到機器學習以及人工智慧界的重視了。許多人都在想辦法解開這個「黑盒子之謎」5, 6, 7

再舉個例子。每個人的大腦會隨著發育環境的不同而有著不同的發展軌跡,所以幾乎沒有兩個人的大腦神經連結方式是完全相同的。雖然每個人都知道蘋果可以吃,或者是被打會痛;但是發展出這個知識的「神經元連結」則有可能每個人都不一樣。

參數設定越明確,越能解開「黑箱作業」!

回到主題。在前一段落提到的:完全按照代謝途徑建構的類神經網路,和其他網路系統不同的是,它有著「解開黑盒子」的效果呢。

這是因為這套「酵母菌的類神經網路預測模型」是完全按照「生物的代謝途徑」來連結的,所以雖然每個參數還是會因為類神經網路訓練過程而有所不同,但是我們可以得知某個神經元的總輸入參數值,也就是這個神經元的活化 (activation;中國翻成『激活』) 程度。只要將預測過程中每個神經元被活化的程度彼此比較,就能夠得知那個神經元扮演著最重要的角色;而這個神經元也就會是整個代謝途徑中最關鍵的基因或是調控因子。

-----廣告,請繼續往下閱讀-----

下列 a、b 兩圖中皆可在這個類神經網路中,不同的基因活化後將會趨動不同的細胞反應,如 a 圖的 PMT1 與 IRE1 兩條基因與細胞壁的組成與強度有關,而 b 圖則可見 ERV7 與 RAD57 與DNA 的修復有著密切關聯性。

(點圖放大):按照細胞代謝途徑建構的類神經網路系統模擬測試結果。圖/參考文獻 1 ,Figure 3a 與 3d。

回到系統生物學,這套系統之所以對系統生物學的研究很有幫助的原因,在於它是一個可模擬生物在輸入各種訊號(如食物或環境刺激)後,將整個生物代謝途徑中最關鍵的基因標示出來的系統。礙於篇幅沒辦法將所有的元件講的非常清楚(比如說類神經網路本身就有一大堆參數要設定,然後訓練時也往往要扯到方程式微分模型之類的),只是很概略地將最大方向的概念用各種例子來說明。希望各位在讀完這個系列後能夠對何謂類神經網路有著最基本的認知,也能大致理解為什麼類神經網路會被詬病為「黑盒子」的原因。

參考文獻

  1. Ma et al., “Using deep learning to model the hierarchical structure and function of a cell”, Nature Methods, 15:290–298, 2018.
  2.  Pomerleau D., “ALVINN: an autonomous land vehicle in a neural network”, Advances in Neural Information Processing Systems 1, pp. 305-313, 1989.
  3. Lin et al., “Using neural networks for reducing the dimensions of single-cell RNA-Seq data”, Nucleic Acids Research, 45(17):e156, 2017.
  4. Yu et al., “Visible Machine Learning for Biomedicine”, Cell, 173(7):1562-1565, 2018.
  5. Knight W., “The Dark Secret at the Heart of AI”, MIT Technology Review,2017.
  6. Wisdom D., “Deciphering The Black Box of AI”, Medium, 2018.
  7. Castelvecchi D., “Can we open the black box of AI?”, Nature 538:20-23, 2016.

-----廣告,請繼續往下閱讀-----
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱