1

19
2

文字

分享

1
19
2

用烏賊與科普的魅力,讓教室爆滿——專訪清華大學生命科學系焦傳金教授

科技大觀園_96
・2021/06/09 ・3919字 ・閱讀時間約 8 分鐘

實驗進行中,一隻烏賊被放入透明的水族箱,其中一側被隔出了左右兩個小隔間,分別放有一隻與兩隻蝦。水族箱中烏賊看清了兩邊的活蝦後,可以自由選擇游進哪一個隔間,伸出腕足捕捉可口的食物。在烏賊游進其中一個隔間後,另一邊就會被關閉,因此每次都只能選一邊。

問題來啦,一隻蝦 v.s. 兩隻蝦,換做你是烏賊,會如何做決定呢?

究竟烏賊是否有判斷出 2>1 的能力呢?圖/科技大觀園繪製

這是清華大學生命科學系特聘教授焦傳金在去 (2020) 年所發表的研究成果,證實了烏賊具有「相對價值感」的概念。做為海產店、夜市小吃的盤中常客(而且還很好吃),烏賊也懂得數數,擁有「數感」,能夠分辨得出 2 比 1 來得多,一般情況下當然是選兩隻蝦啦。但經過特別訓練的烏賊,能夠「記得」一隻蝦可以代表不只一隻蝦,因此在後續實驗中,產生了烏賊覓食偏好一隻蝦,勝過了兩隻蝦的結果。

解密烏賊的決策邏輯

「實驗室的每個人,都有 T 恤上面是有墨汁的。」

談起飼養繁瑣,需要海水又每天都需要活餌,還三不五時受驚噴墨,養殖難度可說鑲金邊等級的烏賊,舉手投足間標準學者氣質,一派溫文儒雅的焦傳金,迸發出強大的熱切。他分享自己的觀察,大眾對於烏賊、章魚這類頭族類動物往往充滿好奇,也常常被用在塑造外星人、異形的形象。除此之外,在冰冷理性的實驗室,學生焦慮煩悶時也常去到「花枝房」,觀看水族箱中優游、表皮花紋瞬間變換的烏賊,療癒抒解心情。

烏賊又名花枝、墨魚,屬於頭足類軟體動物。多數人最熟悉的頭足類動物,除了餐桌上好吃的海鮮,最有名的大約就是德國奧伯豪森(Oberhausen)水族館的「章魚保羅」了。2010 年的世界盃足球賽,章魚保羅連續「成功預測」了賽事的勝利隊伍,引起了許多注目風靡。而焦傳金開始烏賊研究的起點,其實就是源自於大家的這個好奇:無脊椎動物到底能有多聰明?牠們的「聰明」擁有跟人類做決定一樣的邏輯特色嗎?

烏賊又名花枝、墨魚,屬於頭足綱軟體動物。圖/Pixabay

焦傳金在 2016 年的研究發表就揭露了烏賊具有「數感」,覓食找東西吃的時候,明顯看得出來烏賊會選擇數量較大的那一邊。而更有趣的是在後續實驗中,團隊讓烏賊從兩隻小蝦與一隻大蝦裡做選擇。最後實驗發現,烏賊的選擇,會跟當下的飢餓程度有很強的關聯。烏賊如果處於比較飢餓的狀態,就會鋌而走險選擇一隻大蝦,以獲得高風險高報酬;沒那麼餓的時候,則會選擇兩隻小蝦,穩健獲利。可以說,這樣的選擇邏輯,即使是人類,也無法做得更好了。

而在相對價值感的實驗中,團隊先以 0 對 1 訓練烏賊,在烏賊選擇 1 隻蝦那格的時候,當場會再額外多提供一隻活蝦,經過六次訓練,再以 1 對 2 測試烏賊會如何選擇。沒有經過訓練的烏賊主要偏好數量較多──也就是兩隻蝦那格;但曾經受訓記得「1 隻蝦不只是 1 隻」的烏賊,則對於一隻蝦那格展現了明顯的偏好,而這樣的覓食習慣改變,在經過一個小時後進行的實驗中顯示,仍然保留了下來。

什麼是「相對價值感」?焦傳金舉例:「一瓶礦泉水,如果是在沙漠中走了三天了,第一次遇到一罐礦泉水,那價值就會非常的高。」同樣的物質,在不同情境中的價值會改變,這樣的相對價值感在人類的決策中,佔有很重要的比例。而焦傳金的研究更證實了,在動物──甚至是無脊椎動物的行為中,也存在著相對價值的概念。

神經科學的聖杯:大腦

像這樣的研究,其實也是科學家認識神經系統、大腦運作的起點。

談及神經科學研究最終的「聖杯」人類的大腦,焦傳金眼神發亮。焦傳金做為神經科學家,研究主題無論是烏賊的價值判斷、軟絲的視覺溝通密碼,抑或視神經科學的研究,都圍繞著神經科學的核心探索:大腦是如何運作的?

「所有東西以物質論來說,都是一樣的,但為什麼生物、動物會這麼不一樣?」焦傳金一句話道出了生命世界最大的謎團,也是最引人入勝之處。

動物的大腦究竟是怎麼運作的?圖/科技大觀園繪製

討論到以章魚做實驗的可能性,焦傳金興致勃勃,表示如果有機會,會希望探索神經系統發達的章魚是否真的具有「意識」。他也說明,相較於底棲性、身體內有硬質骨板的烏賊,章魚的活動範圍更加廣泛,實驗錄影紀錄較為困難,而且章魚僅有口器「牙齒」的部分有硬質結構,全身皆為肌肉,逃脫能力極為高強。

像章魚、烏賊這類頭足類動物,為什麼會發展出如此複雜的神經系統?一般認為,動物會演化出複雜的神經系統,可能與社會行為有關,無論是爾虞我詐的社會關係、各種合縱連橫、選擇策略獲得優勢,都需要複雜的決策能力。但除了軟絲有社會性,會藉由改變表皮花紋顏色彼此溝通;同樣屬於頭足類的烏賊與章魚都屬於獨居的動物,只有在繁殖期會與同族有交流。

較常見的推測認為,相較於其他有殼的軟體動物,頭足類沒有外殼保護,身體充滿蛋白質非常「好吃」,生存演化出現的生存之道,就是發展出複雜的行為策略,包括偽裝、噴墨、噴射推進,以避免被捕食,而複雜的神經系統,也是由此而來。焦傳金也特別說明,這個問題在科學上很難驗證,很可能最終都不會出現標準答案。

但焦傳金認為,科學的趣味與意義,就隱藏在這個試圖解答疑問的過程中。

對於大自然與科學的探索,多數的基礎研究起初獲得解答的時候,也都不具應用性,更像是一種心靈層面的滿足感:「做基礎科學,是一種探索真理的過程。你有一個問題,這個問題可以做實驗來回答,那晚上就可以安心睡覺。」

如何將科學帶給一般大眾

對焦傳金而言,這樣的滿足感,不應該侷限於科學家、研究者,更應該有機會讓所有的人都有機會一睹為快。焦傳金表示,當然不需要每個人都很懂科學,但提升國民素養,科普就是最好的方式。此外,科學家如果只專注自己的領域中,就只能影響同領域的同行。但科普將資訊分享給一般的社會大眾,成功的話可以影響的範圍就會很大,是很愉快的事情。

清華大學的「當代認知神經科學:腦與心智」,焦傳金透過淺顯易懂的比喻與連結,成為清大最受歡迎的通識課程。焦傳金分享,從事科普最大難處在於,要做到淺顯易懂卻又引人入勝。而其中最需要的,就是需要豐富的想像力,找到適合的語言,將艱深的科學發現轉換成大家可以聽得懂的比喻,使用日常生活的連結、慣用的用字用詞,讓聽眾接收並且理解。科普成功與否的關鍵之一,在於需要「有趣好玩」,因為通常科學內容並非對於大眾直接「有用」的,所以需要加入可以引發大家的興趣的元素。而最大的難處還在於,知識含量「含金度」高的時候,通常就不容易理解、也不容易產生趣味。該如何讓知識含量不減,又增加趣味,箇中取捨就像場拔河。

此外,「熱情」也是進行科普活動需要加入的元素。焦傳金解釋,透過鏡像神經元的作用,情緒會互相感染,如果講者選擇自己喜歡的題目講得很嗨,就可以吸引別人的注意力。一定要說服自己,是真的喜歡才去講,懷著溫度,就可以影響他人。

多接觸海洋,就是關懷海洋議題的起點

說到以科普影響他人,近年來海洋議題越來越受到關注,焦傳金也在課程中讓學生實際計算「海洋酸化」(Ocean acidification)的案例,探討海洋議題。

他說明,近年來大家越來越重視溫室氣體排放造成的全球暖化議題,也開始瞭解到升溫攝氏 1 到 2 度對於世界的影響極為巨大,但另一個同步發生卻容易遭忽視的主題,則是二氧化碳溶入造成的海洋酸化。在過去 200 年間,海洋的 pH 值降低了 0.1 到 0.2,數字上看來變化不大,但實際上,pH 值代表著氫離子濃度的對數關係,實際上如果 pH 值由 8.1 降到 8,在氫離子濃度上就有了超過 25%的改變,勢必會影響許多海洋生物像是珊瑚、貝類的鈣化作用,現在已經出現生物外殼骨架脆化與變薄的情況,對許多生物的生存造成很大的影響。

除此之外,塑膠微粒也是較受忽視的海洋議題。隨著大眾開始關注海洋廢棄物,近年來有越來越多研究顯示,塑膠材料進到海洋中後,經沖刷撞擊成為微粒,會由海洋循環進入大氣、進到循環中再被帶到陸地。如美國的國家公園自然野地中,已經有許多地方,可以找到這些塑膠微粒,塑膠微粒勢必將由冷門的海洋議題,逐漸進到我們的視野中。

談及海洋議題,當然也不能不聊聊,近期在臺灣引發諸多論戰的大潭藻礁保護與天然氣第三接受站的爭議。焦傳金畢業自中山大學海洋生物科技暨資源學系,由海洋研究的相關背景,他表示自己自然比較傾向讓藻礁能受保護,但也主張世事並無絕對,保育也不應只能與臺灣的用電需求、經濟發展硬碰硬二者不相容。臺灣該如何由其中走出平衡之路,將有賴於全體齊心協力的智慧。

藻礁保育成為近日大眾熱烈討論的議題之一。圖/pixabay

對於藻礁議題讓台灣輿論充滿紛擾,焦傳金態度樂觀:「大家總算知道什麼是藻礁了,從海洋教育的角度來講,如果因此而更認識海洋環境、關心海洋環境,引發大家對這件事情的關注,還是有正面意義的。」台灣四面環海,但受限於過去的管制因素,大家對於海洋是較為陌生的。他也期待,有越來越多人投入海洋的活動,增加與海洋的接觸,發揮台灣作為海洋國家的優勢。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 1
科技大觀園_96
82 篇文章 ・ 1092 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


2

2
4

文字

分享

2
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook