以 John 有最大速度 96 公里/小時,並且不外調人員,總共只有 900 位警力負責封鎖的狀況下,要能及時圍住整個封鎖域的範圍是極具挑戰性的。因此,我們開始思考是否有什麼策略,能提供警方一個在最短時間內,一定能圍住 John 的方法呢?
查詢了許多資料以後,我們找到了一篇提供我們策略構想的數學論文:The Angel Problem (引注資料[1]),由 John H.Conway(沒錯也是 John,但此 John 非彼男主角的 John)於 1996 年發表。這篇論文主要在研究天使問題,這是一個雙人遊戲,而遊戲規則是:
在一個無限大的棋盤上,有一個惡魔跟一個天使,棋盤一開始是空的。開始遊戲後,天使在每一輪都可以移動最多 K 步(遊戲開始前先設定好的,稱之為天使的力量),在這 K 步中,橫的直的斜的都算一步,而且天使可以飛越過惡魔設置的路障,但是最後必須停留在沒有路障的格子內,而惡魔每一輪只可以選一個格子設置路障,但不能設在天使停留的那個格子。最後,如果天使無法再移動時,就代表惡魔贏了,相反的,如果天使可以無限的移動的話,則代表天使贏了。
我們運用了康威假設的其中一個情境的方法來發想,是否一樣能應用在警察和逃亡中的 John 這個情境中呢?
康威假設有個 Fool Angel,他只能不斷的往上飛,增加他的 y 座標,此時惡魔將會有必勝的方法圍住天使。天使的起始點為 P,由於不浪費步數,因此他的飛行範圍介於通過 P 點,兩條斜率為 ±1/1000 的邊界內。則惡魔的必勝策略為:圍住一條與起始點足夠大距離(H=1000×2N) 的邊 AB ,並在開始時每 M格放一路障,在天使達到距 AB邊 1/2H 距離的點Q 時,惡魔已經完成在 AB 以 M 為間隔的路障擺設。當天使在點 Q 時, CD邊正好是 AB邊的一半,而同樣的惡魔也在 CD 邊上,每 M 格放一路障,當天使抵達了距離 AB 邊 1/4H 距離的點R 時,惡魔已完成 CD 線段。如此一來,當天使飛到了距離 AB 邊 H’=2-MH 距離的點時,惡魔已經在AB 線段上的每一格放滿了路障。若 H為 1000×2N,1000 為天使和惡魔的速度比值,且 N>1000M,則在天使跨越距離 AB線段 1000單位距離時,惡魔早已在這條水平線和 AB 線段間的任何天使有可能到達的格子內,放滿了路障!
當 John 向連恩尼遜請教逃獄方法時,連恩尼遜最後問 John,在著手準備逃獄前,比所有方法都還更重要的是,你真的覺得自己做得到嗎?
看似不可能圍住天使的惡魔,原來也能圍住比自己擁有還要強大許多力量的天使;看似不可能在短短時間內就將 10000 平方公里大的都會區圍得密不透風,經過我們的推理計算,原來也有絕佳的保證策略能夠達成目標;看似不可能做出瘋狂逃獄計畫的溫和大學教授,為了愛為了自由,甚至為了正義,在 John 的轉變中,我們看著他一步步,將不可能轉化為可能。
只要我們相信,我們做得到。
引注資料[1]: John H. Conway (1996). The Angel Problem.
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。