4

42
7

文字

分享

4
42
7

這杯重水喝起來甜甜的,我可以再來一杯嗎?

羅夏_96
・2021/05/04 ・2848字 ・閱讀時間約 5 分鐘 ・SR值 557 ・八年級

-----廣告,請繼續往下閱讀-----

水是我們賴以生存的重要物質,想必大家都對水的化學式 H2O 不陌生。不過從技術上來說,地球上的水並非都是由 H2O 組成。普通水 H2O 也稱為「輕水」,但除了輕水之外,自然界還有「重水」。近期有研究指出,雖然輕水和重水的外觀都是透明無色,但人可以分辨出重水的味道,因為它嚐起來有些許甜味[1]

輕水和重水的外觀都是透明無色,但人可以分辨出重水的味道。圖/Pexels

氫的同位素

要說明「重水」之前,得先聊聊同位素。同位素是指同一種化學元素中,具有不同質量數的原子(質子數相同,但中子數不同)。

氫有三個同位素,分別是氕(元素符號 H)、氘(元素符號 D)和氚(元素符號 T)。氕是最常見的氫,由 1 個質子形成的原子核,周圍有 1 個電子包圍;氘是以 1 個質子和 1 個中子形成原子核,周圍覆著 1 個電子;氚則是 1 個質子和 2 個中子形成原子核,周圍覆蓋 1 個電子。

氫的三種同位素。圖/Heavy Water Ice Cubes Do Not Float

普通水由氕構成,就是最常見的 H2O。若由氘構成的水,化學式為 D2O。氘由於質量較氕重,讓 D2O 的質量也 H2O 重,因此 D2O 又被稱做重水。D2O 在化學性質上與 H2O 基本沒有差異,但氘也因質量較重,讓重水的物理性質如密度比正常水高約 10%,其凝固點和沸點也比正常水略高一點點[2]。另外比起正常水,D2O 的氫鍵註1較強一點點。

-----廣告,請繼續往下閱讀-----
輕水和重水的化學式。圖/Heavy Water Ice Cubes Do Not Float

重水對人體有影響嗎?

重水在自然界的含量是正常水的 6,400 分之一,因此人每天都會攝入微量的重水。少量的重水對我們的健康無害,但如果你想長期飲用純重水,可能就不是甚麼好主意了。

動物實驗顯示,當大鼠長期飲用純重水使體內的重水含量達到 50% 時,其細胞分裂會被抑制,這使得需要快速細胞增生的組織出現壞死,最終導致大鼠死亡。

重水喝起來不一樣?

重水在 1930 年代被發現後,就一直有個有趣的傳聞:重水和一般水味道不同,有些許甜味。而由以色列的兩位生化學家 Natalie Ben Abu 和 Philip E. Mason 所領導的研究團隊,就對這個傳聞展開探討。

研究團隊首先找來 28 位志願者,想了解他們是否能區分重水和普通水。研究人員將買來的商業重水純化後,給予受試者兩滴重水和一滴普通水(或者反過來),然後請他們分別以嗅覺和味覺來辨別這三滴水是否有異。

-----廣告,請繼續往下閱讀-----

在嗅覺測試中,25 人中只有 9 人能辨識重水。但在味覺測試中,28 人中有 22 人能辨識出重水(受試者表示有淡淡的甜味)。而在塞住鼻子的味覺測試中,超過一半的人能辨識出重水,這顯示舌頭上的味覺受體確實能捕捉到重水的微妙甜味。接著研究人員發現,隨著普通水混入重水的比例增加,受試者品嘗到的「甜味」也會增加。另外,重水也能增加其他甘味劑如葡萄糖的甜味。

(a) 重水的比例越多,受試者能嚐到的甜味也越多。(b) 重水能增加葡萄糖的甜味。圖/參考資料 1

研究人員接著想了解,小鼠是否也能分辨重水。儘管小鼠喜歡喝糖水,但牠們飲用普通水和重水的量是一樣的。這顯示小鼠並不像人,能感知到重水產生的甜味。不過研究團隊表示不感意外,畢竟有些甘味劑如阿斯巴甜,人類可以嚐出甜味,但小鼠不能。

(a) 小鼠喝普通水和重水的量沒有差異。(b) 小鼠喝糖水的量比普通水高。圖/參考資料 1

甜味與甜味受體

既然講到甜味,那得先簡單聊聊人類的味覺是怎麼產生的。

味覺是舌頭上的味蕾接受到食物的刺激後,將刺激轉換為神經訊號並傳至大腦所產生的一種感覺。味蕾是由味覺細胞、基底細胞和支持細胞組成。味覺細胞的頂端有許多纖毛,毛上則分布很多味覺受體。當特定的味覺受體與特定的分子結合後,味覺細胞會產生訊號,讓連接著味蕾的神經將此訊號傳至大腦,進而產生不同味覺。

-----廣告,請繼續往下閱讀-----
味蕾的構造。圖/維基百科

目前研究發現,人類的甜味受體由兩種蛋白質共同形成,其中一種是 TAS1R2,另一種是 TAS1R3。能與甜味受體結合並讓味覺細胞產生訊號的物質,則被稱為甘味劑。

重水能活化甜味受體

回到這篇研究,根據上面的結果,研究團隊推測重水可以刺激味覺細胞中的甜味受體,讓人嚐到甜味。

為了驗證這個想法,研究團隊設計出能表現甜味受體 TAS1R2/TAS1R3 的細胞,並觀察重水是否能刺激甜味受體。結果顯示重水確實能刺激 TAS1R2/TAS1R3。另外,加入甜味受體的抑制劑,也確實能封鎖重水對 TAS1R2/TAS1R3 所產生的刺激。這顯示重水確實能與甜味受體結合並刺激其產生訊號,讓人嚐到甜味。

重水能刺激甜味受體,而這個刺激會被甜味受體抑制劑 (lactisole) 封鎖。圖/參考資料 1

研究團隊根據分子動力學模型,發現甜味受體和正常水與重水之間的相互作用有輕微的差異,而正是這個差異,讓重水能刺激甜味受體。研究團隊推測造成這種差異的原因在於,重水的氫鍵比普通水略強。不過他們也表示需要更深入的研究,才能確認重水之於甜味受體的結合部位和作用機制。

-----廣告,請繼續往下閱讀-----

雖然我們現在知道重水也能產生甜味,但重水顯然不是實用的甘味劑。不過當我們更了解重水與甜味受體的作用後,或許能提供甜味分子更廣闊的可能,甚至能以此設計出新型的人工甘味劑!

最後,文章雖沒對超重水進行實驗(畢竟要純化超重水的成本極高!)。然而若重水的甜味真的是源於氫鍵較強,那麼超重水的氫鍵也比普通水強,或許也帶有淡淡的甜味。照這樣說,近期沸沸揚揚的福島核廢水,若經淨化後只帶有氚水(超重水),或許嚐來是甜的?不過我想,恐怕不會有人想嘗試吧~

註釋

  1. 氫鍵:氫鍵是一種分子間偶極 – 偶極作用力,或者說其實是一種特殊的靜電作用。氫鍵是由兩個陰電性大的原子與處在其中間作為橋樑的氫原子所組成。氫鍵對於生物高分子尤其重要,蛋白質的二、三和四級結構和 DNA 的雙股螺旋結構,氫鍵都是穩定這些結構的重要原因。

參考資料

  1. Ben Abu, N., Mason, P.E., Klein, H. et al. Sweet taste of heavy water. Commun Biol. 4, 440(2021). 
  2. 重水
  3. Heavy Water Ice Cubes Do Not Float. mathscinotes. 2014/2/23
文章難易度
所有討論 4
羅夏_96
52 篇文章 ・ 805 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
0

文字

分享

1
1
0
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
293 篇文章 ・ 3333 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

15
5

文字

分享

0
15
5
我們需要覆蓋率更高的網路!低軌道衛星通訊的好處在哪?臺灣有機會發展自己的「星鏈」嗎?
PanSci_96
・2023/12/04 ・6233字 ・閱讀時間約 12 分鐘

要是海底電纜被截斷,馬斯克的星鏈又不幫忙?台灣會不會成為資訊孤島?

近年 SpaceX 不斷發射 Starlink,看起來野心滿滿,多到都成為光害了。

在烏俄戰爭爆發後,Starlink 為烏克蘭提供的不間斷網路服務,更讓全世界看見低軌道衛星通訊的重要性。

通訊戰已經逐漸打到太空,台灣也不遑多讓。今年 11 月 12 日,鴻海與中央大學合作的兩枚低軌道通訊衛星珍珠號,以及成功大學與智探太空合作的立方衛星「IRIS-C2」已經成功升空,三顆衛星都已經取得了聯繫。台灣,也能很快擁有自己的星鏈嗎?我們還欠缺哪些關鍵技術呢?

-----廣告,請繼續往下閱讀-----

什麼是低軌道衛星?它可以取代海底電纜嗎?

在全民都會上網的現代,我們的電腦網路依靠光纖等實體線路,手機、WIFI 通訊則仰賴周遭的基地台,因此只要手機離基地台太遠,就會收不到訊號。未來,這些問題低軌道通訊衛星都能解決。這些在天上快速移動的衛星,只要數量夠多,就能覆蓋整個地球表面。因此不論你是在遠離基地台的深山,甚至是高空中的飛機,都能透過通訊衛星來連線上網。

除此之外,在 5G 通訊逐漸成熟的現在,下一代通訊技術 B5G 追求更快、更低延遲的數據傳輸,也會需要低軌通訊衛星來解決傳統基地台功率與覆蓋性不夠的問題。

但因為人口密集、土地面積小,台灣現在的無線網路服務覆蓋率已經很高了。台灣需要擔心的另一個問題是對外的海底電纜斷裂,使我們與世界失去聯繫手段。

除了要擔心戰爭爆發時敵人為了封鎖台灣消息,而主動破壞電纜以外。台灣周邊的電纜也常因為底拖網、抽砂船作業時被破壞,甚至天災都可能導致電纜被破壞。例如 2006 年恆春地震發生時,高屏海底峽谷就產生海底濁流,也就是海底的土石流。這股海底濁流一衝而下,破壞了呂宋海峽的數條電纜,不只影響了整個東亞以及東亞到美國、英國之間的通訊,包括許多跨國銀行交易。海底電纜斷裂的影響層面非常廣,2006 年恆春電纜斷裂事件發生後,還被聯合國國際減災策略署(ISDR)形容為「現代新型態災難」。

-----廣告,請繼續往下閱讀-----
2006 年恆春地震震央與海底電纜位置。圖/wikimedia

不論海底電纜斷裂的原因會是什麼,我們都需要有充足的準備來應對,而低軌道通訊就是其中的首選。

目前全球有在發展低軌道通訊的不只有 SpaceX 的 Starlink,其他還有 Amazon 的 Kuiper、加拿大的 Telesat 和由美國、歐洲、日本等企業投資的 EutelSat OneWeb 等等。

當然,其中最受矚目的當然還是 Starlink,而且它的發展速度真的有夠誇張。Starlink 在 2020 年才開始在北美提供服務, 去年 4 月我們製作了一集節目在介紹 Starlink,當時就已經總共有 2,000 顆星鏈衛星被發射上太空,服務使用者有 25 萬人。到了今年 8 月,短短又 16 個月經過,在低軌道運行的衛星數量,從兩千顆增加到了 4500 顆,用戶人數從 25 萬人暴增到突破 200 萬人,這肯定是打了針或是吃了藥。當然,訂閱 Starlink 的服務可能需要考慮考慮,但訂閱泛科學頻道,請不要再考慮了,就在這邊,趕快按下去吧! 然後別忘了,SpaceX 的野心,是在天上佈下總計 42000 顆的通訊衛星,大約是現在數量的再十倍,當這個目標達成時,我們的通訊手段可能將迎來天翻地覆的變化。

你可能好奇,這些距離地面遙遠的通訊衛星,能提供多快的上網速度?會不會衛星通訊到頭來只是個噱頭?在光纖電纜的技術進步下,海底電纜的速度確實已經非常快,傳輸速度是低軌衛星的五千到十萬倍左右,這根本是阿烏拉對上芙莉蓮,只有被虐的份啊!

-----廣告,請繼續往下閱讀-----

世界越快心則慢,但網路越慢心更急。Starlink 到底夠不夠用呢?依照 Starlink 實際用戶的實測回饋,雖然星鏈服務的 Ping 值多落在 15~60ms 左右,下載約 100 Mbps,上傳約 15Mbps,但對於一般消費者來說已經算是能接受的了。尤其對於偏遠地區、研究站的通訊,又或是未來 B5G、6G 物聯網中,與大量自動駕駛汽車、智慧裝置的連動,通訊衛星都將成為可考慮的另類選擇。

星鏈服務的 Ping 值多落在 15~60ms 左右,下載約 100 Mbps,上傳約 15Mbps。圖/PanSci YouTube

但如果我們未來不想只看馬斯克或是大公司的臉色,勢必需要發展屬於自己的通訊衛星。那麼,發展一顆通訊衛星,需要哪些技術呢?

低軌道有多「低」?低軌道通訊衛星需要哪些技術?

實際上,在低軌通訊衛星出現之前,我們早就有使用衛星進行通訊的經驗,例如衛星電視使用的廣播衛星。然而廣播衛星和低軌道衛星卻有著完全不同的設計邏輯,這是挑戰,也是機遇。

廣播衛星位於地球同步軌道,距離地面約 4 萬 2 千公里,優點是距離地面遠,因此一顆衛星的覆蓋範圍極廣,只要三顆衛星就能覆蓋地球大部分地區。缺點就是距離地面真的太遠了,就算以光速傳遞訊息,來回 8 萬 4 千公里,就有 0.28 秒的延遲,想必沒有人希望用這種速度來上網。 而低軌道衛星,例如 Starlink,就將他們的衛星分布在距離地面 350 至 1500 公里之間,只有地球同步軌道的 120 分之一到 28 分之一的距離和訊號延遲。反過來說,低軌道的優點是延遲短,缺點就是覆蓋面積小,因此才需要那麼多的衛星來覆蓋整個地球。

-----廣告,請繼續往下閱讀-----

再來,在天線的設計上也完全不同。接收廣播衛星訊號的天線,就是我們暱稱為小耳朵的衛星碟形天線,通常設計成凹面鏡的樣子。根據光學原理,平行光入射凹面鏡後,會聚焦在焦點。也就是說,接收器不是圓盤本身,我們會將接收器放置在焦點來接受最強的訊號。除了小耳朵之外,大型電波望遠鏡的設計,也是出於同樣的原理。

Starlink 的做法則不是這樣,因為用戶不只有接收訊息,還需要發送訊息。Starlink 的天線,是一個稱作 Dishy McFlatface 的小圓盤,只是後來變成方形了就是了。當你在自家屋頂或庭院設置了 Dishy,它內建的 GPS 會鎖定自己與附近 Starlink 衛星的位置,並且建立點對點的雙向資料傳輸。

Starlink 的方形天線。圖/PanSci YouTube

重點來了,要做到點對點的傳輸,代表這些電磁波訊號不能再是廣播衛星那種廣發的波狀訊號,而是要聚集到一條又窄、能量密度又高,如同雷射般的筆直路線上。

有在看我們節目的泛糰肯定有印象,這是我們今年第三次提到這個技術了。沒錯,在無線獵能手環還有宇宙太陽能這兩集中,都有遇到需要遠距傳遞電磁波能量或訊號的情況。其實用到的技術都相同,那就是波束成型(Beamforming)。誒,我們都報明牌那麼明顯了,還不趕快找概念股,然後訂閱一下泛科學嗎?

-----廣告,請繼續往下閱讀-----

一般來說,電磁波都會如同水波般向外發散,波束成型會先把一個訊號源拆成數個小訊號源,將這些訊號源排成一排,並且控制大家的相位。在電磁波的互相干涉下,就會形成一條筆直前進的電磁波。你可以想像一群本來正各自單兵作戰的士兵,透過整隊與喊口號將大家都動作同步,那麼這些士兵就會一起筆直地朝一個方向前進。在比較舊的 Dishy 型號中,寬 55 公分的圓形接收器上,裡面共有 1280 個六角型,每個六角形裡面都是一個天線,這些天線在波束成型後,會構成一個筆直、能量又強的電磁波束,與天上的衛星展開通訊。

咦?但衛星一直在動啊,難道天線也要一直追著衛星跑嗎?其實不用,我們只要對這群士兵下向左轉、向右轉的口令就好。例如我們喊向左轉,那只要左邊的士兵步伐放慢,右邊的士兵加快速度,就能完成轉向。同樣的道理,我們只要改變每個訊號源發出訊號的時機,改變每個波的相位,就能讓干涉出的訊號朝向特定角度,而不用機械式的移動天線本身。而能做到這種功能的天線,我們稱為相控陣列天線。

相控陣列天線(Phased array)的工作原理是改變每個訊號源發出訊號的時機和每個波的相位,讓干涉出的訊號朝向特定角度。圖/wikimedia

知道了地面天線如何和低軌道通訊衛星取得聯繫後,還沒完。這些丟出去的指令,衛星收到了沒錯,但如果你想要連上網際網路,最終這些訊號還是要能連上有線網路。

在星鏈 1.0 時,每顆 Starlink 衛星都是單獨運作,衛星在接收地面天線發出的訊號後,會傳遞到附近的地面接收站 Gateways,接著 Gateways 一樣會走光纖電纜的方式與網際網路連接,讓用戶得以上網。地面接收站一般設有 9 個雷達天線,每個直徑 2.86 公尺。衛星本體,例如 Starlink 2.0 上,則配有四個陣列天線,兩個用來與使用者相連,兩個連向地面接收站。

-----廣告,請繼續往下閱讀-----

然而,這樣的設計限制了 Starlink 的服務,因為這代表地面接收站與你的天線,必須同時在同一顆衛星的訊號範圍內。但是低軌衛星的覆蓋範圍又不大,一個地面站只能照顧方圓 800 公里內的用戶。因此如果你家附近沒有地面接收站,抱歉,你還是收不到訊號的。如果你在廣闊的大海上,就更不用想了。再來,就算 Starlink 提供全台灣的無線網路服務,但如果這個地面接收站就設置在台灣,那麼當台灣的對外海底電纜斷了,就一樣回天乏術,星鏈的設置可說是毫無價值。

Starlink 2.0 上配有四個陣列天線,兩個用來與使用者相連,兩個連向地面接收站。圖/PanSci YouTube

SpaceX 當然也想擺脫地面接收站的束縛,況且如果到了海上就收不到訊號,那可遠遠無法稱上「全球通訊」。因此到了 Starlink 2.0 時,衛星間通訊技術 LISL (Laser Inter Satellite Link) 全面安裝到了衛星上,藉由衛星間的通訊,取代海底電纜的作用,進行跨地區的通訊服務。你看,現在不只海底有資訊高速公路,在天上也出現了網路任意門。比起過去衛星間使用的無線電傳輸,使用 LISL 技術的衛星與衛星之間,用的是雷射。雷射傳訊不僅頻寬較寬,因為光在真空中的速度是最快的,比在光纖中還快。因此與海底電纜相比,傳輸速度反而有可能更快,衛星間的雷射通訊技術,也成為目前太空研究領域中非常重要的一環。

在通訊研究中,除了硬體技術的革新外,另一個最大的問題是,如此龐大的星鏈星座網路該怎麼設計?如何選擇地面天線要與哪個衛星通訊?每個衛星該攜帶多少個雷射發射器與接收器?資料傳輸要經過幾個衛星,才不會因為過多的路由,造成網路延遲飆升。哇~諸如此類的網路設計難題,都是因應通訊衛星而生的新型態網路結構所需面對的課題。而當這些問題被解決,那麼 Starlink 將真正全面擺脫地面接收站,並且能向地球上任何一個角落提供不受限的網路服務。

台灣的低軌道通訊衛星

根據中央社報導,台灣和 SpaceX 從 2019 年開始就展開嘗試性商談,但至今仍未能談妥。今年 11 月 14 日,中華電信成功與另一家公司簽署了台灣低軌衛星的獨家代理合約。這間搶在 SpaceX 之前簽約的公司,就是前面也提到過的 Eutelsat OneWeb。相較於 SpaceX 已經發射升空的 Starlink 大約有 4500 顆,Eutelsat OneWeb 現在的低軌衛星數量大約有 600 顆。台灣的目標,則是在 2024 年底前,布建國內 700 個、國外 3 個非同步軌道衛星的終端設備站點、以及 70 個將資訊候傳的設備站點,建構能完整覆蓋全台的衛星通訊。

-----廣告,請繼續往下閱讀-----

除了與現有的低軌道通訊服務公司簽約外,在打造自製台版星鏈的道路上,也傳來令人振奮的消息,就在簽約的兩天前,11 月 12 日,由中央大學與鴻海科技集團共同研發的珍珠號 PEARL-1C 和 PEARL-1H,兩顆立方衛星升空,並且與地面取得聯繫。搭載的儀器除了中央大學的電離層探測儀之外,還包含了 Ka 頻段的通訊酬載以及剛剛介紹的相控陣列天線,希望能為台灣自製的低軌道衛星通訊打下基礎。

國家太空中心則預計在 2026 年,將第一顆低軌通訊衛星送入太空,2028 年發射第 2 顆。希望能推動 B5G 的發展,並成為發展台版星鏈的敲門磚。

目前台灣的太空領域,許多的技術都正在發展、測試階段。除了這集提到的相控陣列天線、衛星間通訊技術,還有這集還來不及提到的長時間航行的充電問題、姿態校正問題,甚至是未來自行發射衛星的所需要的火箭科技,都需要一步步來解決、實踐。而且根據太空中心估計,至少要擁有 120 顆低軌道通訊衛星,才能確保全台 24 小時的通訊都不間斷,要達成這個艱鉅的任務,我們還有好多路要走,好多衛星要升空。

但千里之行,始於足下,千星之鏈,始於發射架。從福衛系列衛星到獵風者衛星,台灣的太空路線越來越鮮明,也讓人期待包括火箭、衛星到通訊技術的未來發展。

這集我們以 Starlink 為例,詳細的介紹了低軌通訊衛星的重要性,以及需要面對的技術突破。

也想問問大家,你覺得未來低軌通訊衛星,會如何改變網路市場呢?

  1. 衛星通訊成為常態,到哪都可以上網,等等這代表不管去哪都無法以網路不穩當藉口了嗎?可惡!
  2. 衛星通訊只是壁花配角,有線的海底電纜終究是主流
  3. 先等等,衛星競爭太激烈,衛星都比星星還要多了,真的不會在天上發生連環車禍嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1216 篇文章 ・ 2127 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。