0

0
0

文字

分享

0
0
0

團藻:水田裡的夏日花火

MiTalk
・2018/06/13 ・2204字 ・閱讀時間約 4 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

江殷儒
中央研究院生物多樣性研究中心 副研究員​
​台灣微生物歲時記

 

直到現在,我依然享受騎乘機車的自在隨意。

初夏時節,騎機車自南港舊庄進入遍植包種茶的淺山地帶後,轉汐碇路可到達石碇。沿途林蔭鬱鬱,山澗處處,令人暑氣全消。沿著靜安路蜿蜒而行,隨著滿山遍野的天燈殘骸漸增,即達平溪十分一帶。進入雙溪後,群山猛然往兩側退去,道路豁然開朗,筆直地進入貢寮。繼續向東行進,嗅聞到海風氣味後,即可到達農田連綿廣衍的田寮洋。

位於新北市東北一隅的生態樂園-貢寮田寮洋。此處的水田在初夏可以找到團藻。記得隨身帶上封口袋與放大鏡。圖/江殷儒提供。

田寮洋面積約200公頃,是雙溪河下游的洪氾平原。雙溪河在此處形成大曲流,可供洪水宣洩。因此,田寮洋具有調節雙溪河水位的功能。

田寮洋以稻田、筊白筍田為構成主體。經由水田耕作的持續干擾,田寮洋得以遠離陸化的命運,長期維持濕地的型態。周遭環繞低矮的丘陵,加上如馬賽克鑲嵌般的水塘與草澤,讓棲地多樣化的田寮洋成為台北盆地重要的生物庇護所,成為許多留鳥的寶貴棲所,亦是候鳥南北遷徙的補給站。跟著水鳥遷徙傳佈的,除了令人聞之色變的禽流感,還有各式各樣的微藻類,肉眼可見、姿態嬌媚的團藻。

-----廣告,請繼續往下閱讀-----
漂浮著的滿江紅的水田或小埤塘,常常可以發現團藻的蹤跡。圖/江殷儒提供。

如果藻類也可以成為神奇寶貝的話,團藻絕對是最值得收服的對象之一。

團藻性喜棲息於富含有機質的靜水域,如淺塘與雨後的暫時性水窪。初夏的田寮洋,在棲息著少量滿江紅的水田裡,很容易發現團藻的蹤跡,甚至會形成極度優勢的藻類純群。團藻與滿江紅要求相似的水質條件;然而,佈滿滿江紅的水田,由於光照缺乏,又會抑制團藻的生長。另一方面,團藻對農藥敏感。因此,棲息著團藻的水田,通常是禁絕或低度用藥的友善耕作水田。

日本東京大學生物科學系野崎久義教授的研究團隊在2016年6月於貢寮田寮洋使用浮游網採集團藻。圖/江殷儒提供。

團藻的藻體是直徑1~5毫米的中空球形群體,是少數肉眼可見的微藻。在野外可以利用透明封口袋採集水田的水樣,於陽光下利用放大鏡貼近封口袋,即可觀察到一顆顆的團藻。也因為極易觀察,顯微鏡之父─荷蘭微生物學家雷文霍克在十八世紀初期即描述過團藻。

分類上團藻屬於綠藻門,這類的藻類由於富含葉綠素 a 和 b,外觀呈現亮綠色。作為最原始的多細胞生物之一,團藻由數百至數萬個單細胞在球體表面排列組成,鑲嵌於由醣蛋白組成的膠質結構。同時,單細胞具有朝外的兩條游動鞭毛及感光用的眼點。

-----廣告,請繼續往下閱讀-----
以光學顯微鏡觀察採集自田寮洋的團藻(Volvox carteri f. nagariensis)之無性球體。G: 無性生殖細胞 (gonidia)。圖片擷取自日本東京大學生物科學系野崎久義教授與中研院生物多樣性研究中心副研究員江殷儒博士合作,甫被接受的論文(1) (江殷儒提供)。

團藻(Volvox spp.)的拉丁字義為「滾動」,顧名思義,放大鏡下的團藻會以優雅的姿態,緩緩地向光照處滾動(影片如下)。這需要令人驚異的協調性。因此,看各自獨立的單細胞,彼此需透過相連的原生質聯絡絲進行緊密的溝通協調。

https://www.youtube.com/watch?time_continue=11&v=nzO-ZSsqc9U

在演化研究上,團藻是相當重要的研究材料。因為團藻可能是單細胞真核生物過渡到多細胞生物的早期生命形式,也是有性生殖發生的起源。日本東京大學生物科學系的野崎久義教授在團藻演化上就有傑出的研究貢獻。

但如果你嘗試連續地培養團藻,難度其實很高,就像企圖強留夏日花火;最後你會在秋天前的某一日發現團藻的藻體萎縮崩潰。

-----廣告,請繼續往下閱讀-----
團藻的生活史。本圖修改自 Nishii 與 Miller 論文之圖二(2)。

藻類往往具有非常複雜的生活史,團藻就是如此。我們肉眼見到的球形群體,其實只是其生活史的一個片段。

在合適的水質條件下,團藻傾向進行無性生殖。群體內少數體型較大的生殖細胞會持續分裂,進而發展成子群體,隨後掉入空腔內。當母群體老化破裂後,子群體們即會釋出到環境中。溫度的劇烈變動及乾燥等理化條件,會促成團藻細胞產生費洛蒙,誘導團藻進入有性生殖,結果便是產生厚壁的休眠孢子,隨後沉入田土中,等待另一個夏天。

這樣的生活史,與水稻田的季節作息相呼應,彷彿團藻是上帝擔憂水稻太過孤單而創造的玩伴。當你漫步於夏日的田寮洋,除了利用望遠鏡觀察遠處的水鳥,不妨彎下腰,拿起放大鏡,仔細觀察田水中的寂靜角落,或許你也能發現那美麗炫目的團藻。

參考文獻

-----廣告,請繼續往下閱讀-----
  1. Nozaki H, Ueki N, Takusagawa M, Yamashita S, Misumi O, Matsuzaki R, Kawachi M, Chiang YR, Wu JT. Morphology, taxonomy and mating-type loci in natural populations of Volvox carteri in Taiwan. Bot Stud. 2018 Apr 3;59(1):10.
  2. Nishii I, Miller SM. Volvox: simple steps to developmental complexity? Curr Opin Plant Biol. 2010 Dec;13(6):646-53.

本文轉載自MiTalkzine,原文《初夏田寮洋的團藻

歡迎訂閱 微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG





-----廣告,請繼續往下閱讀-----
文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

2
1

文字

分享

0
2
1
上網也要有「技術」!從言論、隱私到國安,你我都該懂的界線
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/18 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

以為鍵盤俠天下無敵?小心一個不留神就觸法!人們常忽略「網路並非法外之地」這個重要事實。不只現實生活中的法律同樣適用於網路空間,隨著科技發展,更多應網路特性而生的法律規範也相繼出現。從基本的言論自由到隱私權保護,從智慧財產權到國家安全,法律體系正全面性地回應數位時代的種種挑戰。

在臺灣,網路上的言論自由權利源自《憲法》第 11 條的明確規定:「人民有言論、講學、著作及出版之自由。」釋字第 509 號則指出,「國家應給予最大限度之維護,俾其實現自我、溝通意見、追求真理及監督各種政治或社會活動之功能得以發揮。」網路快速傳播的特性放大了言論的影響力,而大法官的解釋將言論自由的邊際刻畫得更明確,這在數位時代裡顯得格外重要。

網路與社群媒體的快速傳播,放大了言論的影響力。圖/unsplash

網路上的性、暴力與未成年保護

顯然言論自由並非是毫無限制,2023 年 11 月的一起案件就展現其中一種界線的樣貌。當時,一名 36 歲男子將他和網友在網咖的性愛影片上傳至推特,還寫下「《網咖包廂實戰計 1》我跟某公司 OL 戰鬥」等文字。這段影片一經發布,當事女子立即採取法律行動。最終,法院依其以網際網路「供人觀覽猥褻影像」的罪名,判處該名男子拘役 30 日,得易科罰金。這個判決清楚說明了,即便在虛擬空間,散布猥褻影像仍須承擔實質的法律責任。

-----廣告,請繼續往下閱讀-----

特別是在保護未成年人方面,法律的規範更加嚴格。《刑法》第 235 條明文禁止散布、播送或販賣猥褻物品,無論形式是圖文、聲音還是影像。而《兒童及少年性剝削防制條例》第 36 條更進一步禁止任何形式的兒童色情製品被製造、散布和持有。2019年彰化縣曾層發生過這樣一起案件:一名陳姓中年男子將9歲女童帶往居所,不僅強迫她觀看色情影片,還對她進行猥褻行為,甚至將過程上傳至 Google 雲端。儘管他後來試圖以資助女童就學表達悔意,法院仍以加重強制猥褻等罪,判處他 4 年 4 個月有期徒刑。

不實言論的散布同樣可能觸犯法律。2021 年 9 月爆發的「台大狼師案」就是一個警示。一名女大生在網路上指控教師誘騙她發生關係並傳染性病,幾個月後又指控對方對她進行強制性行為。當她提出告訴時,檢方卻查無性侵事實,加上她反覆的說詞,不僅性侵告訴失敗,還因誹謗罪反被加重判刑。

當駭客、間諜都轉戰網路戰場

2013 年,一名退役空軍上校赴陸經商時被情治單位吸收,返台後透過人脈網絡發展組織、刺探軍事機密,並以空殼公司掩護非法報酬,這個情報網持續運作了 8 年之久。

在涉及國家安全的議題上,法律的態度更是嚴厲。根據《國家安全法》第 2 條的規定,任何人都不得為境外敵對勢力及其控制的組織、機構進行資助、主持、操縱、指揮或發展組織,更不能洩漏、交付或傳遞公務機密,違反者將面臨嚴厲的刑事處罰。《刑法》規定,意圖破壞國體、竊據國土,或以非法方法變更國憲、顛覆政府者,處7年以上有期徒刑,首謀更要判處無期徒刑。

-----廣告,請繼續往下閱讀-----

抄襲與轉貼的邊界在哪裡?

在智慧財產權的保護上,臺灣也經歷了數位時代的轉變。台灣第一個網路著作權相關判決,就發生在傳統出版與數位平台的碰撞之中。南方社區文化網路負責人陳豐偉等三人在中山大學 BBS 上發表的文章,未經同意就被《光碟月刊》收錄在隨刊光碟中發行。三人向台北地檢署提告後,《光碟月刊》發行人兼總經理黃俊義被判處七個月有期徒刑,緩刑三年。這個判決為數位時代的著作權保護樹立了重要典範。

臺灣首例網路著作權案判決,為數位時代智慧財產權保護樹立典範。圖/envato

近年來,影音平台的著作權爭議更趨複雜。2022 年,知名 YouTube 頻道「觸電網」就因為片商車庫娛樂檢舉七十多支未經授權的影片,導致經營 12 年的頻道被迫下架。車庫娛樂透過律師聲明,這是針對「未經合法授權影音內容」的標準處理,並表明將追究民事與刑事責任。

受害了怎麼辦?申訴管道報你知

當我們在網路上的權利受到侵害時,可以根據侵害類型尋求不同的救濟管道。最基本的言論自由權利受到侵犯時,可以先向社群平台提出檢舉。若遇到更嚴重的情況,如散布猥褻影像、非法性私密影片等,除了平台檢舉外,還可以向警方提告,或是尋求衛福部「性影像處理中心」的協助。

在面對網路霸凌、不實言論時,可以向台灣事實查核中心、MyGoPen 等組織求助,協助澄清真相。若發現有害兒少身心健康的不當內容,則可以向 iWIN 網路內容防護機構提出申訴。這個由國家通訊傳播委員會支持的組織,會在受理後進行查核、轉介業者改善或依法處理。

-----廣告,請繼續往下閱讀-----

智慧財產權的侵害在網路時代極為常見,就像「觸電網」遭片商檢舉下架的案例。這類情況可以透過平台既有的著作權保護機制處理,情節嚴重者也可以提起民事訴訟要求賠償。若發現可疑的廣告或不公平交易行為,則可以向公平交易委員會檢舉;若是特定領域的違規內容,則應該向各該主管機關反映,例如藥品廣告歸衛福部管轄、證券期貨廣告則由金管會負責。

網路時代的法律規範正不斷演進,從個人隱私到國家安全,從言論自由到智慧財產權,每個面向都在尋求數位環境下的最佳平衡點。作為網路使用者,我們必須理解並遵守這些法律界線,同時也要懂得運用各種救濟管道保護自身權益。唯有每個人都清楚了解並遵守這些規範,才能共同營造一個更安全、更有序的網路環境。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當心網路陷阱!從媒體識讀、防詐騙到個資保護的安全守則
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3006字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

網路已成為現代人生活中不可或缺的一部分,可伴隨著便利而來的,還有層出不窮的風險與威脅。從充斥網路的惡假害訊息,到日益精進的詐騙手法,再到個人隱私的安全隱憂,這些都是我們每天必須面對的潛在危機。2023 年網路購物詐欺案件達 4,600 起,較前一年多出 41%。這樣的數據背後,正反映出我們對網路安全意識的迫切需求⋯⋯

「第一手快訊」背後的騙局真相

在深入探討網路世界的風險之前,我們必須先理解「錯誤訊息」和「假訊息」的本質差異。錯誤訊息通常源於時效性考量下的查證不足或作業疏漏,屬於非刻意造假的不實資訊。相較之下,假訊息則帶有「惡、假、害」的特性,是出於惡意、虛偽假造且意圖造成危害的資訊。

2018 年的關西機場事件就是一個鮮明的例子。當時,燕子颱風重創日本關西機場,數千旅客受困其中。中國媒體隨即大肆宣傳他們的大使館如何派車前往營救中國旅客,這則未經證實的消息從微博開始蔓延,很快就擴散到各個內容農場。更令人遺憾的是,這則假訊息最終導致當時的外交部駐大阪辦事處處長蘇啟誠,因不堪輿論壓力而選擇結束生命。

-----廣告,請繼續往下閱讀-----

同年,另一則「5G 會抑制人體免疫系統」的不實訊息在網路上廣為流傳。這則訊息聲稱 5G 技術會影響人體免疫力、導致更容易感染疾病。儘管科學家多次出面澄清這完全是毫無根據的說法,但仍有許多人選擇相信並持續轉發。類似的例子還有 2018 年 2 月底 3 月初,因量販業者不當行銷與造謠漲價,加上媒體跟進報導,而導致民眾瘋狂搶購衛生紙的「安屎之亂」。這些案例都說明了假訊息對社會秩序的巨大衝擊。

提升媒體識讀能力,對抗錯假訊息

面對如此猖獗的假訊息,我們首要之務就是提升媒體識讀能力。每當接觸到訊息時,都應先評估發布該消息的媒體背景,包括其成立時間、背後所有者以及過往的報導記錄。知名度高、歷史悠久的主流媒體通常較為可靠,但仍然不能完全放下戒心。如果某則消息只出現在不知名的網站或社群媒體帳號上,而主流媒體卻未有相關報導,就更要多加留意了。

提升媒體識讀能力,檢視媒體背景,警惕來源不明的訊息。圖/envato

在實際的資訊查證過程中,我們還需要特別關注作者的身分背景。一篇可信的報導通常會具名,而且作者往往是該領域的資深記者或專家。我們可以搜索作者的其他作品,了解他們的專業背景和過往信譽。相對地,匿名或難以查證作者背景的文章,就需要更謹慎對待。同時,也要追溯消息的原始來源,確認報導是否明確指出消息從何而來,是一手資料還是二手轉述。留意發布日期也很重要,以免落入被重新包裝的舊聞陷阱。

這優惠好得太誇張?談網路詐騙與個資安全

除了假訊息的威脅,網路詐騙同樣令人憂心。從最基本的網路釣魚到複雜的身分盜用,詐騙手法不斷推陳出新。就拿網路釣魚來說,犯罪者通常會偽裝成合法機構的人員,透過電子郵件、電話或簡訊聯繫目標,企圖誘使當事人提供個人身分、銀行和信用卡詳細資料以及密碼等敏感資訊。這些資訊一旦落入歹徒手中,很可能被用來進行身分盜用和造成經濟損失。

-----廣告,請繼續往下閱讀-----
網路詐騙手法不斷進化,釣魚詐騙便常以偽裝合法機構誘取敏感資訊。圖/envato

資安業者趨勢科技的調查就發現,中國駭客組織「Earth Lusca」在 2023 年 12 月至隔年 1 月期間,利用談論兩岸地緣政治議題的文件,發起了一連串的網路釣魚攻擊。這些看似專業的政治分析文件,實際上是在臺灣總統大選投票日的兩天前才建立的誘餌,目的就是為了竊取資訊,企圖影響國家的政治情勢。

網路詐騙還有一些更常見的特徵。首先是那些好到令人難以置信的優惠,像是「中獎得到 iPhone 或其他奢侈品」的訊息。其次是製造緊迫感,這是詐騙集團最常用的策略之一,他們會要求受害者必須在極短時間內作出回應。此外,不尋常的寄件者與可疑的附件也都是警訊,一不小心可能就會點到含有勒索軟體或其他惡意程式的連結。

在個人隱私保護方面,社群媒體的普及更是帶來了新的挑戰。2020 年,一個發生在澳洲的案例就很具有警示意義。當時的澳洲前總理艾伯特在 Instagram 上分享了自己的登機證照片,結果一位網路安全服務公司主管僅憑這張圖片,就成功取得了艾伯特的電話與護照號碼等個人資料。雖然這位駭客最終選擇善意提醒而非惡意使用這些資訊,但這個事件仍然引發了對於在社群媒體上分享個人資訊安全性的廣泛討論。

安全防護一把罩!更新裝置、慎用 Wi-Fi、強化密碼管理

為了確保網路使用的安全,我們必須建立完整的防護網。首先是確保裝置和軟體都及時更新到最新版本,包括作業系統、瀏覽器、外掛程式和各類應用程式等。許多網路攻擊都是利用系統或軟體的既有弱點入侵,而這些更新往往包含了對已知安全漏洞的修補。

-----廣告,請繼續往下閱讀-----

在使用公共 Wi-Fi 時也要特別當心。許多公共 Wi-Fi 缺乏適當的加密和身分驗證機制,讓不法分子有機可乘,能夠輕易地攔截使用者的網路流量,竊取帳號密碼、信用卡資訊等敏感數據。因此,在咖啡廳、機場、車站等公共場所,都應該避免使用不明的免費 Wi-Fi 處理重要事務或進行線上購物。如果必須連上公用 Wi-Fi,也要記得停用裝置的檔案共享功能。

使用公共 Wi-Fi 時,避免處理敏感事務,因可能存在數據被攔截與盜取的風險。圖/envato

密碼管理同樣至關重要。我們應該為不同的帳戶設置獨特且具有高強度的密碼,結合大小寫字母、數字和符號,創造出難以被猜測的組合。密碼長度通常建議在 8~12 個字元之間,且要避免使用個人資訊相關的詞彙,如姓名、生日或電話號碼。定期更換密碼也是必要的,建議每 3~6 個月更換一次。研究顯示,在網路犯罪的受害者中,高達八成的案例都與密碼強度不足有關。

最後,我們還要特別注意社群媒體上的隱私設定。許多人在初次設定後就不再關心,但實際上我們都必須定期檢查並調整這些設定,確保自己清楚瞭解「誰可以查看你的貼文」。同時,也要謹慎管理好友名單,適時移除一些不再聯繫或根本不認識的人。在安裝新的應用程式時,也要仔細審視其要求的權限,只給予必要的存取權限。

提升網路安全基於習慣培養。辨識假訊息的特徵、防範詐騙的警覺心、保護個人隱私的方法⋯⋯每一個環節都不容忽視。唯有這樣,我們才能在享受網路帶來便利的同時,也確保自身的安全!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
人工智慧的「黑箱作業」,類神經網路如何將生物分類的?
MiTalk
・2019/06/08 ・4467字 ・閱讀時間約 9 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/吳育瑋 臺北醫學大學醫學資訊研究所助理教授

這篇文章是我在讀到 Nature Methods 在 2018 年 3 月 5 日刊登的文章「Using deep learning to model the hierarchicalstructure and function of a cell」1後,在臉書 MiTalk 社團寫下的三篇短文的整理集結。在這三篇短文中,我簡要地介紹了目前人工智慧的技術基礎「類神經網路」的概念,再將其延伸到這篇文章提及的系統生物學研究,並解釋目前類神經網路之所以被稱為「黑盒子」的原因,以及這項系統生物學研究處理黑盒子的手法。

資訊輸入和輸出,如何用「類神經網路」做出無人車?

我們先來聊聊目前機器學習中最火紅的演算法「類神經網路」究竟是什麼東西?

動物的神經元大致上都有著可以接受來自其他神經元的訊號的樹突 (dendrite),以及可以傳送訊號給其他神經元的軸突 (axon)。類神經網路的單位神經元架構與生物的神經元類似:都有著數個可以接受其他神經元的「輸入 (Input)」,以及數個傳送訊號給其他神經元的 「輸出 (Output)」。將一大堆這樣子的神經元連結起來,就是類神經網路了。

當然,這種連結也不是亂連的。類神經網路通常會分成好幾「層」,而每一層與每一層之間的神經元都會緊密連結著 (fullyconnected),以下我用個實際的例子來說明這所謂的「層」是怎麼回事。

在 1989 年的時候,卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN 2。這台無人車的主要架構有三個:一台在車子前面隨時拍照的照相機或攝影機,一台執行類神經網路運算的電腦,以及由電腦控制的方向盤,請參考下圖:

-----廣告,請繼續往下閱讀-----
  • 第一層(最底層):照相機照出來的 30 x 32 個 pixel 的影像,以及8 x 32 個雷射距離測定器像。總共輸入單位是 30 x 32 + 8 x 32 = 1216 個。
  • 第二層(中層):由 29 個類神經網路神經元構成的隱藏層(最初期的設計只有4 個)。
  • 第三層(最上層):45 個輸出神經元,代表著方向盤要打那個角度;每個神經元代表一個角度,例如第一個神經元代表方向盤往右打 30 度,第二個代表方向盤往右打 28 度,依此類推。

卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN。圖片取自:LVINN 論文2

這麼簡單的類神經網路,就已經可以讓這台車在路上以 60 英哩的速度行駛了。可見得類神經網路機器學習的威力。

那麼類神經網路是怎麼訓練的呢?簡單地說,我們在訓練類神經網路時,必須要給它一組(通常是數量很多的一大組)已經知道正確答案的訓練樣本,讓類神經網路之間的神經元連結可以自動透過輸入訊號與正確答案的比對調整自身的參數。這樣的訓練會持續上數千或甚至數百萬次,直到正確率無法再提昇為止。比如說 ALVINN 無人車的訓練就是在真人開車時,將每張相機照出來的圖片與人類開車者的方向盤角度(也就是正確答案)進行連結,並持續調整參數直到答案錯誤率很低為止。

換句話說,ALVINN 這台無人車所做的事,就是模仿人類的開車行為。

-----廣告,請繼續往下閱讀-----

除了無人車,「類神經網路」也能區分生物種類?

在上一段我們解釋了何謂類神經網路。一句話總結的話就是類神經網路就是連結在一起的人工神經元,而且可以透過無數次訓練盡量提高執行任務(比如說下棋或預測天氣)的準確率。在這一段中我將提到類神經網路與生物網路之間的關係

類神經網路通常是由許多的「層」數以及每一層內的「神經元」數量所構成的;然而究竟需要多少層網路,或是每一層網路需要多少神經元,則沒有一定的準則。

我認為這是類神經網路最關鍵,卻也最難以決定的參數。舉例來說,先前提到過的自駕車 ALVINN 總共只有一層網路(不考慮輸入與輸出層的話),且這一層只包含 29 個神經元節點。但是現在如 Tesla 或其他品牌自駕車的類神經網路絕對比這個架構複雜許多。我們在設計類神經網路的時候,甚至需要不停地 trial-and-error 後才能決定「最佳」的網路架構,而這裡的「最佳」理所當然是由預測準確率來決定的。

那麼這和微生物或生命科學有什麼關係呢?這要先從一篇Nucleic Acids Research 論文3 講起。在這篇論文中,卡內基美隆的研究人員試圖透過類神經網路試圖研究不同的細胞(比如說胚胎分化時期的 early-2-cell、late-2-cell、8-cell、16-cell,或不同種類的細胞如 fibroblast、BMDC、以及上皮細胞等),並查看這些細胞的基因表現是否有著明顯的差異。他們的研究標的是不同研究團隊定序出來的 single-cell RNASeq 資料。

簡單來說,他們希望將許多人體內不同種類細胞的 RNASeq 資料透過類神經網路處理後,能夠過濾雜訊,留下最清楚的基因表現訊號。其最終目的當然是透過分群演算法視覺化看出每種細胞的區別

-----廣告,請繼續往下閱讀-----

舉例來說,在論文的圖中,我們可以看到不同的人類細胞在經過類神經網路處理後,能夠有著最大化的分群效果;而且群與群之間大致上距離都相當遠,顯示出基因的表現量的確會隨著細胞的不同而不同。

不同細胞的基因表現差異視覺化。圖片取自:Nucleic Acids Research 論文3

在同一項研究中,研究人員也發現如果小心地設計類神經網路架構,並將其與生物意義結合的話,將能達到最好的效果。這裡說的與生物意義結合的意思,指的是在設計的類神經網路層級中考慮到生物網路的數量以及結構。

他們首先算出這些基因表現量資料,並將資料建成 protein-protein interaction (PPI) 與 protein-DNA interaction (PDI) 的網路系統,並找出裡面總共有 348 個彼此之間有關聯的子網路;而就在找出「348」這個神奇數字後,研究人員就將類神經網路的隱藏層設計成兩層,且各有著 348 個神經元節點,分別代表這 348 組 PPI 與PDI 子網路。他們發現這樣子的類神經網路設計將能達到最理想的分群效果。

-----廣告,請繼續往下閱讀-----

好的。到底我之所以鋪了類神經網路和生物意義這些梗要幹嘛呢?當然最主要的目的就是要說明 2018 年 Nature Methods的論文1 到底在講什麼。這篇論文雖然也是走類神經網路路線,但是他們網路的設計相當極端:完全按照生物的代謝途徑 (metabolic pathway) 來設計神經元的分佈(作者群在另一篇論文中提到他們就是受到這一篇 Nucleic AcidsResearch 的論文啟發而設計出這種奇妙的架構的)。

換句話說,這篇系統生物學的論文設計的類神經網路事實上已經不太有傳統的「隱藏層」的概念,而是完全按照代謝途徑連結人工神經元。透過這個方法,他們的類神經網路中總共包含了酵母菌的 2526 個子網路系統,分別代表不同的細胞代謝途徑。在經過訓練與比較後,這個經過特殊設計的網路結構可以準確地透過不同的基因表現預測酵母菌的細胞生長,並且預測的準確率比傳統數層緊密連結的類神經網路還要好上許多。

神秘的黑盒子,「類神經網路」是怎麼運作的?

在類神經網路的世界中,常常會聽到一個說法:以類神經網路為基礎架構的人工智慧預測模型是「黑盒子  (black box)」。這裡的黑盒子當然不是飛機出事後可以撿回來分析的那個,而是無法打開無法分析而且完全不曉得裡面到底在幹嘛的系統。為什麼會有這種說法呢?一切都要從類神經網路模型是如何訓練的開始講起。

黑盒子系統就像骰骰子一樣,即使知道力學原理,我們還是無法得知骰盅內部到底發生了什麼?圖/pixabay

-----廣告,請繼續往下閱讀-----

在類神經網路的世界中,每一個神經元可以接收來自數十甚至數百個神經元的訊號,並且可以傳送訊號給數十到數百個其他神經元。這種連接方式讓類神經網路的參數異常地多,且輕易就可以上到百萬千萬甚至億這種等級。我再次拿 ALVINN,那台 1989 年的無人車來當例子好了。

ALVINN 的輸入層有 1216 個神經元節點,中間的隱藏層有 29 個神經元,而輸出層有 45個神經元。這個相對來說架構非常簡單的類神經網路的參數就有 1216 X 29 X 45 = 1586880 個參數要考慮了,更別提其他
更複雜的深度學習類神經網路模型了。

事實上,參數數量多還在其次,真正的關鍵在於類神經網路的訓練方式。在訓練類神經網路時,我們往往會做以下兩件事:

  1. 『 隨機』初始化類神經網路中的『所有』參數
  2. 隨著每個樣本的預測對錯微調所有的參數

我來用實際生活案例舉個例子好了。假設你要登一座山,目標是山頂。這座山每個地方的地型都完全不一樣。所以從 A 點上山和從不一樣的 B 點或 C 點上山的路都不盡相同。假設隨機把你放在這座山邊的某一點,要你朝著山頂為目標前進。這時候你的每一步就都會是在「那個當下」最佳的往山頂路線。所以從不同的點上山路線就有可能會差異極大,雖然最後都能到山頂就是了。

-----廣告,請繼續往下閱讀-----

類神經網路的黑盒子,就是來自這個初始化與細微調整。因為參數太多,而且微調整的方式會隨著初始位置的不同而不同,所以一個調整好的類神經網路雖然可以達到不錯的預測成果,但是幾乎沒有人知道為什麼能夠達到這個預測效果。

  • 題外話,這個議題已經受到機器學習以及人工智慧界的重視了。許多人都在想辦法解開這個「黑盒子之謎」5, 6, 7

再舉個例子。每個人的大腦會隨著發育環境的不同而有著不同的發展軌跡,所以幾乎沒有兩個人的大腦神經連結方式是完全相同的。雖然每個人都知道蘋果可以吃,或者是被打會痛;但是發展出這個知識的「神經元連結」則有可能每個人都不一樣。

參數設定越明確,越能解開「黑箱作業」!

回到主題。在前一段落提到的:完全按照代謝途徑建構的類神經網路,和其他網路系統不同的是,它有著「解開黑盒子」的效果呢。

這是因為這套「酵母菌的類神經網路預測模型」是完全按照「生物的代謝途徑」來連結的,所以雖然每個參數還是會因為類神經網路訓練過程而有所不同,但是我們可以得知某個神經元的總輸入參數值,也就是這個神經元的活化 (activation;中國翻成『激活』) 程度。只要將預測過程中每個神經元被活化的程度彼此比較,就能夠得知那個神經元扮演著最重要的角色;而這個神經元也就會是整個代謝途徑中最關鍵的基因或是調控因子。

-----廣告,請繼續往下閱讀-----

下列 a、b 兩圖中皆可在這個類神經網路中,不同的基因活化後將會趨動不同的細胞反應,如 a 圖的 PMT1 與 IRE1 兩條基因與細胞壁的組成與強度有關,而 b 圖則可見 ERV7 與 RAD57 與DNA 的修復有著密切關聯性。

(點圖放大):按照細胞代謝途徑建構的類神經網路系統模擬測試結果。圖/參考文獻 1 ,Figure 3a 與 3d。

回到系統生物學,這套系統之所以對系統生物學的研究很有幫助的原因,在於它是一個可模擬生物在輸入各種訊號(如食物或環境刺激)後,將整個生物代謝途徑中最關鍵的基因標示出來的系統。礙於篇幅沒辦法將所有的元件講的非常清楚(比如說類神經網路本身就有一大堆參數要設定,然後訓練時也往往要扯到方程式微分模型之類的),只是很概略地將最大方向的概念用各種例子來說明。希望各位在讀完這個系列後能夠對何謂類神經網路有著最基本的認知,也能大致理解為什麼類神經網路會被詬病為「黑盒子」的原因。

參考文獻

  1. Ma et al., “Using deep learning to model the hierarchical structure and function of a cell”, Nature Methods, 15:290–298, 2018.
  2.  Pomerleau D., “ALVINN: an autonomous land vehicle in a neural network”, Advances in Neural Information Processing Systems 1, pp. 305-313, 1989.
  3. Lin et al., “Using neural networks for reducing the dimensions of single-cell RNA-Seq data”, Nucleic Acids Research, 45(17):e156, 2017.
  4. Yu et al., “Visible Machine Learning for Biomedicine”, Cell, 173(7):1562-1565, 2018.
  5. Knight W., “The Dark Secret at the Heart of AI”, MIT Technology Review,2017.
  6. Wisdom D., “Deciphering The Black Box of AI”, Medium, 2018.
  7. Castelvecchi D., “Can we open the black box of AI?”, Nature 538:20-23, 2016.

-----廣告,請繼續往下閱讀-----
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱