Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

越黑越火爆

陳俊堯
・2011/03/02 ・344字 ・閱讀時間少於 1 分鐘 ・SR值 445 ・四年級

行為跟環境跟過去的經驗有關,但是跟顏色好像很難拉上關係。如果從你身上的黑色素可以看出你的脾氣,這可就神奇了。

研究人員在赫曼陸龜(Eurotestudo boettgeri)就看到這樣神奇的現象。他們發現養在人為環境裡的雄龜背上殼的斑紋跟脾氣有關,上頭斑越黑,產生的黑色素越多的雄龜,就越能不計一切地攻擊入侵的對手。這個現象還不是偶發事件,由作者的研究看起來還是可遺傳的一個特性。

黑的還是白的? 有差哦!

那在演化上為什麼長得黑一點的烏龜會比較兇呢?作者的推論是,身上越黑,就能吸收較多的陽光得到較多能量,於是有更多資本可以用在跟別人作戰上。

延伸閱讀
Melanin-based coloration predicts aggressiveness and boldness in captive eastern Hermann’s tortoises
Alia Maflia, Kazumasa Wakamatsub, 1 and Alexandre Roulina, ,
Animal Behaviour: Article in Press
Cannon, JC. 2011.
ScienceShot: Dark Shells Make for Mean Tortoises

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
白斑症造成的膚色不均讓你困擾嗎?微創表皮移植手術可以解決!
careonline_96
・2024/04/03 ・2267字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「曾經遇過一位老師,因為下巴有塊白斑,而相當困擾。」中國醫藥大學附設醫院美容醫學中心雷射美容科主任張長正醫師指出,「經過檢查後確認是黑色素細胞不足,雖然接受過治療,但沒有明顯改善,所以決定接受表皮移植手術。」

當時利用微創表皮移植系統吸取微泡,精準取下淺層表皮,然後移植到下巴白斑處。張長正醫師說,待受皮區癒合之後,再經過一系列的照光治療,讓移植皮膚的顏色符合周圍皮膚的顏色。表皮移植的成果看起來相當自然,從此不用再擔心下巴的白斑會引人側目,讓患者相當開心。

白斑症(Vitiligo)的成因大多與自體免疫有關,由於患者自身的免疫系統會攻擊自己的黑色素細胞,導致皮膚缺乏黑色素。張長正醫師說,有些外在因素可能對黑色素細胞造成影響,例如外傷、長期受到化學刺激等;另外也有部分患者的白斑與胚胎發育的過程有關。

白斑症患者的皮膚會失去黑色素細胞,而出現形狀不規則的白色斑塊。

白斑症患者的皮膚會失去黑色素細胞,而出現形狀不規則的白色斑塊。張長正醫師說,白斑症在身體任何位置都可能發生,讓患者相當困擾。

-----廣告,請繼續往下閱讀-----

白斑症的治療包括藥膏、口服藥、紫外線照光治療等,張長正醫師說,如果確定缺乏黑色素細胞,在狀況穩定後可以考慮接受表皮移植手術。表皮移植的主要目的是獲得黑色素細胞,像播種一般,讓病灶部位長出具有黑色素細胞的表皮。

在進行表皮移植手術時,必須從取皮區取下表皮。張長正醫師說,一般常用的方法是以一個試管大的口徑覆蓋在取皮區,然後利用負壓抽吸,待皮膚形成水泡後,再用剪刀把水泡剪下來,移植到受皮區。但是這種做法會讓取皮區在癒合後的外觀較不理想,受皮區的結果也不甚美觀。因為一次取下一大塊水泡,沒有辦法符合周圍皮膚的顏色與質地,常常會有一塊一塊的凸起,類似鵝卵石步道。

另一個方法是使用皮膚切片筆,每彈一下可削下一片表皮,再分別移植到受皮區。張長正醫師說,這種做法也會讓受皮區在癒合後凹凸不平,不甚美觀。 

微創表皮移植手術是運用水泡取皮的原理

近年來發展出的微創表皮移植手術是運用水泡取皮的原理,但有大幅度的進化。張長正醫師說,微創表皮移植系統會稍微加溫,幫助皮膚形成水泡,然後使用負壓抽吸,讓皮膚形成許多個直徑約 1.8 mm 的微泡,微泡間的間隔約 2 mm。

-----廣告,請繼續往下閱讀-----

微創表皮移植手術的優點在於水泡很小,所以取皮區的復原速度相當快。一般在兩個禮拜後就能完全癒合,幾乎看不到疤痕。張長正醫師說,微創表皮移植手術能夠精準取得淺層表皮,且排列非常整齊,因此在受皮區中,每個微泡都能以相同的速度生長,在癒合之後皮膚會比較平整,且顏色相近。白斑症患者想要接受治療的目的就是讓膚色均勻,所以在接受表皮移植後,醫師會測量黑色素指數,而微創表皮移植手術可以有高達八成、甚至九成的顏色相似度。 

微創表皮移植手術能夠精準取得淺層表皮,且排列非常整齊,因此在受皮區中,每個微泡都能以相同的速度生長,在癒合之後皮膚會比較平整,且顏色相近。

除了用於治療白斑症,微創表皮移植手術還可運用於小範圍燒燙傷或困難癒合的傷口。張長正醫師說,傷口在癒合時都是由邊緣開始生長,範圍較大的傷口會需要較長的時間,而且癒合之後的疤痕會比較明顯。利用微創表皮移植手術能夠加速傷口的癒合,也可達到較佳的外觀。

微創表皮移植手術不需要麻醉,沒有明顯疼痛,在門診就可以進行,便利性高。張長正醫師說,接受微創表皮移植手術後,請依照醫師指示照顧傷口,並避免過度活動或摩擦受皮區。

筆記重點整理

  1. 白斑症患者的皮膚會失去黑色素細胞,而出現形狀不規則的白色斑塊,在身體任何位置都可能發生。
  2. 白斑症的治療包括藥膏、口服藥、紫外線照光治療等。如果確定缺乏黑色素細胞,在狀況穩定後可以考慮接受表皮移植手術,像播種一般,讓病灶部位長出具有色素細胞的表皮。
  3. 微創表皮移植手術的優點在於水泡很小,所以取皮區的復原速度相當快。一般在兩個禮拜後就能完全癒合,幾乎看不到疤痕。
  4. 微創表皮移植手術能夠精準取得淺層表皮,且排列非常整齊,因此在受皮區中,每個微泡都能以相同的速度生長,在癒合之後皮膚會比較平整,且顏色高度相近。
  5. 除了用於治療白斑症,微創表皮移植手術還可運用於小範圍燒燙傷或困難癒合的傷口,能夠加速傷口的癒合,也可達到較佳的外觀。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
超級黑色素:防曬、抗老、療傷快
胡中行_96
・2023/11/17 ・1832字 ・閱讀時間約 3 分鐘

日常生活中,每天多少會曝曬微量的陽光。未受保護的皮膚,不知不覺地損壞、老化。這種情形在正中午,或是夏季尤為明顯。[1]雖然人體本身的黑色素,可以對抗紫外線,但是濃度因天生膚色而異,保護力通常又不太足夠。[2]美國西北大學(Northwestern University)研究團隊於是人工合成,可以塗抹皮膚的「超級黑色素」(Super Melanin)。[1]

抗氧化

氧化壓力(oxidative stress)是阻礙皮膚正常修復的主要機制之一:[3]帶有氧氣的自由基(free radicals),即活性氧化物(reactive oxygen species),[4]在皮膚曬傷或化學灼傷後,會被釋出抵禦微生物,並散佈發炎訊號。可是當它們的量太多,氧化了酵素、核酸、細胞膜的脂質,以及結構性蛋白等,便會導致細胞功能失常或死亡。因此,氧化還原(reduction-oxidation)是局部性傷口治療的關鍵。[3]

木犀草素(luteolin)、維生素C甲殼素(chitosan)、丁香酚(eugenol)、添加薑黃素(curcumin)的聚乳酸奈米纖維,以及檸檬酸(citrate)水凝膠等,都具有這種抗氧化的功效。不過,科學家希望能找到,生物相容性跟藥效傳遞更好的化合物。[3]

合成黑色素顆粒

紫外線曝曬後,體內濃度增加的黑色素,會清除自由基。理所當然地,奈米等級的合成黑色素顆粒(synthetic melanin particles;SMPs),就成為西北大學研究團隊開發的對象。[3]奈米是極為渺小的單位,在同樣的體積範圍內,能創造非常龐大的表面積,來產生反應。[5]他們以此技術,分別做了多孔而有高表面積的SMPHi;以及表面積與天然黑色素接近,無孔洞的SMPLo[3]然後將這兩種合成黑色素顆粒,加到普通乳液裡。[2]抹在皮膚受到氮芥(nitrogen mustard)和紫外線傷害的小鼠身上,進行測試。氮芥是一種治療皮膚淋巴癌的局部化療藥物,能引起刺激性皮膚炎和水泡等劇烈反應;而紫外線曬傷,則會使皮膚發炎。[3]

-----廣告,請繼續往下閱讀-----
SMPLo(左)和SMPHi(右)都不會穿透角質層。圖/參考資料3,Figure 1c & d(CC BY 4.0

實驗觀察皮膚受創的表面積與深度、發紅和水腫的程度、結痂脫落的速度,以及免疫反應等。SMPLo跟SMPHi只是停留在皮膚表面,不會穿透角質層。[3]然而,研究團隊解釋,它們的訊號會傳遞給下方的表皮,「與整個身體溝通」,抑制過度亢奮的免疫反應,進而促進癒合。[1]使用合成黑色素顆粒的小鼠,復原狀況優於不給藥的對照組:[3]以氮芥傷害來說,面積減半,而且原本16天以上的恢復期,縮短為10至12天。[2]其中SMPHi又更勝一籌,第11天就有50%的結痂剝落;SMPLo此時僅30%;而對照組尚無動靜。[3]

氮芥傷害第1到14天的復原情形:由上而下,分別為對照組,與使用SMPLo、SMPHi。圖/參考資料3,Figure 2aCC BY 4.0

另外,研究團隊從西北紀念醫院(Northwestern Memorial Hospital),取得腹部整形手術(abdominoplasty)割除的人體皮膚。處理過後,放在培養皿裏頭,以氮芥進行破壞,再測試合成黑色素顆粒的療效。SMPLo顯然有清除受損組織,並預防水泡的功能;而SMPHi的表現不如預期,或許是因為採用的組織,缺乏完整的免疫系統支援,並不代表正常運作的情況。整體而言,研究團隊仍然認為高表面積的合成黑色素顆粒,對傷口復原的效果會比較好。[3]

成立公司

研究抗紫外線的初衷,促成了可以防曬、抗老、療傷迅速,甚至可能保護放射線治療病患的超級黑色素。他們受美國國防部(Department of Defense)及國家衛生研究院(National Institutes of Health)贊助,其他相關研究,還包括用黑色素染色的軍服,來吸收神經毒氣等。[1]最近西北大學團隊已經成立公司,在持續測試產品效果的同時,打算將超級黑色素商業化,[2]希望能造福大眾。[2, 6]

  

-----廣告,請繼續往下閱讀-----
  1. Paul M. (02 NOV 2023) ‘‘Super Melanin’ Heals Skin Injuries From Sunburn, Chemical Burns’. Feinburg School of Medicine, Northwestern University, U.S.
  2. Service RF. (02 NOV 2023) ‘Synthetic ‘super melanin’ speeds skin repair’. Science.
  3. Biyashev D, Siwicka ZE, Onay UV, et al. (2023) ‘Topical application of synthetic melanin promotes tissue repair’. npj Regen Med, 8, 61.
  4. Free radicals vs. reactive oxygen species: what’s the difference?’. (30 AUG 2021) Cell Guidance Systems.
  5. What Is So Special about “Nano”?’. U.S. National Nanotechnology Coordination Office. (Accessed on 12 NOV 2023)
  6. Northwestern University (03 NOV 2023) ‘‘Super melanin’ heals skin injuries from sunburn, chemical burns’. YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。