Loading [MathJax]/extensions/tex2jax.js

1

1
2

文字

分享

1
1
2

為什麼A4的紙張邊長比是根號2呢?──《數學好有事》

PanSci_96
・2018/05/10 ・2567字 ・閱讀時間約 5 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

學校教過的數學課程中最讓人印象深刻的,可能是畢氏定理

這個定理是:取一直角三角形,以直角的兩邊(股)為邊長各畫一正方形,則這兩個正方形的面積總和,會等於第三邊(斜邊)畫出的正方形面積。邊長為 a 的正方形,√2面積是 a×a = a²。如果這個直角三角形的邊長為 a、b、c,且 c 是最長邊,那麼畢氏定理得出的結果是:

a²+ b² = c²

從這個漂亮的結果,你可以算出各種東西,包括正方形的對角線長等。正方形的對角線加上兩邊,就構成了直角三角形,如果正方形的邊長為 1,由畢氏定理可知:

-----廣告,請繼續往下閱讀-----

1² + 1² = 2 = d²

這表示對角線的長度 d 等於√2,也就是自乘結果等於 2 的數。

圖/wikipedia

讓人有點尷尬的√2

除非你已經發覺√2有點難定出精確的數值,否則這個數沒什麼大不了的。如果拿 1.5 自乘,會得到 2.25,比 2大很多;改用 1.4,則得到 1.96,又變得太小。(1.41)2 = 1.9881,還是太小,但(1.42)2 = 2.0164 又會超過 2。

看起來無計可施,事實上也的確辦不到。√2是無理數,意思是無法寫出它所有的位數:完整的小數展開式是無窮盡的,而且沒有不斷重複出現的數字模式。

-----廣告,請繼續往下閱讀-----

√2前面 20 位是:

1.4142135623730950488

發現無理數,可能招來殺身之禍

圖/wikipedia

簡單的正方形對角線,無意間產生了一個性質極為有趣的數。但事實上,畢達哥拉斯(Pythagoras)的門徒不太高興。畢達哥拉斯學派是西元前五世紀活躍於克羅頓(Croton,現今的義大利)的祕密幫派,除了奉行素食主義以及不吃豆類之外,他們把求知尊為道德健全生活的基石。數學是畢氏哲學的核心:據說 mathematics(數學,意為「所學習的」)及 philosophy(哲學,意為「愛好智慧」)這兩個詞是畢達哥拉斯所創,據傳,「萬物皆數」是他的座右銘。

問題是,畢氏學派所指的「數」只有整數及整數之比,也就是 ½、¼、¾ 等分數。無理數沒辦法寫成分數;事實上,這正是定義無理數的方式(如果你熟悉長除法,就可以自行驗證,任何一個分數都能表示成有限小數或循環小數)。

-----廣告,請繼續往下閱讀-----
希帕索斯。圖/wikipedia

希帕索斯(Hippasus of Metapontum)發現有些數(譬如√2)可能是無理數,他也是畢氏學派的一員,根據(相當隱晦的)歷史證據顯示,他因此受到嚴厲的懲罰:在海上沉船淹死。應該沒幾個人因為區區一個數而丟了性命吧?

無理但不悖理

證明√2是無理數的標準證法,是數學上經常使用的論證形式的重要範例,也就是歸謬法。要證明某件事(比方說√2是無理數),你必須先做相反的假設(√2可以寫成分數),如果之後推算出矛盾的結果,就能斷定你原先的假設一定是錯的,也就證明你最初的陳述(√2是無理數)必定為真。

這是很自然的推理方法,舉例來說,你假設管家殺了人,但如此一來,管家必須同一時間出現在兩個地方,這顯然說不通,那麼你就能推論原先的假設必定是錯的,而管家是清白的。歸謬法是數學的支柱,但也可能產生令人驚訝的結果。你將在第 3 章看到更多的例子。

希帕索斯的發現只是巨大冰山的一角。隨便取一小段數線,不管多小段,都有無窮多個無理數。那些能寫成分數的有理數,可以依序排列並賦予 1、2、3 等標籤,但無理數實在太多了,根本沒辦法用同樣的方式來區隔。你在數線上隨意一戳,碰到無理數的機率是 1,而碰到有理數的機率是 0。因此就數字而言,畢氏學派完全錯了。

-----廣告,請繼續往下閱讀-----

√2可以是好事

假如畢氏學派知道無理數多麼有用,大概就不會因為有人發現無理數而這麼不高興了。幾乎每天都會用到的例子是紙張。歐洲採用的標準紙張尺寸 A5、A4、A3 等,有個非常棒的特點,就是將兩張同尺寸的紙並排起來,即能拼成大一級的尺寸,譬如兩張A4紙能拼成一張 A3。且小一級紙張寬度(W)的兩倍,等於大一級紙張的長度,而小一級紙張的長度(L)等於大一級紙張的寬度。

A 系列紙張大小。source:Wikipedia

所有尺寸的紙張,長寬比都是一樣的,也就是:

可以改寫成:

意思就是:

-----廣告,請繼續往下閱讀-----

A 系列紙張的正字標記就是每張紙的長寬比均為 √2。

為什麼這很有用?如果你希望影印機能夠把原稿縮小(或放大)一級影印,就需要此系列紙張的各個尺寸有同樣的長寬比。假如長寬比不同,縮小影印後周圍就會多出白邊。兩張同尺寸的A系列紙張可並排成大一級的紙張,代表不管你想把兩張A4還是一張A3縮小一級,都可以採用同樣的縮小倍率。

影印機還會自動計算。如果你要縮小,影印機提供的倍率是 70%,有時候是 71%,把這些數字寫成小數(70 或 71 除以 100),結果是 0.7 及 0.71,兩個數都非常接近:

這個縮小倍率,正是把一張 A3(或兩張 A4)縮小到一張 A4所需要的比例。原紙張的長度 L 與寬度 W 會縮小到 L/√2 及 W/√2,這表示新紙張的面積會變成:

-----廣告,請繼續往下閱讀-----

就是原來的一半,且因長寬比維持不變,所以能把原來的紙張剛好縮小到 A4 的尺寸。

放大影印也是同樣的道理。影印機提供的放大倍率是 140% 或 141%,對應的數字很接近,所以可以把一張A4 放大到 A3 的尺寸。


BOX:證明√2是無理數

假設 √2 = m/n,其中的整數 m 與 n 沒有公因數(除了 1,沒有其他數可同時整除 m 和 n)。

於是:2 = m²/n²,因此:2n² = m²。

-----廣告,請繼續往下閱讀-----

這表示 m2是偶數,m 也是偶數,因為奇數的平方永遠是奇數。所以, m 可以寫成 2k,而 k 是某個正整數。把上式中的 m 換成 2k,就得到:2n2 = m2 = 4k2

除以 2,就是:n2 = 2k2

所以 n2 也是偶數,n 也是偶數,但這產生了矛盾,因為我們一開始假設 m 與 n 沒有公因數。因此,√2不能寫成 m/n,即為無理數。

本文摘自《數學好有事》,麥田出版

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
白馬 ≠ 馬?當陳述句變成數學邏輯等式!——《大話題:邏輯》
大家出版_96
・2023/04/07 ・2243字 ・閱讀時間約 4 分鐘

從簡單陳述句轉變為複合句——「連接詞」

大約一百年後,克律西波斯(c.280 – c.206 BC)改變了邏輯的關注焦點,從簡單的主述詞陳述句轉向「蘇格拉底是人,且芝諾也是人」之類的複合句。

這是很大的進展。當時甚至有人說「克律西波斯的邏輯就是神會用的邏輯」。我們稍後會見到,克律西波斯的邏輯也是人類使用的邏輯,只不過我們還得等兩千年才會明白這一點。

複合句使用的連接詞不同,其真假受個別句子影響的方式也不同。

出現了「且」、「和」等連接詞。圖/大話題:邏輯。

譬如「不是…就是…」這個連接詞組可以這樣用,也只有「不是…就是…」這個連接詞組可以這樣用:

-----廣告,請繼續往下閱讀-----

編按:「不是」穆罕默德到山那邊,「就是」山到穆罕默德這邊。

其後一千五百年甚至更久,克律西波斯沒有對邏輯留下多少影響。不僅因為他的作品失傳了,只留下他人的轉述,也因為亞里斯多德成了天主教會的心頭好。

「不是」;「就是」的應用。圖/大話題:邏輯。

萊布尼茲定律

接下來兩千年,邏輯學家建構出愈來愈多三段論,有些甚至前提不只兩個。這些邏輯學家就像煉金術士,拿著概念拼拼湊湊,想辦法生出有效論證。最後有一個人在這股狂熱當中想出了方法,那人就是萊布尼茲(1646 – 1716)。

萊布尼茲想到的方法是將陳述句看成代數裡的等式。等式使用等號(=)來表達式子兩邊數值相等。

例如:x2 + y2 = z2

萊布尼茲將等號帶進邏輯裡,用來指稱 a 和 b 等同。

-----廣告,請繼續往下閱讀-----
萊布尼茲定律的陳述句。圖/大話題:邏輯。

自此之後,這個等同式就叫做「萊布尼茲定律」。萊布尼茲將 a = b 拆成兩個不可分割的述句「a 是 b」和「b 是 a」,意思是「所有 a 都是 b」和「所有 b 都是 a」。

例如:「所有單身漢都是沒結婚的男人,且所有沒結婚的男人都是單身漢。」

若 a 和 b 等同,那麼陳述句裡的 a 就算換成 b,這個陳述句的真假顯然不會隨之改變。例如,「蘇格拉底是沒結婚的男人,沒結婚的男人是單身漢,因此蘇格拉底是單身漢」。

這個定律很重要,因為有了它,我們就能以有限多的步驟來判斷近乎無限多的句子的真值。萊布尼茲使用的步驟數是四個。

-----廣告,請繼續往下閱讀-----
陳述句中的等同式。圖/大話題:邏輯。

1. a = a

例:「蘇格拉底是蘇格拉底。」

2. 若 a 是 b,且 b 是 c,則 a 是 c

例:「所有人都會死,蘇格拉底是人,所以蘇格拉底會死。」

說「a 是 b」就等於說「所有 a 都是 b」。

3. a =非(非 a)

例:「如果蘇格拉底會死,則蘇格拉底不是不會死的。」

-----廣告,請繼續往下閱讀-----

4. a 是 b = 非 b 是非 a

例:「蘇格拉底是人,意思是如果你不是人,你就不是蘇格拉底。」

利用這四個簡單的法則,萊布尼茲就能證明所有可能出現的三段論。比起亞里斯多德的四角對當,這才是人類史上第一個真正的真理理論,因為它使用事先定下的法則,藉由代換等同的符號(同義詞)來導出結論。

非真即假的歸謬法

萊布尼茲最常用的證明方法是一個極為重要的邏輯工具,深受後世邏輯學家和哲學家喜愛。他稱呼這個方法為歸謬法。

這個工具很簡單,卻好用得驚人,自萊布尼茲發明以來便廣獲使用。我們用一個例子來講最清楚。

-----廣告,請繼續往下閱讀-----
檢驗「打籃球」得陳述句是否為真?圖/大話題:邏輯。

使用歸謬法時,我們先假設要檢驗的那個陳述句為真,再看它能導出哪些結論。如果導出的結論互相矛盾,我們就知道那個陳述句是假的,因為矛盾永遠為假。

歸謬法有一大好處,那就是即使我們不知道如何證明,也能判斷一個陳述句的真假;只要證明這個陳述句的否定會導出矛盾,就知道它是真的了。

歸謬法僅用真假二分,但卻沒有提出證明。圖/大話題:邏輯.

新工具

「我發明的這個工具完全使用理性,是裁決爭議的判官、解釋概念的權威、衡量可能性的天平、指引我們穿越經驗之海的指南針,是萬物的清單、思想的表格、檢視事物的顯微鏡、預測遙遠事物的望遠鏡、通用的演算法、不使詐的魔術、不空妄的計謀,也是人人都能用自己的語言閱讀,所及之處皆會帶來真宗教的經文。」

萊布尼茲致信漢諾威公爵,1679 年

不難想見,天主教會將萊布尼茲視為異端。但「思想有其必然法則」的想法卻對西方哲學家產生了深遠的影響,包括康德、黑格爾、馬克思和羅素。

萊布尼茲的思想影響到後世許多西方哲學家。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

6
2

文字

分享

0
6
2
黃金比例如何啟發世界的「美」!
鳥苷三磷酸 (PanSci Promo)_96
・2021/07/19 ・3828字 ・閱讀時間約 7 分鐘

本文由 微星科技 委託,泛科學企劃執行。

  • 作者 / 曾繁安

人類總會不由自主地被閃閃發光的事物吸引,取名時加上「黃金」二字,好像就能讓身價大漲,變得受歡迎。不管是黃金海岸、黃金地段、黃金右腳、 黃金奇異果,黃金獵犬、黃金脆薯、黃金盔甲、黃金流沙包、黃金開口笑(大誤)……人們用黃金形容所有美好的事物,連「比例」也一樣。「黃金比例」被譽為最美好的比例,你一定聽聞過,如果人的臉蛋身體或畫作構圖越接近黃金比例,就越迷人的説法。然而一個數字比例,怎麼會和美學扯上關係?

人類探究黃金比例的歷史,可追溯至兩千多年前……

古希臘時代大約公元五百多年前,癡迷於數學的畢達哥拉斯,認爲數學可以解釋世上一切事物。他的教學吸引了一群熱心的追隨者,被稱爲畢氏學派。在旁人眼裏,畢氏學派恐怕是一群怪人:恪守極爲嚴格的生活條規,不可吃肉和豆類,還會進行高强度記憶力訓練和三省吾身等等。但畢氏學派對數學幾近狂熱崇拜,尤其對數字 5 和五角星形的迷戀,使他們成爲史上最早接觸黃金比例分割的一群人。將構成五角星形的線段分割,由短至長排列,把最短的兩條線段相加,恰恰等於第三條線段長;把第二短和第三短的線段相加,也會等於第四條線段,依序如是,顯示出黃金比例的奇妙!不過,他們並沒有進一步為這個神奇的發現加以解釋、定義和命名。

一直到公元前三百年,歐基里德所著的《幾何原本》問世,才有了對黃金比例最早的系統性論述。但你知道嗎?歐基里德也根本沒說過「黃金比例」一詞。後世所謂的「黃金比例」,其實是出現在《幾何原本》第四章的「極限與均值比例」(Extreme and mean ratio)。歐基里德對這個比例的說明如下:

-----廣告,請繼續往下閱讀-----

“A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser.”

(一條線段如果切在「極限與均值比例」上,則線段的全長與較長分割段的長度比例,和較長分割段與較短分割段的長度比例相等。)

黃金比例的線段:a + b:a = a:b。圖/wikipedia

大家常常挂在嘴邊的黃金長寬比 1.618 ,就是從上圖的比例計算而來。只要把較短的線段 b 定義成 1 個單位,較長的線段 a 定義成 x 單位,再用一點國中數學上過的一元二次方程式,就能算出解答為 1.6180339887…… 或 0.6180339887…… 這兩個看~~~不到盡頭的無理數,都可被視爲黃金比例之值。就像另一位大名鼎鼎的無理數——圓周率,是以 「π」來表示,黃金比例也有自己的符號,叫做「φ」。「φ」一般念作 “ fai ” ,跟「π」押同韻,但捍衛正統希臘文念法的人可能會堅持念作 “ fee ”。

當初歐基里德只説了這麽多,純粹是為了解釋數學幾何上的意義。但他想也想不到的是,這個「極限與均值比例」,會變成美的代言人,帶給未來人類無限遐想的空間。

數學與人文藝術匯集,文藝復興時期的「神聖比例」

現代人熟知的「黃金比例」一詞,一直到 1830 年代左右才被廣爲流傳。在此之前,它的地位曾被提升到更崇高、神聖的位置。文藝復興時期,被稱為「會計學之父」的數學家兼方濟會修士——盧卡.帕西奧利(Luca Pacioli),出版了名叫《神聖比例》(Divina scalee)的著作。他從歐基里德定義的「極限與均值比例」出發,對正多面體和半正多面體的性質做討論。

1509 年由盧卡·帕西奧利出版的《神聖比例》,書中插圖由達文西繪製。圖/wikimedia

帕西奧利在研究「極限與均值比例」時深受啟發,開始與他熟悉的神學進行連結。他發現這個比例中提到的三個線段(全長、長邊、短邊),都在描述同一條線,像極了基督教的神學觀,既聖父、聖子和聖靈是三位一體。而這個比值之解的無理數,所具備無法窮盡的性質,就如同凡人無法理解全能無限的上帝般,兩個線段之比例是相等的(全:長 = 長:短),則代表神永恆的不變性與無所不在的屬性。

-----廣告,請繼續往下閱讀-----

從數學上看見神學解釋的帕西奧利,遂將「極限與均值比例」改稱為「神聖比例」。他在著作中進一步以「神聖比例」分析古希臘羅馬建築與人體結構的比例。在他看來,被神所創造的人類,其軀幹比例也隱含了「神聖比例」。這些內容更深地加強了「神聖比例」與「美」之間的連接。

此後,「神聖比例」便與「宗教」和「美」脫離不了關係。帕西奧利對純數學理論進行宗教哲學解讀的突破,成功地讓這個神奇的比例跨出數學界的舒適圈,成為數學家、神學家與藝術家之間共同的話題,後來更在討論中逐漸演變成後世蔚為流行的「黃金比例」。帕西奧利可説是打開「黃金比例」知名度,背後不可或缺的功臣。

宇宙誕生以來就存在?藏在大自然中的密碼竟是「黃金數列」

儘管吉薩金字塔和帕特農神殿是否依照黃金比例建造,數學界和藝術界還在爭辯不休,但實際上不需要人爲設計,大自然本身就蘊藏著黃金比例的美麗。以描述「兔子生兔子」問題而聞名的費波那契數列(Fibonacci number),可説是黃金比例的孿生手足。費波那契數列第零項是 0,第一項是 1,從第二項以後的值,就是前兩項加起來的和,所以依序會是:

1、1、2、3、5、8、13、21、34、55、89、144、233……

-----廣告,請繼續往下閱讀-----
用費波那契數為邊的正方形,可以拼凑出的近似的黃金矩形 ( 1 : 1.618 ) !圖/wikimedia

文藝復興後期鼎鼎大名的天文學家克卜勒(Johannes Kepler)發現,把費波那契數列的後一項除以前一項的值的話,會是 1 / 1 = 1, 2 / 1 = 2,3 / 2 = 1.5,5 / 3 = 1.67, 8 / 5 = 1.6, 13 / 8 = 1.625, 21 / 13 = 1.615…… 計算到這裏,你是不是也察覺到其中奧妙?隨著數列遞進繼續相除,這個值竟會越來越趨近於黃金比例!也因此,費波那契數列的別名就叫做「黃金數列」。

大自然中的植物,其實都是深諳造物奧義的數學大師。試著數一數雛菊的花瓣數量,你會發現它們恰好都是 13、21 或 34 的費波那契數。葉子與葉子之間要怎麽喬位子,才不會擋住彼此吸收陽光?玫瑰的花瓣要如何排列,才會顯得漂亮對稱?松果上的種子要怎麽生長,才可以有效利用有限的空間?這些問題的答案通通都是:旋轉角度的比值(以 360° 為分母)要符合黃金比例!

對稱的玫瑰,決定其花瓣位置的角度遵循黃金比例。圖/Pixabay

不只是植物界,無論是鸚鵡螺貝殼的生長、鷹隼迫近獵物的飛行軌線,抑或衛星圖上熱帶氣旋的外觀,就連宇宙中漩渦星系的旋臂,都呈現遵循黃金比例的螺線。從小至可一手掌握的貝殼,大至遙遠光年之外的星系,都藏著黃金比例的身影。大自然對這個奇妙比值的鍾愛,讓科學家着迷不已。

黃金矩形中隱藏的等角螺線。圖/wikimedia

有生命的動植物和無生命的氣旋或星系,都不約而同服膺於一個神奇的比值,展現一種似乎自世界誕生以來就存在,難以撼動、一致而規律的美。同屬於大自然一份子的人類,也不停在各樣的建築或藝術品中追尋,渴望證明黃金比例與美的相關性。然而即使是世人眼中曠世巨作的大衛像,也沒辦法百分百貼近黃金比例,畢竟誤差永遠不能被全面消除,更別忘了有限的我們也無法窮盡無限的 φ 。正因爲黃金比例是一種人類無法徹底掌握的美,才迫使我們得以在追求美的道路上,不停努力地前進,再前進。

-----廣告,請繼續往下閱讀-----

連自然都青睞的「黃金比例」近乎是「美」的同義詞。而我們的身邊,又有什麼東西用到黃金比例呢?

沒錯!就是這台 Creator Z16 筆記型電腦。

採用 16 : 10 螢幕的 Creator Z16 ,比市售的 16 : 9 螢幕多了 11% 的可視空間,創作更加自由寬廣。此外,16 : 10 ( 1.6 )也非常接近黃金比例( 1.618 ),讓你在創作時,感受蘊含萬物奧秘、數學家兩千多年來淬鍊的「美」。

本著以人爲本的設計理念, Creator Z16 的觸控面板讓人可更直覺操作,隨時揮灑靈感。 90 Whr 的大容量電池搭配快充功能和 15.9 mm 纖薄金屬打造的 2.2 kg 機身,可完美配合現代人隨時行動隨地工作的步調。以 True Pixel 顯示技術打造的 QHD+ 超高畫質面板,加上獨家 True Color 技術於出廠前進行色彩校正,可以精準呈現璀璨畫面。

想堅持你對生活的美學,又不想放棄實用主義的追求?小孩子才做選擇,你可以通通都要!就讓融合黃金比例又兼具堅强實力的 Creator Z16,成為你的繆思女神吧!

-----廣告,請繼續往下閱讀-----

現在購買 Creator Z16 加贈價值 2190 元 Microsoft 365 個人版一年期!登記再抽潮到出水的 Porter 托特包,這麼好康還不快點到賣場逛逛

參考文獻

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
226 篇文章 ・ 314 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia