Loading [MathJax]/extensions/MathZoom.js

0

2
0

文字

分享

0
2
0

《柯南 通往天國的倒數計時》——2018數感盃 / 高中組專題報導類佳作

數感實驗室_96
・2018/04/12 ・1526字 ・閱讀時間約 3 分鐘 ・SR值 577 ・九年級

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2018數感盃青少年寫作競賽 / 高中組專題報導類佳作 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

source:imdb
  • 作者:許聖玟/永春高中

日本人氣漫畫名偵探柯南是一部紅了 20 年的經典,陪伴許多人長大,從 1997 年第一部劇場版《引爆摩天樓》推出後造成轟動,之後柯南每年會固定推出一部電影。推理解謎一直是柯南的重要元素,且隨著科技的進步,電影中的聲光效果也越來越厲害,更多了緊張刺激的動作場面。隨著時代的潮流不斷進步,成為不朽之作。

在柯南電影系列中,有一部「通往天國的倒數計時 」,其中出場人物包含柯南,約重 18 公斤;小哀,約重 18 公斤;步美,約重 16 公斤;光彥,約重 20 公斤;元太,約重 40 公斤。了解這些角色體重訊息後,接下來我們就可以來看看其中一段特殊的情節設計。

電影裡,典禮會場上短時間的黑暗之後,又有另一人被殺害。現場也和第一次一樣,留下了一個小酒杯。非常明顯的,這兩次的兇手必定為同一個人。壞人琴酒利用警察與毛利小五郎正在調查案件的混亂之際,引爆了藏在大樓內的炸藥,銷毀組織一切不可告人的情報,同時把在樓頂的柯南偵探團困在裡面,使他們陷入了危險。在這麼危急的時候,柯南等人卻利用飛車逃離了這危險的大樓,到了另一座大樓!

我們來看一下他們是怎麼逃出去的。

-----廣告,請繼續往下閱讀-----

這兩座大樓的水平距離大概是 50 米,大樓間的高度差約 20 米,所以說,如果車子真的要飛過去的話,距離就會變成拋物線,這樣的距離會變成 60 米長。地球上的物體雖然在水平方向運動的時候能夠以等速度前進,可是當物體正在下墜時會因位重力的關係,以等比的加速下墜。下面是電影中小哀的分析過程: t=√ˉˉˉ2×20÷9.80665=2.02s≈2s 也就是説,從 20 米高處下墜只需 2 秒。 2s->60m=1s->30m,其中30m/s=108km/h,但經過柯南分析了場地以及車子的問題後,推論他們的時速最高只能衝到 60km/h 。

基本上柯南他們是沒有機會的!但處在準備爆炸的大樓裡,這樣的情況值得他們賭一把!

柯南估計宴會場距離能讓車加速到 60km/hr加上爆炸的推力,時速應該能夠到108/hr以上。其實這句話有非常大的問題了,以多少人在車上能加速到60km/hr?現在是五個小孩,如果他們全部都要上車,那乘客總重約 120kg了,那麼這樣還能如期在相同距離內加速到 60km/hr嗎?現在多出了 120kg,那麼車子的速度應該會更慢。60km加爆炸風根本是在賭博,因為實際上是多少柯南它自己應該也無法保證,除非它知道是怎麼樣的炸彈,以及炸彈放置的地點推論,但電影中並沒有提到這樣的資訊。

接下來就看一下我的算法吧!

-----廣告,請繼續往下閱讀-----

我先假設它是一台跑車大約 1600kg,那麼總重就大約是是 1600kg+120kg,接著代入 F=ma 的公式中裡面,假設真的像柯南估計的一樣在宴會場跑完是60km/hr,那爆炸帶給車的推力必須讓車能夠加速到108kg/hr,其中加速度 a=108-60=48,F=(1600kg+120kg)*13m/s=22360N,所以爆炸產生的推力須達22360N。假設在完美狀況下,其他阻力都都不考慮,而 F>22360N,那就應該可以飛得過去!相對的,如果說爆炸給的推力 F<22360N,那我們就沒有柯南可以看了。

在未來,假使我們能夠將車子改良,使車子在更短時間與更短距離內加速,並且到達一定的水準,那麼現實中發生類似情況時,人們就不用冒著風險去賭一把了。

或者說,假使運氣好,炸彈是空用炸彈的話,也能幫助我們逃出生天。因為空用炸彈的爆炸威力是足以到達 30000N 以上,反推回去的話,即使車子只加速到50km/hr,也能安全過關!

更多2018數感盃青少年寫作競賽內容,歡迎參考 2018數感盃特輯、數感實驗室官網粉絲頁喔。

-----廣告,請繼續往下閱讀-----
文章難易度
數感實驗室_96
76 篇文章 ・ 51 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
《〈柯南 零的執行人〉足球真能解決任何事?》——2019數感盃 / 國中組專題報導類佳作
數感實驗室_96
・2019/05/15 ・2474字 ・閱讀時間約 5 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2019數感盃青少年寫作競賽 / 國中組專題報導類佳作 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 作者:鍾依庭/台北市立明倫高中

一、研究動機

去年紅遍全台的柯南電影——零的執行人,不但壓倒性強勢攻上日本全國票房榜首,創下觀影人數達1,289,000人,票房突破16.7億円(約新台幣4.67億元),創下系列作品首週票房最高紀錄!我們就來一探柯南拯救世界背後的數字究竟隱藏了多驚人的秘密吧!

二、前情提要

一開始,無人探測機-天鵝號,結束火星上採樣本的任務,即將返回地球,透過遠端操控程式修正衛星軌道,讓其脫離等速率圓周運動的軌跡,使其墜落地球,且墜落過程中,探測機本體會在大氣層中燃燒,僅讓直徑約4m的太空艙重返大氣層,之後本體的隔熱罩分離,降落傘會展開,預定將在日本近海的的太平洋上降落。

殊不知,兇嫌利用網路技術,駭入遠端操控無人機的程式,更改其墜落軌道,企圖讓太空艙墜落於警視廳。警方為了避免傷亡,將居民疏散並暫時安置在新興建造,位於東京填海地區的博弈塔中。另一方面,為了防止無人機墜落於警視廳,柯南與公安警察安適透利用阿笠博士發明的遙控型無人機,承載炸藥,飛向墜落中太空艙,於離地30000m的高空將炸藥引爆,藉由爆炸的能量改變無人探測機落下的軌道,希望讓其落入太平洋上,沒想到改變軌道後的太空艙,居然不偏不倚的朝向充滿避難居民的博弈塔方向飛去 !

此時,柯南乘坐安室的車,為了再次解決危機,朝向博弈塔的方向駛去,並開上了一棟20層樓高的興建中大樓,從頂樓以180km/hr的速度衝向空中,接著就是大家熟悉的場景,柯南利用一記射門,將足球踢向墜落中的太空艙,並成功讓其些微偏移原本的軌道,只有擦撞到博弈塔邊緣,對整體結構沒有很大的影響,成功化解了危機。

-----廣告,請繼續往下閱讀-----

接著,就來探討這令人吸睛的過程,究竟有無可能發生?

三、禍從天降

根據每日頭條報導,以色列一無人太空飛行器高1.5米,直徑2米,重600公斤,若將所有太空艙視為一圓柱體且密度皆相同,接著由圓柱體積公式及密度公式 :

將無人探測機從宇宙失重落下的位置視為警視廳的正上方,離地30km處(也就是引爆炸藥的高度)的順時速度為10km/s,不計空氣阻力,重力加速度為10m/,炸藥爆炸時會改變太空艙墜落的方向。

-----廣告,請繼續往下閱讀-----

將炸藥產生的能量視為水平衝擊,不影響鉛質落下的速度,爆炸釋放的能量會使太空艙進行水平拋射運動。接著由下圖可知,警視廳本部到博弈塔(東京填海地區)的直線距離為11.63km(約12km)。

google地圖與東京都港灣局公布的填海地區域圖之疊圖

三、禍不單行

爆炸後太空艙會因為炸藥衝擊而得到一水平方向的力,也就是說爆炸造成的平拋運動,不影響鉛質速度,爆炸前後落地時間不會改變。已知改變軌道的太空艙會撞上博弈塔,又太空艙在爆炸後第3秒末時(落地瞬間),要擊中相距警視廳(原落下位置))12km處的博弈塔,可以推算出爆炸後太空艙的水平速度為(km/s)。

太空艙落下過程示意圖(圖源 : 自己)

-----廣告,請繼續往下閱讀-----

安室與柯南將車駛至高20層樓的廢棄大樓,高度約為3*20=60(m),柯南由離地60m高處將足球踢向墜落中的太空艙,假設柯南踢球的力道為鉛直向上,一顆普通足球的平均重量為440g,使球做一鉛直上拋運動,且足球與太空艙碰撞時,要讓太空艙產生1m的軌道偏離,也就是說球向上的鉛直速度要大到足夠讓太空艙鉛直下降的速度降低,使其落地的距離延後1m。若柯南所踢的足球接觸到太空艙的瞬間為落地前一秒,碰撞前,太空艙最後一秒的水平位移原為4km=4000m,碰撞後,要延後1m落地,也就是說,最後一秒內要行走的距離變成4000+1m。

利用動量守恆公式,可得4000 2400+0.44v=(2400+0.44) 4001,v = 9455.55m/s。

如果想讓太空艙偏離原本落下的軌道,柯南至少要讓一顆440g的足球產生將近10000m/s。那麼究竟需要多大的力道才能讓球產生比音速還快的速度呢?這個速度就連M16突擊步槍(子彈射出的速度為1450m/s)也無法超越。

假設柯南踢球時,腳與球的接觸時間為0.1s,接著可以利用衝量公式

-----廣告,請繼續往下閱讀-----

當柯南對足球的鉛直施力大於41604.42N時才能讓太空艙產生1m的偏移,反之,若施以小於41604.42N的力,墜落太空艙就會擊中博弈塔,這樣是無法拯救在塔中避難的居民(還有小蘭)。

上述討論情形還是在沒有空氣阻力的理想情況下,若討論空氣阻力,也就是現實的情況之下,需要施比41604.42N更大的力,才有可能讓太空艙產生些許的軌道偏移。

五、大危機背後的數字

那麼,41604.42N的力量又有多大呢?如果對牛頓這個單位沒有概念的話,可以用1kgw=10N來換算,大約是4160.442kgw的重量,就連武林中的風雲人物李小龍,一也只能踢出700kgw的力量,再者以一個小學生的外表與肌肉量,想踢出超過4160kgw的力道,根本違反了人體工學,想做到幾乎不可能,但從成功的結果來看,應該要將一切歸功青山岡昌老師(名偵探柯南的作者)過人的想像力。

六、有朝一日

或許在未來科技的進步之下,宇宙並非遙不可及,但探索其奧秘的同時,勢必會有些負面的影響,例如大量的探測機要從宇宙帶回遙遠星球甚至星系的樣本,又或是突然有巨大太空垃圾撞擊地球時,一定會對地球造成傷害,但若科學家們能製做一台機器,讓某物體(例如足球)在極短的時間內獲得極大的加速度,藉此改變其落下的軌道,將能減少對地球的傷害。

-----廣告,請繼續往下閱讀-----

更多2019數感盃青少年寫作競賽內容,歡迎參考 2019數感盃特輯、數感實驗室官網粉絲頁喔。

參考資料

-----廣告,請繼續往下閱讀-----
數感實驗室_96
76 篇文章 ・ 51 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

2
2

文字

分享

0
2
2
你聽得見「蚊音」嗎? 少年偵探入團大考驗!
雅文兒童聽語文教基金會_96
・2018/10/08 ・7103字 ・閱讀時間約 14 分鐘 ・SR值 536 ・七年級

  • 作者/林怡秀│雅文兒童聽語文教基金會研究助理

你聽過「蚊音」嗎?據說這是年輕的耳朵才聽得見的聲音!「蚊音」是日文的詞彙「モスキート音」,指的是 17,000 赫茲左右的超高音。由於人聽取高頻聲音的能力會隨著年紀退化,因此有些成人是聽不見蚊音的,小孩子或青少年則較有機會聽得見。現在我們就用下面這個影片來測試你的耳朵年齡,影片聲音不太悅耳,請注意耳機音量。

可以用來測耳朵年齡的「蚊音」

你聽得見影片中的聲音嗎?如果聽得見,恭喜你寶刀未老,可以加入名偵探柯南的少年偵探團了!雖然我們對柯南都不陌生,但你可能不知道,他的偵探團成員身上都別有特殊設計的徽章,在通訊時會發出蚊音,只有成員們聽得見。

異次元的狙擊手(2014)海報。圖/imdb

在柯南電影《異次元的狙擊手》中,由於阿笠博士和狙擊手犯人都聽不到蚊音,當犯人趁黑暗想挾持步美逃跑時,蚊音就派上了用場──他們開啟偵探徽章的通訊開關,讓步美的徽章發出蚊音,最後在不被發現的狀況下成功找到步美和犯人的位置。所以別小看少年偵探們,雖然平時手無縛雞之力,從他們內建的「蚊音」技能看來,要加入少年偵探團其實沒那麼容易,即使是沉睡的小五郎可能也無法做到。

-----廣告,請繼續往下閱讀-----

當然蚊音並非只出現在動漫中,曾有新聞報導日本政府在治安不佳的東京足立區公園播放蚊音驅趕夜晚聚集的青少年,另外日本也有助聽器公司網站提供「蚊音測試」(註1)[1],因為聽取高頻聲音的能力減弱是耳朵退化的一種警訊,因此可用來測試耳朵年齡。下面我們就再來聽個影片,測測你的聽力年齡是比你想的年輕,還是未老先衰?

如果你或身邊親友有點重聽……

如果你發現自己常聽不清楚,或是想起了家中耳朵不好的長輩,那麼要當心,「微聽損」可能已經悄悄找上你們了!平常談到聽力損失,總會想到耳朵全聾、什麼都聽不見,但其實聽力損失和近視度數一樣,是有程度輕重之分的,並非正常、全聾這樣的二分法,而「微聽損」指的是「輕微聽力損失(minimal hearing loss)」,也就是只有稍微聽不清楚,比較像一般所說的「重聽」、「耳背」。

根據文獻中的定義,微聽損可分成三種類型:

  • 第一種是輕型聽損(Mild Hearing Loss),簡單來說是指兩耳聽力都有一點問題,好比用手指堵住雙耳,微弱或較遠的聲音會聽不見,在餐廳、KTV或馬路邊等吵雜環境中容易漏聽一些語音訊息,導致會錯意。
  • 第二種則是高頻聽損(High-Frequency Sensorineural Hearing Loss, HFSHL),指的是聽取高頻率(2,000 赫茲以上)的聲音時有困難,我們的語音中有些子音頻率比較高,例如ㄘ、ㄙ、ㄈ、ㄒ、ㄑ、ㄔ,因此高頻聽損的人即使在安靜的環境中也會聽錯、聽漏這些聲音,像是把「蔥餅」聽成「鬆餅」。
  • 最後一種則是單側聽損(Unilateral Hearing Loss, UHL),顧名思義就是只有一邊的耳朵聽力不佳,另一隻耳朵正常,當聲音從聽力較差的那側傳來時會聽得較吃力,也會有聽聲辨位的困難(Anderson & Matkin,2007;Bess, Dodd-Murphy & Parker,1998)。

關於三種微聽損的詳細界定,可參考如果小美人魚失去的是聽力,幸福也沒有比較容易:談輕微聽力損失「微聽損」這一篇的介紹。

-----廣告,請繼續往下閱讀-----

微聽損帶來的「微」險

從前面描述看來,微聽損好像只是有點聽不清楚,或一部分的聲音聽不見,應該頂多不能報名少年偵探團,或弄錯別人意思鬧鬧笑話,不算太嚴重吧?但其實不然,微聽損帶來的危害可不微小。

社交及心理困擾

在與人交流時,若無法聽清別人說話會阻礙溝通,帶來社交困擾。美國國家老齡理事會(National Council on the Aging)曾在1999年針對兩千多位有不同程度聽力問題的老年人進行問卷調查,發現有聽力問題卻未配戴助聽器的老人更容易有憂慮、偏執、不安等情緒,也較少參與社交活動。

圖/publicdomainpictures

這樣的困擾即使聽損程度較輕也會發生,Monzani等人(2008)請169位35至54歲成人填寫聽力障礙及生活品質相關的量表,其中96位受訪者聽力正常,另外73位則有輕度至中度的聽力損失,研究結果指出,微聽損成人的生活品質較聽常成人低落,且較容易沮喪、焦慮、對人際關係過度敏感及產生敵意。

-----廣告,請繼續往下閱讀-----

Wie 等人(2010)的研究也指出,單側聽損成人比聽常者更容易感到幸福感下降,以及在人際上遭到排擠。聽損者之所以容易遭遇人際互動困難,除了因為自己聽不清他人說話外,也可能是因旁人與聽損者互動時,必須經常重複說過的話、放慢速度、注意距離是否過遠、發音是否清楚等等,而降低了他們與聽損者溝通的意願,使得聽損者感覺更加孤立(Arlinger,2003)。

此外,聽力問題不僅影響聽損者本人,也可能影響其身邊的人,Wallhagen等人 (2004)以自評問卷對四百多對46歲以上的夫妻或情侶進行調查,結果指出聽損可能會影響配偶的身心健康及幸福感:

配偶有聽力損失的人,越容易感覺不快樂、失去活力,甚至認為另一半不了解自己。

身體健康危害

家中若有長輩,要當心微聽損對長輩健康安全帶來的威脅。Lin等人(2013)的研究追蹤了一千多位聽常者與聽損程度多為輕度至中度的老人,並分析了這些老人認知功能的下降情形,結果顯示認知功能的下降和聽損有關:

-----廣告,請繼續往下閱讀-----

聽損老人發生認知損害的風險比聽常者高約 1.2 倍。

最新的失智症研究更表明,老年聽損男性患失智症的風險比無聽損者高約 1.7 倍(Ford, Hankey, Yeap, Flicker & Almeida,2018)。聽損之所以對認知造成影響有幾種可能原因,一是因為聽損帶來社交孤立,而研究已證實孤獨和認知功能衰退有關。另一種解釋則認為,聽損者平時須耗費更多精力傾聽,因此較沒有餘力進行其他方面的認知處理(例如:記憶)。

大腦皮質分為四個腦葉:額葉、頂葉、顳葉及枕葉,分別有不同功能。顳葉(temporal lobe)與聽覺處理、語言理解及記憶有關(李玉琇、蔣文祁,2010)。圖片修改自wikimedia commons

此外,Lin 等人(2014)的大腦影像研究也顯示聽損者的大腦萎縮比聽常者來得快。Lin的團隊運用核磁共振造影術(fMRI)觀測56歲以上聽損成人十年間的大腦變化,發現他們招募的受試者聽損程度雖然大多只有輕度,但全腦及右腦顳葉(temporal lobe,位置見上圖)的容量(volume)減少速度明顯較聽常者快。聽損受試者右腦顳葉萎縮的區域除了負責口語處理外,也影響語意記憶及知覺整合,而這部份正是早期阿茲海默症相關的腦區(Lin et al.,2014)。

-----廣告,請繼續往下閱讀-----

除了認知損害外,聽損也會增加老年人跌倒的風險。Lin 與 Ferrucci(2012)以兩千多位 40 到 69 歲間的成人為對象,調查他們過去一年內跌倒的情形。結果發現,每增加十分貝的聽損,跌倒機率增加 1.4 倍,而即便是輕度聽損者,跌倒風險仍比聽常者高出三倍。聽損者之所以容易跌倒,一種可能的原因是耳蝸功能損失伴隨著前庭功能損害,使得平衡感減弱,另一種解釋是聽損使人對環境的警覺性變差,且聽損者需耗費較多力氣傾聽,連帶減少了能夠運用在肢體平衡上的注意力。跌倒可能威脅老人的健康及生命安全,因此家中若有聽損長輩,必須注意聽損對行走安全的影響。

造成微聽損的兇手不只一個!

看完微聽損帶來的危害後,相信你會想問:造成這一切的兇手究竟是什麼?

我認為這次的兇手可能不只一個。圖/imgur

雖然柯南的世界裡真相總是只有一個,但在微聽損的世界裡,兇手可能不只一個!前面曾提及阿笠博士跟狙擊手犯人聽不見高頻的蚊音,當然我們不清楚他們若到醫院接受聽力檢查是否真的會被界定為有微聽損,因為一般聽力檢查主要測試的頻率範圍是 250~8,000 赫茲之間,也就是人類溝通時主要能聽取的頻率範圍。

-----廣告,請繼續往下閱讀-----

而在聽力檢查中,高頻聽損針對的是 2000 到 8000 赫茲聲音的聽取能力。阿笠博士和犯人雖然聽不見 17,000 赫茲的蚊音,但如果接受聽力檢查時 2000到 8000 赫茲沒有問題,就不會被界定為「高頻聽損」,只能說他們聽取超高頻聲音的能力有退化。但現在先讓我們假設他們都是微聽損的族群,一起來想想可能是哪些原因造成的?

老年性聽損

唉呀,聽力又更糟了。圖/wikipedia

首先,阿笠博士的案例我們或許可用老化來解釋。一般來說成人 40 歲以後,位於耳蝸內負責聲音處理的毛細胞(hair cell)會漸漸死亡,使得聽力緩慢衰退,從高頻的聲音開始聽不見。52歲的阿笠博士,聽不見蚊音也是人類耳朵退化的正常現象。而到了 65 至 70 歲,連中低頻率聲音的聽力也漸漸退化,此時會感到明顯的重聽(陳世一、陳弘聖、賴正軒、鄧若珍,2012)。

聽損在台灣銀髮族中盛行率很高,Lin等人(2007)調查南台灣聽損程度在25分貝以上的老年族群,發現60到69歲聽損盛行率為47%,70到79歲為65%, 80到89歲則為53%。而張欣平(2008)以北台灣到醫院接受健康檢查的年長者為樣本,指出65歲以上年齡段的聽損盛行率都高於95%,也就是幾乎所有年長者都有聽力問題。

-----廣告,請繼續往下閱讀-----

那麼犯人聽不見蚊音該怎麼解釋呢?那位犯人只有 32 歲,還是個年輕的小夥子,不到耳蝸功能喪失的年紀,怎麼就有高頻聽力退化的情形出現呢?看來案情並不單純。

職業噪音傷害

圖/pixabay

那位犯人以前曾是海軍陸戰隊的二等中士隊員,他的聽損可能來自「職業噪音傷害」。根據勞動部職業安全衛生署統計,2016 年全國職業傷病診治通報件數中,比率最高的是職業性聽力損失,占六成左右,可見工作對耳朵造成傷害的情形是很常見的。工作環境若充斥噪音,長期下來會造成噪音性聽損(noise-induced hearing loss)。

製造業者、工人、軍警、牙醫、美髮業者等人員的耳朵較常接觸高分貝器械的噪音,因此聽力容易受損,而柯南劇中犯人的微聽損或許就是征戰沙場所帶來的職業傷害。此外,有些工作需搭乘的交通工具會發出巨大聲響,例如機組人員、消防車、救護車或垃圾車隨行人員,還有一些工作環境總是人聲鼎沸,例如酒吧、夜店等等,這些人長久下來也有微聽損的隱憂(European Agency for Safety and Health at Work,2014;Hear it,2008;Manatee Hearing & Speech Center,2016;余仁方,2014)。

單側聽損通常發生在經常使用單邊耳朵的工作,例如歌手、舞台劇演員、演奏家、客服、維安或賣場服務人員。圖/pxhere

前面提過,除了輕度聽力喪失外,微聽損還有單側及高頻聽損兩種類型,那麼哪些工作容易造成這兩種聽損呢?單側聽損通常發生在經常使用單邊耳朵的工作,例如歌手、舞台劇演員、演奏家、客服、維安或賣場服務人員,他們經常是同一邊耳朵戴著耳機,或從固定某側接收樂器聲音,因此會有單側聽力損失的風險。

另有一些工作較容易引發高頻聽損,例如農業工作者常用的收割機和托拉機會發出高頻噪音,容易傷害耳蝸接收高頻的地方。另外,廚房中大火快炒跟煎魚常出現高頻的聲音,也會使廚師、家庭主婦成為高頻聽損的危險族群(余仁方,2014)。

其他因素

除了老化及噪音外,還有一些其他因素會導致聽力損失。研究顯示聽損在糖尿病族群中更常發生(Kakarlapudi, Sawyer & Staecker,2003),尤其是高頻聽損,發生在糖尿病患者的機率大約是非糖尿病患者的兩倍,其原因可能是糖尿病帶來的身體病理變化破壞了聽覺功能相關的神經及血管(Bainbridge, Hoffman & Cowie)。

心血管疾病也與聽損相關,美國威斯康辛麥迪遜大學的 Friedland 教授指出,低頻聽損跟心血管疾病有高度關聯性,這是因為內耳佈滿了血管,當身體血液流動功能異常,就容易先出現聽損的狀況(Wyson,2009)。其他傷病因素還有腦傷(Traumatic brain injury, TBI)、內耳自體免疫疾病、耳硬化症(Otosclerosis)、聽神經瘤(Acoustic neuroma)、梅尼爾氏症(Ménière’s disease)等等。

圖/pxhere

另外,吸菸及藥物使用也是導致聽損的危險因子。目前已有研究證實抽菸與聽損相關,聽力損失發生在抽煙者的機會是不抽菸者的1.7倍(Cruickshanks et al.,1998),而且通常是輕度的聽損(Kumar, Gulati, Singhal, Hasan & Khan,2013)。美國語言聽力協會(ASHA)也指出,使用耳毒性藥物(Ototoxic medications)也可能使聽力產生損傷,例如新黴素、呋塞米、某些化療藥物、大量的阿斯匹靈等。

老了也想當少年偵探:如何保健聽力

微聽損會降低我們的生活品質,對身體及心理的影響不容小覷,因此日常的聽力保健非常重要。工作場所中若充滿噪音,可利用耳塞或耳罩降低噪音傷害。平常使用有聲電子設備時,必須注意音量是否過大,以及使用時間是否過長。盡可能選購隔音效果較好的耳機,較不會為了跟外界噪音比大聲而不自覺把耳機音量開更大。

另外,要避免吸煙等不良的習慣;服用藥物前,先向醫生確認是否有聽力損害的風險,若真的必須使用,在服藥前和服藥期間都要接受聽力及平衡感檢查。最後,自己和家人都要定期做聽力檢查,若發現聽力損失才能及早介入(Fligor,2018;WebMD Medical Reference,2017)。

萬一不幸發現微聽損已找上門,又該怎麼做呢?最首要的是先向聽力相關專業人員確認自己的聽損狀況,至於是否需配戴助聽器,得依自身狀況向專業人員諮詢,才能找到適合自己的解決之道。不過不論是否使用助聽器,當微聽損使溝通交流受阻,微聽損者本人或是他身邊的人都可利用一些小技巧幫助溝通進行:

雖然耳朵功能的衰退很難完全避免,每個人都有可能成為微聽損的阿笠博士,但我們仍可從日常著手,防止微聽損過早發生。及早了解微聽損的成因並妥善應對,將有助於我們維持良好的生活品質!(表格整理自:Booth,2005;Cleveland Clinic,2018;Kricos,2018;UCSF Health,2002)

延伸閱讀

  1. Anderson, K. & Matkin, N. (1991, 2007 revised). Relationship of degree of longterm hearing loss to psychosocial impact and educational needs.
  2. Arlinger, S. (2003). Negative consequences of uncorrected hearing loss––A review. International Journal of Audiology, 42, 2S17-2S20.
  3. (1997). Causes of hearing loss in adults [Web blog message].
  4. Bainbridge, K. E., Hoffman, H. J., & Cowie, C. C. (2008). Diabetes and hearing impairment in the United States: Audiometric evidence from the national health and nutrition examination surveys, 1999-2004. Ann Intern Med, 149(1), 1-10.
  5. Bess, F. H., Dodd-Murphy, J., & Parker, R. A. (1998). Children with minimal sensorineural hearing loss: Prevalence, educational performance, and functional status. Ear and hearing, 19(5), 339-354.
  6. Booth, S. (2005). Hearing Loss: Tips for Better Communication [Web blog message].
  7. Cleveland (2018). Hearing loss: Tips to improve communication with people with hearing loss [Web blog message].
  8. Cruickshanks, K. J., Klein, R., Klein, B. E. K., Wiley, T. L., Nondahl, D. M., & Tweed, T. S. (1998). Cigarette smoking and hearing loss: The epidemiology of hearing loss study. JAMA, 279(21), 1715-1719.
  9. European Agency for Safety and Health at Work. (2014). Occupational health and safety in the hairdressing sector.
  10. Fligor, B. J. (2018). Hearing loss prevention [Web blog message].
  11. Ford, A. H., Hankey, G. J., Yeap, B. B., Flicker, L., & Almeida, O. P. (2018). Hearing loss and the risk of dementia in later life. Maturitas, 112, 1-11.
  12. goo辭典對蚊音的定義
  13. Hear it. (2008). Your dentist should be concerned with hearing as well as teeth [Web blog message]
  14. Kakarlapudi, V., Sawyer, R., & Staecker, H. (2003). The effect of diabetes on sensorineural hearing loss. Otology & Neurotology, 24, 382-386.
  15. Kricos, P. B. (2018). Communication strategies [Web blog message].
  16. Kumar, A., Gulati, R., Singhal, S., Hasan, A., & Khan, A. (2013). The effect of smoking on the hearing status –A hospital based study. Journal of Clinical and Diagnostic Research, 7(2), 210-214.
  17. Lin, C. Y., Yang, Y. C., Guo, Y. L., Wu, C. H., Chang, C. J., & Wu, J. L. (2007). Prevalence of hearing impairment in an adult population in southern Taiwan. International Journal of Audiology, 46, 732-
  18. Lin, F. R., & Ferrucci, L. (2012). Hearing loss and falls among older adults in the United States. Arch Intern Med, 172(4), 369-371.
  19. Lin, F. R., Ferrucci, L., An, Y., Goh,, J.O., Jimit Doshi, M. S., Metter, E. J., Davatzikos, C., Kraut, M. A., & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage. 90, 84-92.
  20. Lin, F. R., Yaffe, K., Xia, J., Xue, O-L., Harris, T. B., Purchase-Helzner, E., Satterfield, S., Ayonayon, H. N., Ferrucci, L., & Simonsick, E. M. (2013). Hearing loss and cognitive decline among older adults. JAMA Intern Med, 173(4), 293-299.
  21. Manatee Hearing & Speech Center. (2016, January 4). 10 jobs that can cause hearing loss [Web blog message].
  22. Monzani, D., Galeazzi, G. M., Genovese, E., Marrara, A., Martini, A. (2008). Psychological profile and social behaviour of working adults with mild or moderate hearing loss.Acta Otorhinolaryngologica Italica, 28(2), 61-66.
  23. National Council of Aging, Seniors Research Group. (1999). The consequences of untreated hearing loss.
  24. UCSF Health. (2002). Communicating with people with hearing loss [Web blog message].
  25. Wallhagen, M.I., Strawbridge, W. J., Shema, S. J., Kaplan, G. A. (2004). Impact of self-assessed hearing loss on a spouse: A longitudinal analysis of couples. Journal of Gerontology: Social Sciences, 59B(3), S190-S196.
  26. WebMD Medical Reference. (2017). 8 ways to prevent hearing loss [Web blog message].
  27. Wie, O. B., Pripp, A. H., & Tvete, O. (2010). Unilateral deafness in adults: Effects on communication and social interaction. Annals of Otology. Rhinology & Laryngology 119, (11), 772-781.
  28. Wyson, P. (2009). Low-frequency hearing loss may indicate cardiovascular disease [Web blog message].
  29. 小川裕夫 (2016年3月22日)。「モスキート音」で安全な公園を取り戻す。東京・足立区が試験導入した秘策 【THE PAGE東京新聞群組】。
  30. 余仁方(民103)。別讓噪音謀殺你的聽力。台北市:新自然主義幸福綠光股份有限公司。
  31. 李玉琇、蔣文祁(譯) (2010)。認知心理學(第五版) (原作者: J. Sternberg)。台北市:新加坡聖智學習亞洲私人有限公司台灣分公司。(原著出版年:2008)
  32. 張欣平(民97)。老人聽障之流行病學研究─以台北市社區老人為對象(博士論文)
  33. 陳世一,陳弘聖,賴正軒,鄧若珍(民91)。成人聽力喪失之評估與老年性聽障。家庭醫學與基層醫療,27,370-378。
  34. 勞動部2016年全國職業傷病診治通報

[1] :有些日本助聽器公司提供線上的「蚊音測試」,例如:SigniaResound

-----廣告,請繼續往下閱讀-----
雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。