0

1
1

文字

分享

0
1
1

「大家搞不清楚的混沌領域,是科學家開疆闢土的地方!」用質譜儀解開醣分子的千萬面貌

研之有物│中央研究院_96
・2018/05/29 ・5037字 ・閱讀時間約 10 分鐘 ・SR值 608 ・十年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

為什麼要研究「醣分子」?

醣分子與生物體內各項生化反應密切相關,但醣分子仍是目前主要生物分子中,對於其結構、機制、合成技術等知之甚少的一塊。中研院原子與分子科學研究所的倪其焜研究員,以化學動力學和量子化學為理論基礎,並利用質譜儀高靈敏的特性,建立另一種醣分子結構鑑定的方式。

醣類,和我們有何關係?

核酸、蛋白質、醣、脂質是生物體內四種最主要的生物分子。脂質結構相對簡單,但是核酸、蛋白質、醣都是巨分子,其結構相當複雜。綜觀過去半世紀以來的科學史,核酸與蛋白質的結構發現與相關技術開發,都成了科學發展中的重大里程碑;唯有「醣類」仍充滿的眾多謎團待解。

醣類由單醣分子組成,每一個單醣分子可由 3 到 7 個碳原子,和特定數目的氫、氧等原子組成。例如:我們耳熟能詳的葡萄糖、果糖、半乳糖,都是由 6 個碳原子所組成的單醣分子,是分子式為 C6H12O6 的同分異構物,亦即擁有相同分子式,但結構式卻不相同。其中葡萄糖和半乳糖的差別,只在連接到 4 號碳原子的 OH 官能基方向不同。

2 個單醣分子可以進行脫水反應後連結成雙醣; 3 到 10 個單醣分子連結成的醣稱為寡醣;更多個單醣分子組成的醣則稱為多醣。我們每日熱量主要來源澱粉、飲食調味用的蔗糖、果糖都是屬於醣類。

我們生活中部分常見的「醣類」。資料來源│Wikipedia 圖說重製│張語辰

 

不過,醣類並不只是作為熱量的來源而已。

近年來眾多研究發現,醣類參與了多種生化反應、與疾病傳染機制。

例如,牛奶與母乳所含的醣類成分就有些微差距,能對嬰兒腸道內細菌有不同的抑制和促進作用;又例如,禽流感的病毒會與特定的醣分子結合,因此檢測或合成指定的醣分子,就可以發展成快篩鑑定禽流感病毒種類的工具。

醣類結構:排列組合超級多!

雖然與其他生物分子相比,醣類分子的結構看似單純許多。以六碳醣來說,不同單醣分子的差異,只差在連接到不同碳原子的 OH 官能基,有不同的連接角度。但是,這一個小小的差異,卻使得看似相似的醣分子,有著大量的排列組合方式。

葡萄糖的首旋異構物,取決於一號碳原子上連接的 OH 官能基的角度。
資料來源│倪其焜提供  圖說重製│廖英凱、張語辰

以上圖的葡萄糖為例,將葡萄糖溶於水中,會出現「????-葡萄糖」與「????-葡萄糖」兩種首旋異構物(或稱變旋異構物),兩者的差異是:在天然的葡萄糖中,位於 1 號碳原子上的 OH 官能基,大概有 40% 的比例呈現連接角度向下,稱之為 ????-葡萄糖;有 60% 的比例呈現連接角度向上,稱之為 ????-葡萄糖。

而當兩個葡萄糖要結合成雙醣時,兩種首旋異構物的葡萄糖,各自會有四種不同的連接方式,如下圖所示。因此光是由葡萄糖組成的雙醣,就可以有八種不同的同分異構物。兩個葡萄糖些微的不同鍵結方式,有時會有很不同的生化反應。

首旋異構物「????-葡萄糖」與「????-葡萄糖」,在不同的連接位置、以不同的連接角度,可以結合成完全不同的雙醣(同分異構物)。
資料來源│倪其焜提供 圖說重製│廖英凱、張語辰

上圖中,常見的麥芽糖是由兩個 ????-葡萄糖組成,其中一個葡萄糖序號 1 的碳原子,與另一個葡萄糖序號 4 的碳原子相接,在符號上可寫為:????(1→4)。但如果把 ????-葡萄糖改為 ????-葡萄糖,但連接的方式相同時,則會形成人體無法消化的「纖維二糖」,符號上可寫為:????(1→4)。

如果我們再繼續將葡萄醣分子連接下去,4 個葡萄糖分子相連就可以有 928 種組合,5 個葡萄糖分子就會有上萬種的組合。這些不同組合的葡萄糖,有著截然不同的結構,有可能會對應到完全不同的生化反應、或生理機制。

結構,是了解化學反應的第一步。

對於化學家來說,一個分子或物質的功能,取決於它所參與的化學反應。而化學反應是如何發生、為何發生,則取決於分子或物質的結構。因此,確立一個分子或物質的化學結構,是了解化學反應的第一步。

質譜儀:窺見醣的千萬面貌

儘管過去科學界已建立了核磁共振質譜儀液相氣相層析等,多種鑑定複雜分子結構的方式。但對於醣分子來說,由於種類過於多樣、在生物體內的每一種的量都非常少、再加上目前沒有類似核酸或蛋白質的技術,可以將萃取後少量的醣分子複製,造成醣分子的結構鑑定非常困難。因而導致醣分子的研究發展,明顯落後於其他生物分子。目前,學界多利用「質譜儀」來作為分析醣分子結構的工具。

由於質譜儀的偵測能力最為靈敏,僅需要少量的樣本就可以進行實驗,正好適合醣分子多樣卻少量的特徵。

質譜儀的運作原理。
資料來源│台灣 Wiki 圖說重製│廖英凱、張語辰

當待測物分子因游離而帶電,例如:被電子轟擊、 雷射游離、附著金屬離子、或附著額外的電子、質子時,會產生帶電分子。質譜儀是藉由量測帶電分子的質量與電荷比例(m/z, 質荷比),來分析待測物分子的質量。

如果供給帶電分子更多的能量,例如:經過碰撞或吸收光,帶電分子會分解產生帶電的碎片。這些不同質量的碎片因為所含原子組成的不同,會有不同的質荷比。由於這些碎片的原子組成,往往和原來分子的結構有關。因此藉由質譜儀量測這些碎片的電荷比例(m/z, 質荷比),及其對應的強度,可以得知分析待測物分子的結構。

我們以一個簡單的蛋白質為例,來理解質譜儀用作定序的原理。假設有某一個已知質量的蛋白質,這個蛋白質是由 4 種不同的質量的胺基酸組成,而 4 種胺基酸排序後,可以有 4! = 24 種排列組合的可能,如下圖所示:

4 種胺基酸可以有 24 種排列組合,需要質譜儀分析待測的蛋白質是哪種組合方式。
資料來源│倪其焜提供 圖說重製│廖英凱、張語辰

在質譜儀的實驗中,我們可以將蛋白質分子打碎成質量不一致的碎片,並參考這些胺基酸的已知質量,就能進一步估計這些碎片是由哪一些胺基酸鍵結組成;只要碎片的形式夠多,就可以藉此推估該蛋白質內的胺基酸序列,如下圖所示:

利用質譜儀,將蛋白質打散成不同質量的碎片,並利用碎片的質量,推測出各個碎片的胺基酸組成,最後排序出蛋白質的胺基酸序列。 資料來源│倪其焜提供 圖說重製│廖英凱、張語辰

像這樣的質譜鑑定技術,被廣泛運用到日常生活。例如食安事件中,為了要確認食品中是否含有某些有害物質,就可以將食物樣本送到質譜儀中,看所檢測出來的質譜是否有對應到資料庫中指定有害物質的質譜。

只是,這種以資料庫質譜比對的方式,對於醣分子的研究仍相當受限。以 4 個葡萄糖分子的組合為例,雖然相連起來會有 928 種 4 醣分子組合,但市面上目前僅能買到 20 餘種人工合成的 4 醣分子產品供質譜儀量測,要合成其他 4 醣分子也是耗時耗力,因此還遠遠無法建立起比對用的醣分子資料庫。

因應無法利用資料庫比對的方式來鑑定待測的醣分子,倪其焜與研究團隊所使用的方式,是以化學動力學量子化學作為理論基礎,以理論預測醣類分子獲得能量後鍵結斷裂的模式,再與質譜儀實驗結果交互驗證,以此發展出醣分子的質譜儀鑑定技術。

有果必有因,從原理推測結構

以本文前述葡萄糖的兩種首旋異構物為例,如同下圖顯示,這兩種帶金屬鈉離子的首旋異構物在質譜儀中,可以觀察到在質荷比數值 185 處,????-葡萄糖的訊號強度明顯大於 ????-葡萄糖。質荷比 185 的峰值,與帶金屬鈉離子葡萄糖的質荷比 203 的峰值, 剛好相差了一個水分子的分子質量,這代表 ????-葡萄糖比 ????-葡萄糖更容易失去了一個水分子 (H2O) 。

????-葡萄糖與 ????-葡萄糖在 1 號 OH 官能基的連接角度不同,導致官能基上氫原子躍遷到 2 號官能基的能量障蔽不同,而使兩種葡萄糖分子在質譜儀中,斷裂出水分子的比例不一樣。在質譜圖中,可看出 ????-葡萄糖在減少一個水分子的質荷比 185 處訊號強度,明顯高於 ????-葡萄糖。
資料來源│Ni et al. Phys. Chem. Chem. Phys., 2017, 19, 15454 圖說重製│廖英凱、張語辰

倪其焜團隊從量子化學的理論計算發現:葡萄糖失去了一個水分子的機制,主要是由位置 2 的 OH 官能基裡的氫原子,轉移到位置 1 的 OH 官能基上的氧原子,再經由斷裂位置 1 的 C-O 鍵,脫離一個水分子。

由於 ????-葡萄糖上,位置 1 與位置 2 的 OH 官能基距離,明顯小於 ????-葡萄糖上同樣位置官能基的距離。因此,????-葡萄糖上,位置 2 的 OH 官能基裡的氫原子,要轉移到位置 1 的 OH 官能基上形成水分子 (H2O)的能量障蔽,明顯小於 ????-葡萄糖。

因此,從質譜可以判斷,質荷比 185 峰值較大者,對應的一定是 ????-葡萄糖 ; 質荷比 185 峰值較小者,則是 ????-葡萄糖。

同樣的科學原理,也可以應用到各種雙醣分子 ???? 與 ???? 兩種不同連接角度的糖苷鍵、或醣分子末端的 ???? 與 ???? 不同角度的官能基。透過實驗與理論的交互驗證,就可以在欠缺醣分子資料庫比對、僅擁有極少實驗樣本的情境下,精確地推論與鑑定出醣分子的結構。

醣那麼難研究,何苦選擇它

大家搞不清楚的混沌領域,是科學家開疆闢土的地方!

倪其焜回顧醣質譜的研究歷程,其實也與過去中研院兩任院長的研究有關。如前院長翁啟惠最為知名的研究,就是開發出快速且大量的醣分子合成方式,近年來更將醣分子應用於癌症等治療方式的研發。

但早年研究醣分子時,發現醣分子不僅結構複雜難以分析,相比起蛋白質,醣分子在質譜儀內也難以游離、無法有效鑑定。倪其焜當時發現,主因為當時國際學術界對於醣分子游離的理論與數據解讀有誤,因而與團隊提出了正確且簡單的理論,成功解釋了醣分子的游離機制。

前院長李遠哲,更交付了「提高醣分子游離效率」的任務給倪其焜,由於醣分子的數量稀少且難以人工合成,提高游離效率就意味著:能在有限的醣分子樣本之下,增加實驗的成功率或鑑別度。雖然在後續的研究中,倪其焜研究團隊陸續提出一些改善方式,使游離效率能提高百倍,不過助益仍相當有限。面臨這個挑戰,倪其焜進一步思考,其實人們對於質譜儀內醣分子的鍵結斷裂原理所知甚少,因而發現了這個全新的研究角度。

倪其焜與研究團隊成員。後方儀器,為前院長李遠哲於柏克萊大學時自製的交叉分子束儀器,現位於中研院原分所內供研究使用。
攝影│廖英凱

近年來,科學家大量認知到醣分子的重要性與研究的困難度。倪其焜認為,像醣分子這樣仍屬謎團重重的混沌領域,正是科學家開疆闢土的好地方。中研院在前任院長的支持下,近年建立了跨領域的研究團隊,包含基因體中心生化所化學所等,從不同的角度切入,研究醣分子的合成、鑑定,以及醣分子在生化、醫學的功能等。這也是台灣在科學研究上,另一個可以在世界舞台上佔一席之地的契機。

在醣分子研究的歷程上,有可能會遭遇既有理論的瑕疵錯誤,也有可能會欠缺關鍵技術與資源的支持。但若能窮盡物質世界的學理,引進不同研究領域的理論與技術,就有可能在混沌之境,開創出前所未見的研究新視角。

延伸閱讀

  • 倪其焜的個人網頁
  • Jien-Lian Chen, Hock Seng Nguan, Po-Jen Hsu, Shang-Ting Tsai, Chia Yen Liew, Jer-Lai Kuo, Wei-Ping Hu, and Chi-Kung Ni*. Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Phys. Chem. Chem. Phys. 19, 15454 (2017)
  • Hsu Chen Hsu, Chia Yen Liew, Shih-Pei Huang, Shang-Ting Tsai, Chi-Kung Ni*. Simple Method for De Novo Structural Determination of Underivatised Glucose Oligosaccharides. Scientific Reports 8, 5562 (2018)
  • Hsu Chen Hsu, Chia Yen Liew, Shih-Pei Huang, Shang-Ting Tsai, Chi-Kung Ni*. Simple Approach for De Novo Structural Identification of Mannose Trisaccharides. J. Am. Soc. Mass. Spectrom. 29, 470 (2018)

本著作由研之有物製作,原文為《醣有千萬面貌,質譜儀來解》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
跨越五十年的醣化學之旅——翁啟惠院長專訪
研之有物│中央研究院_96
・2022/11/19 ・7078字 ・閱讀時間約 14 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

台灣知名科學家:翁啟惠院長

如果問民眾「臺灣有哪些知名的科學家?」翁啟惠肯定是經常出現的答案。翁啟惠是國際知名醣化學家,曾擔任兩屆中央研究院院長,任期內積極將基礎科學與生醫產業串連起來。另一方面,翁啟惠也是投身研究 50 年的資深學者與好老師,共培養超過 500 位優秀弟子;他同時也是中研院、美國國家科學院的院士,更獲得沃爾夫化學獎、威爾許化學獎、四面體化學獎等榮譽。中研院「研之有物」專訪院內基因體研究中心合聘特聘研究員翁啟惠院士,向讀者介紹他一路走來的心路歷程。

圖│研之有物(資料來源|翁啟惠)

從臺大、中研院到 MIT的化學之旅

翁啟惠學術能量依舊飽滿,他是斯克里普斯研究院(Scripps Research)與中研院合聘的研究人員,兩邊各自都有實驗室和學生,受訪當天他本人在美國加州,透過視訊與「研之有物」團隊連線。

至今已 74 歲的醣化學大師翁啟惠,他是嘉義出生的子弟,初中考上臺南一中,高中三年級本已保送清華大學化學系,不過因為想挑戰臺大醫學系而赴考,可惜生物不好,加上自己喜歡化學,便進了第二志願臺大農業化學系。大學畢業,退伍後他隨即投身於科學研究,算算日子,已經是漫長的 50 年時光。

翁啟惠原本就喜歡研究,他退伍後跟著恩師臺大化學系王光燦教授擔任助教一年後,再跟王教授來到中研院擔任助理,當時(1972 年)正值中研院生物化學研究所草創時期。後來翁啟惠升任「助理研究員」(類似大學的講師,目前已無此職位),前後服務長達 8 年,期間於 1977 年在職獲得碩士學位,碩論主要為臺灣蛇毒蛋白的合成,是翁啟惠多年來的研究成果。

王光燦(左)帶領翁啟惠(右)進入化學的研究殿堂,圖為 1999 年王光燦的退休餐會上,翁啟惠贈與恩師紀念品。
圖│翁啟惠

儘管翁啟惠出國前已發表超過 30 篇論文,小有所成,他依然希望更上層樓,因此 1979 年前往美國的麻省理工學院深造,接受恩師化學系教授喬治·懷特賽茲(George M. Whitesides)的指導。翁啟惠回憶,自己後來教育學生的理念與作法,多源自懷特賽茲的啟發。具備相當基礎之下,翁啟惠花費 3 年取得有機化學博士學位,又經歷 1 年哈佛大學的博士後研究,1983 年他就成為德州農工大學(Texas A&M University)的助理教授。

冷門且困難的「醣化學」

翁啟惠擅長的領域是「酵素化學」與「醣化學」,醣化學是什麼呢?翁啟惠解釋,維繫生命的蛋白質、核酸、脂質、醣類這些物質,以醣類最為複雜。除了材料化學的應用之外,翁啟惠選擇探索醣分子在生物醫學方面的應用。

醣類的結構變化多端,而且不容易人工合成。而翁啟惠的過人之處,正是出色的醣類合成能力!後來讓他奠定宗師地位的一鍋式酵素合成法程式化一鍋合成法醣晶片,到最近的廣效去醣化疫苗等研究主題,都歸功於他堅強的化學合成基礎。

我們已經知道翁啟惠是醣化學的先驅,不過其實到博士畢業前,他大部分仍著重於蛋白質的合成,直到獨當一面後,才正式投身醣類。因為在當時的學界,核酸、蛋白質才是顯學,醣化學是非常冷門的領域,即便今日也不算太熱門,更是難以想像應用於研究疾病。

因此,翁啟惠早期在美國當助理教授時,曾經無法申請到研究經費,甚至有計畫評審認為他誤入歧途,所幸他的前瞻理念於 1986 年受到美國總統年青化學家獎(Presidential Young Investigator in Chemistry)的賞識,支持他站穩腳步,1987 年升任教授,才有後來的持續突破。

使用「酵素」來合成醣類

過去醣類研究不但冷門,而且難以合成,翁啟惠為什麼有勇氣選擇如此困難的題材?他的信心來自「酵素」 ,也就是生物用來催化反應的特殊蛋白質。傳統化學手段難以合成的複雜產物,有機會利用酵素來克服。

翁啟惠提到,1970 年代分子生物學興起,新問世的基因改造潛力無窮,人造胰島素開啟生技產業的濫觴;但是 1980 年代時,化學家多半仍很少接觸基因重組技術。他算是首波使用基因重組酵素,實現醣分子的化學合成。

翁啟惠強調,很多新聞報導說他是生物醫學或生物科技專家,但其實他本質上一直是化學家,探索分子層次的操作,研究醣分子與醣蛋白的有機合成,只是醣化學研究的應用涉及生物醫學領域,介於化學和生物的交界。

做出過人成績後,翁啟惠成為各大研究機構爭邀合作的化學人才,本來預備前往加州的史丹佛大學。不過同樣在加州的斯克里普斯研究院(Scripps Research)半途冒出,院長勒納(Richer Lerner)親自邀請他過去瞧瞧。當時擅長生醫的 Scripps 想拓展至化學領域,正在招募人才,而涉足生物的化學專家翁啟惠正是合適人選。

Scripps 研究院是世界最好的研究機構之一,只收博士生,不僅有多位諾貝爾獎得主,更培育出不計其數的人才。翁啟惠回憶,他原本也對 Scripps 研究院不熟,Scripps 當時還沒有化學部門,但沒想到相談甚歡,1989 年他受邀擔任新成立的化學系講座教授,一做就做到 2006 年。現在,Scripps 研究院在化學生物領域是全美第一。

圖│翁啟惠

Scripps 研究院不僅環境怡人,學術資源也豐沛,讓翁啟惠能專注研究,而不必為經費擔憂。如今,他再度成為 Scripps 研究院的講座教授(Chair Professor),美國講座教授會有一筆來自民間的捐助基金,有充裕的學術資源可供自由運用。翁啟惠感慨地說,臺灣的學術捐款多為建造大樓等硬體,可是支持人才更重要, 這是未來臺灣值得學習的方向。

醣化學原本是乏人問津的領域,然而翁啟惠開創了醣分子的有機合成方法,讓醣化學逐漸受到重視,他也獲得一系列耀眼成就。翁啟惠 2002 年當選美國國家科學院的院士,接著又榮獲多項化學領域的一級大獎:2014 年得到沃爾夫獎(The Wolf Prize),2021 年是威爾許獎(Welch Award),2022 年又獲頒四面體獎(Tetrahedron Prize)。

翁啟惠近年在化學領域不斷獲獎,也讓許多人好奇,再來會是諾貝爾化學獎嗎?

對於這個問題,翁啟惠認為可遇不可求,得獎也講究機運。不過每次獲獎,他都覺得是很好的鼓勵,激勵他繼續往前走。更重要的是,翁啟惠不是單打獨鬥,每次獎項表揚的成就,背後都是整個團隊的努力,因此這些榮譽正是對他整個團隊的肯定。

教師之夢:遍布全世界的學生

說到培養人才,這也是翁啟惠的強項,可惜過去媒體報導翁啟惠時卻很少觸及教育。談論如何作育英才的心得,翁啟惠眼睛炯炯有神,隔著太平洋都能感受到湧出螢幕的教育熱情。

翁啟惠表示他小學時就想當老師,也是一輩子的志願。看到學生有成就,就會覺得很欣慰。他至今指導過的學生與博士後超過 500 位,遍及世界各地,包含美國、日本、韓國、英國、法國、德國、比利時等國家。儘管他自嘲也不是全世界都有,像是北韓就沒有學生。

翁啟惠對教學的想法,奠基於博士班老師懷特賽茲和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力

表達為什麼重要?試想,一個人花費多年辛苦取得學位,去應徵工作,卻只有幾分鐘能夠展現。善於表達,才能讓人覺得你的工作重要,呈現意圖以實現目標。而翁老師的第一課,總是在他與學生第一次碰面立刻開始:「為什麼找我當指導教授?」。給他滿意的回答,才能成為他的學生,成績並非最優先的考量。

翁啟惠(左1)對教學的想法,奠基於博士班老師懷特賽茲(右1)和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力。
圖│翁啟惠

培養學生獨立思考與研究的能力

翁啟惠的指導理念是「指示不要太詳細」,讓學生自己想問題、找資料、設計實驗。他只負責給大方向、從旁協助。因為講的太過具體,反而會限制學生獨立發展的空間。

翁啟惠更精闢地剖析: 由學生獨立完成的成果,才會認為是自己的成績。否則即使成果再好,學生也可能覺得那是老師的東西,不是自己的成就。當學生獲得成功經驗,對自己有信心,此後便能更加獨立,建立正向循環。

另一方面,由於學生有大片空白可以填補,所以想法和能力不會受到過去積習所影響。翁啟惠提到,他有很多超乎預期的重要研究,是來自學生自己的嘗試。例如,研發出自動化一鍋式合成醣分子的歐曼(Ian Ollmann),原本在博士班四年級仍苦無突破,翁啟惠建議他發揮寫程式的專長,果然順利完成發表,後來甚至還轉戰高科技龍頭蘋果公司,至今已工作超過 20 年。

不過,讓學生自己摸索,失敗怎麼辦?翁啟惠認為失敗為成功之基礎,學生經歷失敗,才能培養耐心,累積應付挫折的經驗,打下未來成功的基礎。做研究的關鍵在於興趣,只要保持興趣,失敗也能學到新東西,而成功則能增強信心,有利於繼續成功。翁啟惠也鼓勵學生,與其等待老師指導,不如勇於嘗試、放手去做。

程式化一鍋多醣合成技術示意圖。
圖│研之有物(資料來源|中研院基因體中心資訊組)

研究院院長時期:積極推動產學交流與合作

翁啟惠任職 Scripps 研究院的期間,茁壯為世界第一流學者,各國爭相合作。如此耀眼的旅外人才,自然也受到當時中研院院長李遠哲賞識,促成翁啟惠於 2003 年回到臺灣,並在 2006 年到 2016 年擔任了兩屆院長。

翁啟惠除了提升中研院的學術水準,他最重要的任務莫過於推動生物科技產業。因為翁啟惠認為產學互利共生很重要,有好的產業才能吸收廣泛的人才,例如臺灣的半導體產業,可以讓理工科系學生不愁出路,產生正向循環。

但另一方面,生物科技已成為各個科技大國的明星產業,臺灣每年有大批醫藥、生技的人才,卻沒有相應規模的產業,無法人盡其才。

為了推動生技產業,法規制度與產學合作園區都不可或缺。翁啟惠參考美國 1980 年的拜杜法案(Bayh-Dole Act),與專家合作完成臺灣版本的法規,將產學合作、技術轉移制度化。

法規的主要精神,就是由政府補助學術研究,做出初步成果後,再技術轉移給業者尋求商業化,後續再回饋給學術形成正向循環。園區方面,國家生技研究園區、中研院南部院區,都隨著翁啟惠的規劃步上軌道,讓基礎研究和產業創新能夠連結。

當然,產學間的轉換並不總是那麼順利。不過翁啟惠認為,如果學者發表的論文成果,同時也能促進產業,讓社會一同受益更好。這倒不是說所有學者都要投入產學合作,而是要慢慢建立起產學合作的文化,將研發成果回饋給社會。

往好處看,臺灣的生技產業與產值都持續進步中,而這條路依然任重而道遠。

產學合作的新潛力

翁啟惠是純學術研究出身,為什麼後來卻相當熟悉產學合作呢?時光要回溯到 1985 年。那時翁啟惠獲頒席艾勒學者生物醫學獎(Searle Scholar Award in Biomedical Sciences)——這是他少數獲得的生醫獎項之一,加上總統年青化學家獎,使他在美國學術界站穩腳步,也讓他有擔任企業顧問的機會。

從杜邦公司開始,初出茅廬的翁啟惠自認什麼都不懂,跟著前輩們邊看邊學,解決一家又一家企業的疑難雜症,而業界的顧問經驗同時也支持著自己想做的研究。翁啟惠逐漸累積產業經驗後,發現產學目標很不一樣,學者要優先發表論文,企業則是產品導向,講究解決問題。

訪談之中,翁啟惠回顧幾件很有意思的顧問經驗。例如,有公司希望解決可樂中代糖「阿斯巴甜」(Aspartame)在高溫下產生甲醇毒素的問題。也有公司想要改良汽車外層鍍膜,避免鳥糞腐蝕。

另外還有一個香菸公司的邀請讓翁啟惠印象深刻,那時很多重度菸癮者抽到頭痛,產品只能先緊急下架,菸商損失慘重;後來查明是製菸的紙漿中存在微量有害物質,若短時間抽很多根菸,大量攝取下會有立即危害。

這些顧問工作,很多都和翁啟惠醣化學的本業無關,卻帶給他開闊的視野與企業經驗。我們也可以注意到,美國政府與產業界相當有心培育有潛力的人才,即便尚無業界經驗,也願意讓新人去嘗試擔任顧問。

翁啟惠提到,美國東岸的新英格蘭周邊,是產業歷史最悠久的地區,也分佈許多老牌大企業;西岸的加州則不同,主要是新創小公司。不同地方各有特色,衍生出多變的產學文化。

相比之下,臺灣也具備潛力,就看經營出什麼文化。翁啟惠認為,我們已經建立民主自由的社會,若要更上層樓,臺灣萬萬不可孤立,要主動與國際交流,並發展自己的特色。

有交流,創意的火花才有可能碰撞,或許那個坐在你隔壁的人,就是未來的合作夥伴!翁啟惠提到,總部位於加州聖地牙哥,以基因定序闖出名號,至今仍蓬勃發展的因美納(Illumina)公司,其共同創辦人沃特(David Walt),正是他在麻省理工學院實驗室的同儕!有次邀請沃特到 Scripps 演講,剛好聽眾中有兩位感興趣的投資者,演講結束之後,沃特便與兩位投資者私下討論,就創辦了 Illumina 公司。

醣無所不在!未解的謎題還等著研究

儘管投身學術研究 50 年,醣化學將近 40 年,翁啟惠絲毫沒有停下腳步的意思。當訪問到「醣化學還有什麼潛力?」,一如談教育時的熱情,翁啟惠又展現出科學家對研究的熱愛。

在翁啟惠眼中,醣類有太多謎團等待解答。生物基因以 DNA 承載遺傳訊息,製作蛋白質行使功能,但是時常還要加上醣的參與,偏偏醣類不像核酸、蛋白質容易摸索。醣分子無法複製,只能用化學合成,細胞表面佈滿的醣分子結構不對,功能就不同。

以抗體為例,抗體是一種醣蛋白,我們知道抗體靠著專一性辨識去附著目標,消滅病毒。相對卻少有人意識到,抗體的一端附著目標後,另一端還要連接免疫細胞轉入後續反應才能消滅病毒,這步正是依靠醣分子,因此醣類會影響抗體的免疫功能

相對的,病毒需要依賴宿主細胞以便大量複製。不同細胞會賦予蛋白質產物不同的醣化修飾。研究發現即使遺傳物質相同的病毒,假如病毒外頭的醣化修飾不同,也會影響感染能力及免疫反應。由上呼吸道細胞產生的新冠病毒,感染力就比其他細胞更強。

對於開發疫苗,翁啟惠近年投入不少心血。疫苗刺激產生的抗體講究專一性,研發者要想辦法針對病毒結構來調整抗體及 T 細胞反應。翁啟惠與研究團隊的思路卻是另闢蹊徑,並非將病毒露出來的表面設為目標,而是要去掉病毒外層的「醣」衣,也就是「去醣化疫苗」。

因為病毒暴露在外的部分會持續改變,躲避特定抗體,但是被醣基包裹的位置不太會變,或許是人體免疫記憶更好的訓練對象。以此概念製成的蛋白質或 mRNA 疫苗,若是成功,便有機會成為所謂的「廣效疫苗」,接種一款疫苗就能應付病毒的多型變化,特別是難纏多變的流感病毒、冠狀病毒(例如 SARS-CoV-2)。

新冠病毒(SARS-CoV-2)的棘蛋白上面有醣化修飾(標示為橘色),醣基包裹的位置不太容易突變,因此去除表面的醣化修飾之後,可以進一步製成廣效疫苗。
圖│研之有物(資料來源|翁啟惠、中研院基因體中心)

除此之外,翁啟惠團隊也持續開發廣效癌症疫苗。用抗體對付癌症的想法十分誘人,其難處在於,疫苗刺激產生抗體,辨識外來入侵的異物加以攻擊;但是癌細胞是人體細胞變異産生,上頭存在的成分正常細胞常常也有,設定癌細胞打擊,反而會造成自體免疫的悲劇。

好消息是,癌細胞外頭有些醣化修飾,不同於正常細胞。翁啟惠的隊伍尋獲 Globo H 等幾個醣類分子,適合作為疫苗針對的目標。相關技術已經轉移給業者,正在進行第三期人體臨床試驗。這些圍繞醣分子作文章的創新疫苗令人期待,最終是否能投入實戰,仍有待分曉。

關於醣化學,翁啟惠將持續探究細胞表面醣分子所扮演的角色,以及醣分子和疾病的關係。

給年輕學生的話:「興趣是研究的動力

翁啟惠語重心長地提到,醣化學領域如今的樣貌取決於他們這些開拓者,未來則要看能否引發年輕人的興趣,因為未來是年輕人的。

現今教育強調跨領域,翁啟惠自己無疑也是跨領域的知名化學家,但是他提醒年輕人,跨領域絕對不等於什麼都要學、都要會。基礎還是要打好,跨領域的關鍵是有能力與其他領域的人互動合作。

翁啟惠近期便以國家生技醫療產業策進會會長的角色,積極促進醫界與電子業的對話。因為醫界知道市場需求,但不懂得製造;電子業擅長製造,但是對醫療需求沒有深刻理解。他希望營造合作交流的環境,創造新的可能性。

最後,翁啟惠提醒學生,做研究一定要長期投入,深入鑽研,若是短短幾年就轉換領域,只會愈來愈迷茫。興趣對研究生涯最重要,有興趣才有動力,而興趣的培養則來自日常的自我探索。

翁啟惠建議學生在跨領域之前,基礎還是要打好,而跨領域的關鍵是有能力與其他領域的人互動合作。
圖│翁啟惠
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
1

文字

分享

0
4
1
月娘你從哪裡來?月亮形成的新線索!關鍵就在隕石中?
linjunJR_96
・2022/09/07 ・2467字 ・閱讀時間約 5 分鐘

作為我們宇宙中的鄰居,以及夜空中最明亮的一盞燈,月亮自古以來便讓人類心生著迷。古人望向滿月的同時,想起了遠方的至親;天文學家望向滿月時,心中卻出現了另外一個問題:「月亮為什麼在那裡?」

月亮是從地球這邊「飛出去」的嗎? 圖/GIPHY

月球作為繞地球運轉的衛星,並不是和太陽系的其他行星一同形成。目前最受歡迎的月球起源說是所謂的「大碰撞」(The Giant Impact)。今年八月,在中秋節即將到臨之際,科學家在月球隕石中找到了來自地球內部的原生惰性氣體,為大碰撞事件的始末提供了全新的線索。

大碰撞起源:月球是從地球分出去的?

大碰撞學說認為月球是地球遭到撞擊的產物。

一顆與火星差不多大的天體和古代地球斜向碰撞,把地球撞得團團轉的同時,撞擊產生的巨大能量也將大量地殼與地函物質融化、蒸發、向外噴出。這些殘骸碎屑繞著地球高速旋轉,形成一個甜甜圈狀的雲狀區域。月亮便是由這團高溫物質互相吸引聚集而成。

大碰撞學說中,月亮形成的過程。圖/wikipedia

聽起來或許十分異想天開,但這個猜想可是經歷了許多實證考驗。

首先,一個最簡單的觀察是:現今月球公轉的和地球自轉方向一致。這是擦撞過程中「甩」出去的殘骸形成月球會有的現象。據我們所知,月球的公轉方向和轉速自形成後,便沒有太大改變。大碰撞學說通過了第一關!

在化學成分方面,同位素比例提供了有力的證據。同位素比例是指某種元素的同位素(例如氧元素可以分為氧 16、氧 17、氧 18)在物質中各占多少比例。這些同位素形成穩定的化合物後便不會變動,因此成為科學家追本溯源的重要工具。

也因此在天體地質研究中,地層中的同位素比例是每顆星體獨一無二的指紋,太陽系中每顆星體都有相當不同的氧同位素比例。不過,科學家在二十世紀初期,檢驗了阿波羅十三號帶回的月球岩石樣本。其中,氧同位素比例竟然和地球一模一樣,強力暗示了月球物質和地球有著神聖不可分割的淵源。

除此之外,許多地質證據顯示月球在形成初期,表面是高溫的熔融態,符合大碰撞的說法。類似的撞擊事件也曾經在其他星系被觀測到。

種種證據使大碰撞學說成為最受歡迎的月亮起源說。 圖/wikipedia

六個月球隕石,可能解開月球原生惰性氣體之謎

如今,月球物質是來自古代地球這件事已被廣為接受,但詳細的形成過程究竟是如何,仍持續隨著觀測證據的增加而不斷地修正討論。目前的一個疑點是揮發性物質的存在。

大碰撞時的高溫理應讓大部分的揮發性物質(例如水和二氧化碳)揮發殆盡,但在月球深處的原始岩層中找到的水樣本,和地球地函中的水有同樣的氫同位素指紋,表示這些水或許是「原生」的,在撞擊形成時便一直留存至今,而不是來自外部的隕石。

要研究揮發性物質的源頭,氦或氖這類的惰性氣體的同位素指紋,便是重要的追蹤工具,可惜我們一直未能在月球礦物中找到惰性氣體。由於月球大氣層十分稀薄,外來的小行星以及富含氫氦原子的太陽風持續轟炸月球表面。想對原生惰性氣體進行研究,還得先排除這些外來汙染的可能。

蘇黎世聯邦理工學院的 Patrizia Will 所帶領的研究團隊,以南極拾獲的六個月球隕石作為研究對象。這六顆隕石皆為玄武岩材質;也就是說,它們是由月球內部的岩漿快速凝結而成。形成後,它們受到更上層的岩層保護,免於宇宙射線和太陽風的高能輻射。這六塊岩石很可能是在某次大型隕石撞擊中,才從月球的岩漿流中被撞擊而出,並在漫長的旅途後抵達地球。

光學顯微鏡下,含有原生惰性氣體的月球玄武岩隕石 LAP 02436。圖/ETH

要取得隕石的同位素指紋資訊,需要用到質譜儀。這份研究使用的質譜儀靈敏度極高。實驗室人員曾經為了防止外界振動干擾,將它懸掛在天花板上,並為它取名為「Tom Dooley」。Tom Dooley 是美國內戰時期民謠中因謀殺被判處絞刑的人物。

儘管取名的來由十分詭譎,但是這座 Tom Dooley 質譜儀威力十足。它是世界上唯一能夠測量如此微量惰性氣體的儀器,也曾負責分析地球上最古老的物質——高齡七十億年的默奇森隕石(Murchison meteorite)。

目前發現地球上最古老的物質,高齡七十億年的默奇森隕石(Murchison meteorite)。

研究團隊將隕石中的黑色玻璃微粒用 Tom Dooley 進行分析,嘗試找出當中各種同位素的比例。它們在玻璃微粒中發現了存量遠高於預期的氦和氖。從岩石的形成歷史以及同位素特徵中,他們排除了太陽風或小行星汙染的可能,而氖同位素的比例則和地球地函的深處不謀而合。

這些證據表示這些惰性氣體是直接來自地球的地函。這是首次在月球內部礦物中發現地球原生的惰性氣體,研究結果發表在 Science Advances 期刊中。

這次的發現為大碰撞學說再添一筆證據。往後的研究將繼續挑戰較難測量的氪和氙元素,以及其他容易揮發的鹵素元素等等,藉此追蹤揮發性物質在月球形成的歷史中,究竟是如何存活下來。

美麗的月亮,神奇的月亮,還有許多問題待我們繼續發掘。 圖/GIPHY

參考資料

  1. Will, P., Busemann, H., Riebe, M., & Maden, C. (2022). Indigenous noble gases in the Moon’s interior. Science advances8(32), eabl4920.
  2. One more clue to the Moon’s origin
linjunJR_96
31 篇文章 ・ 538 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

10
5

文字

分享

0
10
5
這裡痛,那裡痛,全部都是壓力惹的禍!揭開纖維肌痛症的成因
研之有物│中央研究院_96
・2021/03/22 ・3906字 ・閱讀時間約 8 分鐘 ・SR值 541 ・八年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|歐宇甜
  • 美術設計|林洵安

日常壓力會誘發纖維肌痛症

纖維肌痛症 (fibromyalgia) 病患有全身慢性肌肉痠痛,可能伴隨失眠、焦慮和憂鬱等症狀,致病機轉一直是個未解之謎。中央研究院生物醫學科學研究所陳志成研究員與研究團隊,找到纖維肌痛症可能的生理與心理致病機轉和關鍵抑制劑,論文於 2020 年 9 月發表於國際風濕免疫科權威醫學期刊 (Annals of the Rheumatic Diseases)。

無藥可醫的纖維肌痛症

「纖維肌痛症 」最常見的症狀是全身肌肉慢性痠痛,伴隨疲勞、失眠、焦慮和憂慮,有時被稱為稍微累一點就全身痠痛的「公主病」。目前醫學對於該病的致病機制並不清楚,病人往往不斷轉診仍找不到明確病因,因此也尚未有專屬用藥,只能先緩解症狀,但效果相當有限。

纖維肌痛症是一種很常見卻又神秘的疼痛病。在成年人中,約有 2 ~ 6% 的人罹患此病,特徵是慢性廣泛性肌肉疼痛,並伴隨疲勞、失眠、焦慮和憂鬱,嚴重影響病人的生活品質,甚至導致失能。圖/iStock

不過臨床上發現,日常生活精神壓力會誘發或加重纖維肌痛症症狀。多數病患的背後都是一段故事,可能有家庭、親友、經濟、工作等各種問題。只是心理壓力和纖維肌痛症到底誰是因、誰是果?背後的致病機制是什麼?「我們必須建立一個可以反應纖維肌痛症的動物模式,以驗證心理壓力與纖維肌痛症的關係。」 陳志成說明。

在此之前,先來看看痠痛是怎麼引發的呢?

組織酸化誘發痠痛

過去研究認為組織酸化會誘發痠痛。1980 年德國人曾做過人體實驗,直接把酸性物質注射入人體,結果發現真的會引起痛感,而且流速越快、越痛,初步證明酸與痠痛的因果關係。但酸是透過什麼樣的分子機制來刺激痛覺神經,卻一直沒有定論。

陳志成嘗試以此建立纖維肌痛症的動物模式。他們先幫小鼠注射酸鹽水,然後以壓肌肉或用細尼龍線刺激小鼠腳掌,發現小鼠碰到刺激會縮腳,代表的確有「疼痛過敏化」現象,但這疼痛過敏化現象在 24 小時以後會消失不見。但如果五天之內在同樣位置再打一次,就會導致持續約一個月的疼痛過敏化,而且也會發生鏡像性的疼痛,成功符合纖維肌痛症的特徵。

這個小鼠實驗模式提供了一個平台,讓陳志成可以從神經學的分子機制上,深入研究組織酸化如何誘發慢性肌肉疼痛。

我們身上各個組織都有痛覺神經,神經上有許多可被酸給激活的離子通道或受體分子,最重要的包括酸敏性離子通道(ASICs),以及辣椒素受體蛋白 (TRPV1) 等等。陳志成實驗發現,如果以藥物抑制 ASICs 或 TRPV1,五天後再次的肌肉酸化刺激就無法誘發慢性疼痛。但是,如果再次的肌肉酸化刺激發生於第二天,仍會誘發 7 ~ 10 天的疼痛過敏化現象。因此,陳志成推論出,第一次肌肉組織酸化不僅是誘發短暫的疼痛過敏化現象,也讓肌肉痛覺神經產生了可塑性變化,所以五天以內再次肌肉酸化刺激,就足以發展成慢性疼痛。

我們身上所有組織都有痛覺神經,上面有許多離子通道或是受體分子,分別對應不同來源的痛覺,其中可被酸激活的是酸敏性離子通道(ASICs)以及辣椒素受體蛋白(TRPV1)。圖/研之有物

用噪音製造壓力源

了解痠痛的神經科學分子機制,下一步就是建立心理壓力造成痠痛的動物模式,怎麼做?噪音是好工具!一般的壓力來源很難定量,但是噪音可以換算分貝並以程式設定,比較好掌握。

他們讓小鼠待在籠中,不定時播放尖銳、人耳可能聽不見的超音波噪音,一天重複六次,隔兩天後再連續兩天重覆進行……結果,受到噪音壓力的小鼠,出現了疼痛過敏化現象持續約一個月。「我們發現,關鍵是要有不確定性、間歇性、重複性的壓力刺激,如果是給予短暫的壓力刺激,小鼠並不會出現慢性疼痛過敏化現象。」

此外,一般纖維肌痛症患者常出現共病,像焦慮、憂鬱等情緒問題。他們觀察具有疼痛過敏化現象的小鼠們,焦慮行為也變得明顯:一般健康的小鼠喜歡到處探索、玩耍, 放入十字迷宮時,敢走到兩側開放懸空的部分,但有焦慮行為的小鼠喜歡躲在隱蔽空間、不敢跑出來。

壓力 –> 氧化脂質 –> 疼痛訊號

建立一套動物模式後,接下來他和研究團隊想知道,體內有什麼東西誘發了痠痛?

他們分析小鼠血液中的脂質,發現小鼠在遭受壓力後,體內有一群特別的脂質被代謝出來。「我們發現到一種氧化脂質 LPC16:0 ,令人眼睛為之一亮!」陳志成說道。原來,幾年前有法國科學家發現這種氧化脂質 LPC16:0 可以專一性的刺激感覺神經元上的 ASIC3 酸敏性離子通道。賓果!全部事情似乎都可以串連在一起了。

經過反覆實驗,致病機轉的輪廓漸漸清楚了!外界的壓力源 (噪音),會導致小鼠體內的氧化壓力上升,造成脂質代謝異常,產生過量的氧化脂質 LPC16:0 ,活化肌肉感覺神經元上的 ASIC3 酸敏性離子通道,造成疼痛過敏化現象,持續刺激下轉變成慢性疼痛。

圖/研之有物 (資料來源|陳志成)

纖維肌痛症療法現曙光

在小鼠身上驗證後,回到纖維肌痛症病人身上觀察:他們體內是不是有比較高的氧化壓力?比較高的異常脂質代謝呢?研究團隊將病患根據症狀嚴重程度分類,一群是全身痛、但症狀比較輕微,一群是全身又痠又痛、症狀比較嚴重,發現全身痠痛症狀嚴重的病人體內的 LPC16:0 特別高,另一組症狀輕微的病患則沒有,兩組之間有明顯的差異。

圖/研之有物 (資料來源|陳志成)

而人體其實本有快速代謝 LPC16:0 的路徑,但在五天內重複刺激,就可能變成慢性痠痛;換句話說,很多纖維肌痛症患者的病因可能是長時間一直受壓力刺激,體內會持續產生氧化脂質 LPC16:0,導致肌肉長期慢性痠痛,「這也能說明一個奇特現象:許多纖維肌痛症病患即使用藥也不見效,但當壓力源去除,像是搬離不幸福的家庭,全身痠痛就可能突然不藥而癒。」陳志成補充。

研究人員證明氧化脂質 LPC16:0 是引起痠痛感的禍首後,就可以嘗試去阻斷它產生。研究團隊用一種可以抑制這種酵素的藥物–血小板活化因子乙醯水解酵素抑制劑 (platelet-activating factor-acetylhydrolase inhibitor; darapladib),打到小鼠的身上,果真成功降低壓力造成的疼痛反應,此發現已申請國際專利,未來可望運用在纖維肌痛症臨床治療。

纖維肌痛症的神祕面紗,至此終於稍稍揭開!這項重大研究成果於 2020 年 9 月刊登在國際風濕免疫科權威醫學期刊 (Annals of the Rheumatic Diseases) 上。不過這只是陳志成痠痛研究的一角。他首創「痠覺理論」,希望能從更深入、全面解答慢性痠痛的成因,尋找更有效的療法。

建立痠覺理論,尋找新一代止痛藥物

何謂痠覺理論?首先,陳志成認為:痠是痠、痛是痛,兩者並不一樣。

這點對華人沒有問題!在臺語詞彙中有痠(SNG)、也有痛,國語詞彙中有又痠又痛、腰痠背痛等,可是在許多國家語言中只有關於疼痛 (PAIN) 的詞彙,沒有單獨提到痠覺的字彙。目前國際上只有對於疼痛的定義,把痠痛視為同一件事,或認為痠只是比較輕微的痛覺。

但是痠痛成因其實相當複雜,與組織酸化的關係也有待釐清!

比方說,酸可能引起疼痛,但你知道它也有止痛的效果嗎?在上述的小鼠肌肉酸化實驗中,陳志成發現同時抑制 ASIC3 與 TRPV1 ,可抑制酸所誘發的疼痛過敏化現象。但奇怪的是,第二天對於小鼠再次進行肌肉酸化刺激,雖然 ASIC3 與 TRPV1 這次沒被抑制,但小鼠竟完全沒疼痛反應!由此得知:除了 ASIC3 與 TRPV1 之外,還有一個未知、但是很重要的受體參與反應。這個神秘的受體是一個可以止痛的酸敏性受體分子,讓止痛的效果從第一次實驗延續到第二次!

接著,陳志成發現這個受體分子被刺激後,會促使感覺神經末梢釋放重要的神經傳導物質–物質 P。他認為:當痛覺神經被刺激後,在肌肉端的神經末梢會釋放物質 P,物質 P 會抑制神經活性,達成止痛作用,宛如痠痛的煞車系統。陳志成隨即抑制物質 P ,果然一次肌肉組織酸化就足以誘發慢性疼痛,讓小鼠無止盡痛下去。

那麼,問題來了!既然酸可以誘發疼痛、又可止痛,那麼痠痛病人到底是抱怨痠,還是痛呢?痠顯然不只是一種輕微的痛覺這麼簡單!這個「酸止痛」的神奇現象,提供了痠與痛的另類思考,物質 P 也可能成為新一代的止痛藥物。

「我現在就像一個傳教士,必須努力說服大家,痠與痛不一樣!我也跟語言學家合作,了解其他國家的相關詞彙,希望不久後可以將痠覺清楚定義出來。」唯有正視痠痛的不同,分別了解痠、痛背後各自的分子病理機制,才能發展更有效的止痛或止痠療法,嘉惠更多受到慢性痠痛折磨的病患。

陳志成自許像一個傳教士,努力建立痠覺理論,並跟語言學家合作,希望不久後可以將痠覺清楚定義出來,進一步找出痠與痛的不同分子機制,發展更有效的止痠與止痛療法。圖/研之有物

研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook