Loading [MathJax]/extensions/tex2jax.js

1

1
2

文字

分享

1
1
2

為什麼A4的紙張邊長比是根號2呢?──《數學好有事》

PanSci_96
・2018/05/10 ・2567字 ・閱讀時間約 5 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

學校教過的數學課程中最讓人印象深刻的,可能是畢氏定理

這個定理是:取一直角三角形,以直角的兩邊(股)為邊長各畫一正方形,則這兩個正方形的面積總和,會等於第三邊(斜邊)畫出的正方形面積。邊長為 a 的正方形,√2面積是 a×a = a²。如果這個直角三角形的邊長為 a、b、c,且 c 是最長邊,那麼畢氏定理得出的結果是:

a²+ b² = c²

從這個漂亮的結果,你可以算出各種東西,包括正方形的對角線長等。正方形的對角線加上兩邊,就構成了直角三角形,如果正方形的邊長為 1,由畢氏定理可知:

-----廣告,請繼續往下閱讀-----

1² + 1² = 2 = d²

這表示對角線的長度 d 等於√2,也就是自乘結果等於 2 的數。

圖/wikipedia

讓人有點尷尬的√2

除非你已經發覺√2有點難定出精確的數值,否則這個數沒什麼大不了的。如果拿 1.5 自乘,會得到 2.25,比 2大很多;改用 1.4,則得到 1.96,又變得太小。(1.41)2 = 1.9881,還是太小,但(1.42)2 = 2.0164 又會超過 2。

看起來無計可施,事實上也的確辦不到。√2是無理數,意思是無法寫出它所有的位數:完整的小數展開式是無窮盡的,而且沒有不斷重複出現的數字模式。

-----廣告,請繼續往下閱讀-----

√2前面 20 位是:

1.4142135623730950488

發現無理數,可能招來殺身之禍

圖/wikipedia

簡單的正方形對角線,無意間產生了一個性質極為有趣的數。但事實上,畢達哥拉斯(Pythagoras)的門徒不太高興。畢達哥拉斯學派是西元前五世紀活躍於克羅頓(Croton,現今的義大利)的祕密幫派,除了奉行素食主義以及不吃豆類之外,他們把求知尊為道德健全生活的基石。數學是畢氏哲學的核心:據說 mathematics(數學,意為「所學習的」)及 philosophy(哲學,意為「愛好智慧」)這兩個詞是畢達哥拉斯所創,據傳,「萬物皆數」是他的座右銘。

問題是,畢氏學派所指的「數」只有整數及整數之比,也就是 ½、¼、¾ 等分數。無理數沒辦法寫成分數;事實上,這正是定義無理數的方式(如果你熟悉長除法,就可以自行驗證,任何一個分數都能表示成有限小數或循環小數)。

-----廣告,請繼續往下閱讀-----
希帕索斯。圖/wikipedia

希帕索斯(Hippasus of Metapontum)發現有些數(譬如√2)可能是無理數,他也是畢氏學派的一員,根據(相當隱晦的)歷史證據顯示,他因此受到嚴厲的懲罰:在海上沉船淹死。應該沒幾個人因為區區一個數而丟了性命吧?

無理但不悖理

證明√2是無理數的標準證法,是數學上經常使用的論證形式的重要範例,也就是歸謬法。要證明某件事(比方說√2是無理數),你必須先做相反的假設(√2可以寫成分數),如果之後推算出矛盾的結果,就能斷定你原先的假設一定是錯的,也就證明你最初的陳述(√2是無理數)必定為真。

這是很自然的推理方法,舉例來說,你假設管家殺了人,但如此一來,管家必須同一時間出現在兩個地方,這顯然說不通,那麼你就能推論原先的假設必定是錯的,而管家是清白的。歸謬法是數學的支柱,但也可能產生令人驚訝的結果。你將在第 3 章看到更多的例子。

希帕索斯的發現只是巨大冰山的一角。隨便取一小段數線,不管多小段,都有無窮多個無理數。那些能寫成分數的有理數,可以依序排列並賦予 1、2、3 等標籤,但無理數實在太多了,根本沒辦法用同樣的方式來區隔。你在數線上隨意一戳,碰到無理數的機率是 1,而碰到有理數的機率是 0。因此就數字而言,畢氏學派完全錯了。

-----廣告,請繼續往下閱讀-----

√2可以是好事

假如畢氏學派知道無理數多麼有用,大概就不會因為有人發現無理數而這麼不高興了。幾乎每天都會用到的例子是紙張。歐洲採用的標準紙張尺寸 A5、A4、A3 等,有個非常棒的特點,就是將兩張同尺寸的紙並排起來,即能拼成大一級的尺寸,譬如兩張A4紙能拼成一張 A3。且小一級紙張寬度(W)的兩倍,等於大一級紙張的長度,而小一級紙張的長度(L)等於大一級紙張的寬度。

A 系列紙張大小。source:Wikipedia

所有尺寸的紙張,長寬比都是一樣的,也就是:

可以改寫成:

意思就是:

-----廣告,請繼續往下閱讀-----

A 系列紙張的正字標記就是每張紙的長寬比均為 √2。

為什麼這很有用?如果你希望影印機能夠把原稿縮小(或放大)一級影印,就需要此系列紙張的各個尺寸有同樣的長寬比。假如長寬比不同,縮小影印後周圍就會多出白邊。兩張同尺寸的A系列紙張可並排成大一級的紙張,代表不管你想把兩張A4還是一張A3縮小一級,都可以採用同樣的縮小倍率。

影印機還會自動計算。如果你要縮小,影印機提供的倍率是 70%,有時候是 71%,把這些數字寫成小數(70 或 71 除以 100),結果是 0.7 及 0.71,兩個數都非常接近:

這個縮小倍率,正是把一張 A3(或兩張 A4)縮小到一張 A4所需要的比例。原紙張的長度 L 與寬度 W 會縮小到 L/√2 及 W/√2,這表示新紙張的面積會變成:

-----廣告,請繼續往下閱讀-----

就是原來的一半,且因長寬比維持不變,所以能把原來的紙張剛好縮小到 A4 的尺寸。

放大影印也是同樣的道理。影印機提供的放大倍率是 140% 或 141%,對應的數字很接近,所以可以把一張A4 放大到 A3 的尺寸。


BOX:證明√2是無理數

假設 √2 = m/n,其中的整數 m 與 n 沒有公因數(除了 1,沒有其他數可同時整除 m 和 n)。

於是:2 = m²/n²,因此:2n² = m²。

-----廣告,請繼續往下閱讀-----

這表示 m2是偶數,m 也是偶數,因為奇數的平方永遠是奇數。所以, m 可以寫成 2k,而 k 是某個正整數。把上式中的 m 換成 2k,就得到:2n2 = m2 = 4k2

除以 2,就是:n2 = 2k2

所以 n2 也是偶數,n 也是偶數,但這產生了矛盾,因為我們一開始假設 m 與 n 沒有公因數。因此,√2不能寫成 m/n,即為無理數。

本文摘自《數學好有事》,麥田出版

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
白馬 ≠ 馬?當陳述句變成數學邏輯等式!——《大話題:邏輯》
大家出版_96
・2023/04/07 ・2243字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

從簡單陳述句轉變為複合句——「連接詞」

大約一百年後,克律西波斯(c.280 – c.206 BC)改變了邏輯的關注焦點,從簡單的主述詞陳述句轉向「蘇格拉底是人,且芝諾也是人」之類的複合句。

這是很大的進展。當時甚至有人說「克律西波斯的邏輯就是神會用的邏輯」。我們稍後會見到,克律西波斯的邏輯也是人類使用的邏輯,只不過我們還得等兩千年才會明白這一點。

複合句使用的連接詞不同,其真假受個別句子影響的方式也不同。

出現了「且」、「和」等連接詞。圖/大話題:邏輯。

譬如「不是…就是…」這個連接詞組可以這樣用,也只有「不是…就是…」這個連接詞組可以這樣用:

-----廣告,請繼續往下閱讀-----

編按:「不是」穆罕默德到山那邊,「就是」山到穆罕默德這邊。

其後一千五百年甚至更久,克律西波斯沒有對邏輯留下多少影響。不僅因為他的作品失傳了,只留下他人的轉述,也因為亞里斯多德成了天主教會的心頭好。

「不是」;「就是」的應用。圖/大話題:邏輯。

萊布尼茲定律

接下來兩千年,邏輯學家建構出愈來愈多三段論,有些甚至前提不只兩個。這些邏輯學家就像煉金術士,拿著概念拼拼湊湊,想辦法生出有效論證。最後有一個人在這股狂熱當中想出了方法,那人就是萊布尼茲(1646 – 1716)。

萊布尼茲想到的方法是將陳述句看成代數裡的等式。等式使用等號(=)來表達式子兩邊數值相等。

例如:x2 + y2 = z2

萊布尼茲將等號帶進邏輯裡,用來指稱 a 和 b 等同。

-----廣告,請繼續往下閱讀-----
萊布尼茲定律的陳述句。圖/大話題:邏輯。

自此之後,這個等同式就叫做「萊布尼茲定律」。萊布尼茲將 a = b 拆成兩個不可分割的述句「a 是 b」和「b 是 a」,意思是「所有 a 都是 b」和「所有 b 都是 a」。

例如:「所有單身漢都是沒結婚的男人,且所有沒結婚的男人都是單身漢。」

若 a 和 b 等同,那麼陳述句裡的 a 就算換成 b,這個陳述句的真假顯然不會隨之改變。例如,「蘇格拉底是沒結婚的男人,沒結婚的男人是單身漢,因此蘇格拉底是單身漢」。

這個定律很重要,因為有了它,我們就能以有限多的步驟來判斷近乎無限多的句子的真值。萊布尼茲使用的步驟數是四個。

-----廣告,請繼續往下閱讀-----
陳述句中的等同式。圖/大話題:邏輯。

1. a = a

例:「蘇格拉底是蘇格拉底。」

2. 若 a 是 b,且 b 是 c,則 a 是 c

例:「所有人都會死,蘇格拉底是人,所以蘇格拉底會死。」

說「a 是 b」就等於說「所有 a 都是 b」。

3. a =非(非 a)

例:「如果蘇格拉底會死,則蘇格拉底不是不會死的。」

-----廣告,請繼續往下閱讀-----

4. a 是 b = 非 b 是非 a

例:「蘇格拉底是人,意思是如果你不是人,你就不是蘇格拉底。」

利用這四個簡單的法則,萊布尼茲就能證明所有可能出現的三段論。比起亞里斯多德的四角對當,這才是人類史上第一個真正的真理理論,因為它使用事先定下的法則,藉由代換等同的符號(同義詞)來導出結論。

非真即假的歸謬法

萊布尼茲最常用的證明方法是一個極為重要的邏輯工具,深受後世邏輯學家和哲學家喜愛。他稱呼這個方法為歸謬法。

這個工具很簡單,卻好用得驚人,自萊布尼茲發明以來便廣獲使用。我們用一個例子來講最清楚。

-----廣告,請繼續往下閱讀-----
檢驗「打籃球」得陳述句是否為真?圖/大話題:邏輯。

使用歸謬法時,我們先假設要檢驗的那個陳述句為真,再看它能導出哪些結論。如果導出的結論互相矛盾,我們就知道那個陳述句是假的,因為矛盾永遠為假。

歸謬法有一大好處,那就是即使我們不知道如何證明,也能判斷一個陳述句的真假;只要證明這個陳述句的否定會導出矛盾,就知道它是真的了。

歸謬法僅用真假二分,但卻沒有提出證明。圖/大話題:邏輯.

新工具

「我發明的這個工具完全使用理性,是裁決爭議的判官、解釋概念的權威、衡量可能性的天平、指引我們穿越經驗之海的指南針,是萬物的清單、思想的表格、檢視事物的顯微鏡、預測遙遠事物的望遠鏡、通用的演算法、不使詐的魔術、不空妄的計謀,也是人人都能用自己的語言閱讀,所及之處皆會帶來真宗教的經文。」

萊布尼茲致信漢諾威公爵,1679 年

不難想見,天主教會將萊布尼茲視為異端。但「思想有其必然法則」的想法卻對西方哲學家產生了深遠的影響,包括康德、黑格爾、馬克思和羅素。

萊布尼茲的思想影響到後世許多西方哲學家。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

6
2

文字

分享

0
6
2
黃金比例如何啟發世界的「美」!
鳥苷三磷酸 (PanSci Promo)_96
・2021/07/19 ・3828字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 微星科技 委託,泛科學企劃執行。

  • 作者 / 曾繁安

人類總會不由自主地被閃閃發光的事物吸引,取名時加上「黃金」二字,好像就能讓身價大漲,變得受歡迎。不管是黃金海岸、黃金地段、黃金右腳、 黃金奇異果,黃金獵犬、黃金脆薯、黃金盔甲、黃金流沙包、黃金開口笑(大誤)……人們用黃金形容所有美好的事物,連「比例」也一樣。「黃金比例」被譽為最美好的比例,你一定聽聞過,如果人的臉蛋身體或畫作構圖越接近黃金比例,就越迷人的説法。然而一個數字比例,怎麼會和美學扯上關係?

人類探究黃金比例的歷史,可追溯至兩千多年前……

古希臘時代大約公元五百多年前,癡迷於數學的畢達哥拉斯,認爲數學可以解釋世上一切事物。他的教學吸引了一群熱心的追隨者,被稱爲畢氏學派。在旁人眼裏,畢氏學派恐怕是一群怪人:恪守極爲嚴格的生活條規,不可吃肉和豆類,還會進行高强度記憶力訓練和三省吾身等等。但畢氏學派對數學幾近狂熱崇拜,尤其對數字 5 和五角星形的迷戀,使他們成爲史上最早接觸黃金比例分割的一群人。將構成五角星形的線段分割,由短至長排列,把最短的兩條線段相加,恰恰等於第三條線段長;把第二短和第三短的線段相加,也會等於第四條線段,依序如是,顯示出黃金比例的奇妙!不過,他們並沒有進一步為這個神奇的發現加以解釋、定義和命名。

一直到公元前三百年,歐基里德所著的《幾何原本》問世,才有了對黃金比例最早的系統性論述。但你知道嗎?歐基里德也根本沒說過「黃金比例」一詞。後世所謂的「黃金比例」,其實是出現在《幾何原本》第四章的「極限與均值比例」(Extreme and mean ratio)。歐基里德對這個比例的說明如下:

-----廣告,請繼續往下閱讀-----

“A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser.”

(一條線段如果切在「極限與均值比例」上,則線段的全長與較長分割段的長度比例,和較長分割段與較短分割段的長度比例相等。)

黃金比例的線段:a + b:a = a:b。圖/wikipedia

大家常常挂在嘴邊的黃金長寬比 1.618 ,就是從上圖的比例計算而來。只要把較短的線段 b 定義成 1 個單位,較長的線段 a 定義成 x 單位,再用一點國中數學上過的一元二次方程式,就能算出解答為 1.6180339887…… 或 0.6180339887…… 這兩個看~~~不到盡頭的無理數,都可被視爲黃金比例之值。就像另一位大名鼎鼎的無理數——圓周率,是以 「π」來表示,黃金比例也有自己的符號,叫做「φ」。「φ」一般念作 “ fai ” ,跟「π」押同韻,但捍衛正統希臘文念法的人可能會堅持念作 “ fee ”。

當初歐基里德只説了這麽多,純粹是為了解釋數學幾何上的意義。但他想也想不到的是,這個「極限與均值比例」,會變成美的代言人,帶給未來人類無限遐想的空間。

數學與人文藝術匯集,文藝復興時期的「神聖比例」

現代人熟知的「黃金比例」一詞,一直到 1830 年代左右才被廣爲流傳。在此之前,它的地位曾被提升到更崇高、神聖的位置。文藝復興時期,被稱為「會計學之父」的數學家兼方濟會修士——盧卡.帕西奧利(Luca Pacioli),出版了名叫《神聖比例》(Divina scalee)的著作。他從歐基里德定義的「極限與均值比例」出發,對正多面體和半正多面體的性質做討論。

1509 年由盧卡·帕西奧利出版的《神聖比例》,書中插圖由達文西繪製。圖/wikimedia

帕西奧利在研究「極限與均值比例」時深受啟發,開始與他熟悉的神學進行連結。他發現這個比例中提到的三個線段(全長、長邊、短邊),都在描述同一條線,像極了基督教的神學觀,既聖父、聖子和聖靈是三位一體。而這個比值之解的無理數,所具備無法窮盡的性質,就如同凡人無法理解全能無限的上帝般,兩個線段之比例是相等的(全:長 = 長:短),則代表神永恆的不變性與無所不在的屬性。

-----廣告,請繼續往下閱讀-----

從數學上看見神學解釋的帕西奧利,遂將「極限與均值比例」改稱為「神聖比例」。他在著作中進一步以「神聖比例」分析古希臘羅馬建築與人體結構的比例。在他看來,被神所創造的人類,其軀幹比例也隱含了「神聖比例」。這些內容更深地加強了「神聖比例」與「美」之間的連接。

此後,「神聖比例」便與「宗教」和「美」脫離不了關係。帕西奧利對純數學理論進行宗教哲學解讀的突破,成功地讓這個神奇的比例跨出數學界的舒適圈,成為數學家、神學家與藝術家之間共同的話題,後來更在討論中逐漸演變成後世蔚為流行的「黃金比例」。帕西奧利可説是打開「黃金比例」知名度,背後不可或缺的功臣。

宇宙誕生以來就存在?藏在大自然中的密碼竟是「黃金數列」

儘管吉薩金字塔和帕特農神殿是否依照黃金比例建造,數學界和藝術界還在爭辯不休,但實際上不需要人爲設計,大自然本身就蘊藏著黃金比例的美麗。以描述「兔子生兔子」問題而聞名的費波那契數列(Fibonacci number),可説是黃金比例的孿生手足。費波那契數列第零項是 0,第一項是 1,從第二項以後的值,就是前兩項加起來的和,所以依序會是:

1、1、2、3、5、8、13、21、34、55、89、144、233……

-----廣告,請繼續往下閱讀-----
用費波那契數為邊的正方形,可以拼凑出的近似的黃金矩形 ( 1 : 1.618 ) !圖/wikimedia

文藝復興後期鼎鼎大名的天文學家克卜勒(Johannes Kepler)發現,把費波那契數列的後一項除以前一項的值的話,會是 1 / 1 = 1, 2 / 1 = 2,3 / 2 = 1.5,5 / 3 = 1.67, 8 / 5 = 1.6, 13 / 8 = 1.625, 21 / 13 = 1.615…… 計算到這裏,你是不是也察覺到其中奧妙?隨著數列遞進繼續相除,這個值竟會越來越趨近於黃金比例!也因此,費波那契數列的別名就叫做「黃金數列」。

大自然中的植物,其實都是深諳造物奧義的數學大師。試著數一數雛菊的花瓣數量,你會發現它們恰好都是 13、21 或 34 的費波那契數。葉子與葉子之間要怎麽喬位子,才不會擋住彼此吸收陽光?玫瑰的花瓣要如何排列,才會顯得漂亮對稱?松果上的種子要怎麽生長,才可以有效利用有限的空間?這些問題的答案通通都是:旋轉角度的比值(以 360° 為分母)要符合黃金比例!

對稱的玫瑰,決定其花瓣位置的角度遵循黃金比例。圖/Pixabay

不只是植物界,無論是鸚鵡螺貝殼的生長、鷹隼迫近獵物的飛行軌線,抑或衛星圖上熱帶氣旋的外觀,就連宇宙中漩渦星系的旋臂,都呈現遵循黃金比例的螺線。從小至可一手掌握的貝殼,大至遙遠光年之外的星系,都藏著黃金比例的身影。大自然對這個奇妙比值的鍾愛,讓科學家着迷不已。

黃金矩形中隱藏的等角螺線。圖/wikimedia

有生命的動植物和無生命的氣旋或星系,都不約而同服膺於一個神奇的比值,展現一種似乎自世界誕生以來就存在,難以撼動、一致而規律的美。同屬於大自然一份子的人類,也不停在各樣的建築或藝術品中追尋,渴望證明黃金比例與美的相關性。然而即使是世人眼中曠世巨作的大衛像,也沒辦法百分百貼近黃金比例,畢竟誤差永遠不能被全面消除,更別忘了有限的我們也無法窮盡無限的 φ 。正因爲黃金比例是一種人類無法徹底掌握的美,才迫使我們得以在追求美的道路上,不停努力地前進,再前進。

-----廣告,請繼續往下閱讀-----

連自然都青睞的「黃金比例」近乎是「美」的同義詞。而我們的身邊,又有什麼東西用到黃金比例呢?

沒錯!就是這台 Creator Z16 筆記型電腦。

採用 16 : 10 螢幕的 Creator Z16 ,比市售的 16 : 9 螢幕多了 11% 的可視空間,創作更加自由寬廣。此外,16 : 10 ( 1.6 )也非常接近黃金比例( 1.618 ),讓你在創作時,感受蘊含萬物奧秘、數學家兩千多年來淬鍊的「美」。

本著以人爲本的設計理念, Creator Z16 的觸控面板讓人可更直覺操作,隨時揮灑靈感。 90 Whr 的大容量電池搭配快充功能和 15.9 mm 纖薄金屬打造的 2.2 kg 機身,可完美配合現代人隨時行動隨地工作的步調。以 True Pixel 顯示技術打造的 QHD+ 超高畫質面板,加上獨家 True Color 技術於出廠前進行色彩校正,可以精準呈現璀璨畫面。

想堅持你對生活的美學,又不想放棄實用主義的追求?小孩子才做選擇,你可以通通都要!就讓融合黃金比例又兼具堅强實力的 Creator Z16,成為你的繆思女神吧!

-----廣告,請繼續往下閱讀-----

現在購買 Creator Z16 加贈價值 2190 元 Microsoft 365 個人版一年期!登記再抽潮到出水的 Porter 托特包,這麼好康還不快點到賣場逛逛

參考文獻

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia