0

0
0

文字

分享

0
0
0

地球的氣息從哪裡吹來?在《超凡地球》上,生命與非生命的絕妙互動

PanSci_96
・2018/04/24 ・2045字 ・閱讀時間約 4 分鐘 ・SR值 502 ・六年級

本文由 國家地理 合作企劃,泛科學共同執行

  • 文/陳柏成,持續在自然科學領域探索的研究生。

仰望宇宙在千萬數不盡的星星之中,地球的存在非常獨特。其中最重要的,在於它孕育了千千萬萬的生命。

在茫茫宇宙之中,地球十分獨特。圖/國家地理提供

如果有幸能從太空看見這顆美麗的藍色星球,你會發現到,支持生命的大氣,在整顆星球比例上,還不及蘋果皮厚度的薄薄一層。大氣中有近五分之一的成分為氧氣,眾生仰賴呼吸,而這在其他星球上還不曾被發現過。地球上存在了怎樣的魔力,讓這顆星球上的氣息如此與眾不同?大氣層又如何受到其間孕育的生命所影響、改變?

亞馬遜雨林的樹木供應了很多氧氣?事情沒有那麼簡單

有「地球之肺」美名的亞馬遜雨林,便是塑造大氣成分功不可沒的一個重要角色。

有趣的是,亞馬遜雨林之所以重要,並非在於眾多的樹木行光合作用,為整個世界提供了足夠的氧氣;因為當雨林提供氧氣之時,整個雨林系統同時也消耗了氧氣,因此並不會有足夠多餘的氧供給到整個地球1 2

廣大生命世界賴以生存的氧氣,是怎麼來的?圖/國家地理提供

那麼亞馬遜雨林還有什麼方式,可以幫助地球帶來氧氣?關鍵便在於其大量蒸散釋放的水氣。

雨林的植物們透過蒸散作用,將大量的水氣逸散至空中,會使雨林上空形成一片廣大的流動「雲河」;當這些流動的雲河撞擊安地斯山脈後,受地形作用抬升凝結成雨滴,迅速留下山坡後回到亞馬遜盆地。而在這移動的過程中,藉由侵蝕岩石,將其化為沉積物後沖入海洋,成為海中矽藻(Diatom)的最佳養分(包含氮、鋅、磷、二氧化矽等來源)。

亞馬遜雨林一景。豐富的生態,孕育了形形色色的物種。 圖/wikipedia

所以矽藻,才是主要供給地球氧氣的角色之一3 !矽藻為地球貢獻了約 20-40% 氧氣。

從這樣的例子,我們便可以發現在地球上,看似不相干的生態系統之間,其實往往存在比我們想像更深的關聯。

在地球上,看似毫不相關的系統也充滿了關聯。圖/國家地理提供

對地球生態敲~重要的矽藻,還有哪些任務呢?

值得一提的是,矽藻對於地球整體生態的穩定來說,佔有十分重要的地位;一來在於地球上有超過 20% 的二氧化碳固定是由矽藻提供4 5,同時它也供給了超過 40% 的海洋初級生產力6 。沒有了矽藻,那麼我們的地球就會如同褪色的衣裳,不再亮麗。

矽藻存有多種不同的樣貌。 圖/wikipedia

要知道,矽藻普遍存在於各海域之中。那麼那些存活在遠離熱帶雨林地區水域的矽藻,還可以從哪裡獲得養分?其中一個例子便是來自於冰河的崩解。每當冰河崩解一次,就會有數千噸的冰掉進水裡,其中冰河沿途攜帶的那些岩石碎屑,就是矽藻最棒的食物來源。

當矽藻獲得的養分耗盡之後,假若沒有持續穩定的供給,矽藻便會漸漸凋零死亡,並堆積在海底。經過數百萬年後,海床上升、海平面下降,原本的海底就會變成一片富含鹽的沙漠。而當風將這些富含矽藻殼的塵土吹到雨林,便又成為了促進雨林生長的養分。事實上,現生亞馬遜雨林重要的養分來源之一,就是來自非洲沙漠的塵土。

冰河崩解掉落水裡,裡頭所攜帶的岩石碎屑,成為了矽藻最棒的一餐。 圖/wikipedia

由雨林到海洋矽藻,再由矽藻到大氣中的氧氣。讓我們看到了地球上的生命與環境間的互動是如此的息息相關。

獨一無二的地球,生命與非生命的互動

當我們仔細探索地球,就會發覺地球上的每一個生命的存在都必須藉由彼此,才能共存於這片土地之上。在這宇宙之中,也唯有地球,是目前科學家發現存有如此多樣生命的地方;因為這裡富含氧氣、水分,具備了各式生物所需的必要元素。再加上生命之間、與環境間細緻而多樣的互動,才得以孕育出這個,充滿變換、令人震撼的世界。

快來和我們一起探索這個美麗的地球吧!圖/國家地理提供

編按:希望繼續了解地球生命與非生命的超凡互動嗎?國家地理雜誌 2018 年最新節目《超凡地球》邀你一同繼續探索共屬我們的這顆,美麗的星球。

參考資料:

  1. National Geographic.(2018). World’s ‘largest river’ is actually in the sky – as biggest myth about Amazon Rainforest dispelled in new documentary. Mirror
  2. Geraldo Lino.(1993). Myths surrounding the Amazon region. Executive Intelligence Review
  3. Andrew Alverson.(2014). The Air You’re Breathing? A Diatom Made That. Live Science
  4. Falkowski, P. G., Barber, R. T., and Smetacek, V. V. (1998) Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 281, 200-207
  5. Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237-240
  6. Sarthou, G., Timmermans, K., Blain, S., and Treguer, P. (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53, 25-42

文章難易度
PanSci_96
955 篇文章 ・ 242 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
955 篇文章 ・ 242 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策