1

9
3

文字

分享

1
9
3

紅髮人不會曬黑、更難麻醉?僅占全球不到 2% ,紅髮人的秘密不簡單!

羅夏_96
・2021/05/17 ・5139字 ・閱讀時間約 10 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

髮色絕對是人與人之間,外貌差異最明顯的特徵之一,拜染髮劑所賜,我們在生活中能見到各式各樣的髮色,不同年度和季節,甚至會出現像是「奶茶棕、亞麻綠、霧灰藍」的髮色流行趨勢!

然而,當我們撇去染髮劑帶來的效果後,全世界各地人們的天然髮色其實主要只有 4 種而已!其中,黑色是最常見的顏色,也是臺灣人最熟悉的髮色,占世界總人口的 80% 左右,其次是棕色,然後是金色和紅色。

紅髮是諸多髮色中,最少見也最吸引人們注意力的髮色。圖/Wikipedia

在天然髮色中,紅髮是最罕見的髮色,在全球總人口中所占的比例不到 2%,紅髮人主要分佈在歐洲西部與北部,特別是在英國不列顛島附近的地區。

關於紅頭髮,坊間有一個有趣的傳聞——紅髮人比較難麻醉!

-----廣告,請繼續往下閱讀-----

近期美國麻省總醫院的團隊,發表在 Science Advances 期刊上的研究1,或許能讓我們一窺這個傳聞背後的可能機制。

髮色怎麼來的?

人類的髮色是怎麼產生的?讓我們從毛囊 (Hair follicle) 說起。

毛囊是皮膚的附屬器官 (appendages) ,而毛髮就是由毛囊所生成的。毛囊除了用來生長毛髮,也可幫助維持表皮的機能,免受外界環境的損傷,在組織更新和外傷修復中發揮重要作用2

毛囊構造,其中黑素細胞 (Melanocyte)在最底部。圖/Hair: Follicle, Associated Structures and Growth

髮色則是由毛囊中的黑素細胞 (Melanocyte) 所決定,黑素細胞會隨著毛囊的生長,將產生的黑色素嵌入毛髮中,使其看來有顏色。

-----廣告,請繼續往下閱讀-----

毛囊中的黑素細胞會生產兩種黑色素 (Melanin):真黑色素 (eumelanin)褐黑素 (pheomelanin),真黑色素的含量越多,毛色越黑;褐黑色素越多則偏紅。

真黑色素 (eumelanin) 和褐黑素 (pheomelanin) 所產生的顏色。圖/ Colour Theory for Hairdressing

黑色素除了會影響毛髮、皮膚和瞳孔的顏色,也是重要的物理防曬劑。可以幫我們吸收過多的紫外線,保護皮膚中細胞的 DNA 不會受到紫外線傷害。

造就紅髮的重要基因——MC1R

研究顯示,與紅髮關係最密切的基因是 MC1R

MC1R 的蛋白質產物為黑素皮質素受體 1 (melanocortin 1 receptor,MC1R),其主要表現在皮膚細胞及黑素細胞的細胞膜上。

-----廣告,請繼續往下閱讀-----

黑素皮質素受體 1 會受黑素皮質素 (Melancortin) 的活化,黑素皮質素受體 1 活化後會改變黑素細胞產生的黑色素種類3:當黑素細胞上的黑素皮質素受體 1「未」受到黑素皮質素的活化時,是產生褐黑素為主,反之,但黑素皮質素受體 1 被活化後,就會改為產生真黑色素,讓皮膚和髮色變深。

紅髮的人因 MC1R 基因有突變,黑素細胞上的黑素皮質素受體 1 無法被正常活化,這讓黑素細胞無法產生真黑色素,而是不斷產生褐黑素,因此讓髮色呈紅黃色。

如果你天生紅髮,就不怕被曬黑?

你知道嗎?因黑素細胞無法生成真黑色素,所以紅髮的人皮膚「不會被太陽曬黑」!

雖然這聽來是很多人夢寐以求的能力,但其實一點也不好。

前面有提到,黑色素的一個重要功能,就是抵禦紫外線對皮膚細胞的傷害,因此紅髮的人若沒有做好防曬,很容易曬傷,罹患皮膚癌的比率也比常人更高4

-----廣告,請繼續往下閱讀-----

雖然造成紅髮的基因主要受 MC1R 影響,不過根據英國在 2018 年的大規模基因分析研究顯示,除了 MC1R,其他的基因變異也會影響紅髮的表現(例如影響紅色的深淺),只是對髮色的影響沒有像 MC1R 這麼有決定性5

紅髮人比較難麻醉?傳聞還是真有此事?

在麻醉界有個傳聞,那就是紅髮的病患需要更多麻醉劑才能麻醉。

2005 年,美國路易斯維爾大學的研究團隊,就對這個傳聞做研究6,該研究分別對 30 名黑髮女性和 30 名紅髮女性,進行疼痛與麻醉測試。

結果顯示,紅髮的人對熱疼痛更敏感、對連續性疼痛刺激(如電引起的疼痛)較不敏感,而且紅髮的人確實需要更大劑量的麻醉劑才能被麻醉!

這表示髮色可能與改變人「對某些類型疼痛的敏感性」,以及「麻醉抗性」有關。

-----廣告,請繼續往下閱讀-----

找出 MC1R 基因與疼痛的連結

有了上述研究的基礎,美國麻省總醫院的團隊決定深入了解其中的分子機制。

科學家選用一株和造成人類紅髮機制類似的小鼠,這些小鼠由於 MC1R 的突變,導致黑素皮質素受體 1 無法發揮作用,因此黑素細胞無法產生真黑色素,而讓毛色呈紅色。

跟紅髮的人類一樣,科學家也發現,這些紅毛小鼠對疼痛的耐受性比正常小鼠更高。

MC1R 突變的小鼠,毛色也呈紅色。圖/參考文獻 1

為甚麼紅毛小鼠也比較不怕痛?其中的原因頗複雜,讓我們一起慢慢拆解箇中奧妙!

-----廣告,請繼續往下閱讀-----

首先,黑素皮質素受體 1 的活化除了會促使黑素細胞產生真黑素,同時也會讓黑素細胞產生前腦啡黑細胞促素皮促素 (Pro-opiomelanocortin, POMC)

POMC 是甚麼?可以把它想成是一個「激素複合體」,也就是 POMC 會被酵素切割成不同片段,而每個片段在被細胞修飾後,都能作為一種激素使用。

目前知道 POMC 主要會分成成四種激素7

  1. α-黑色素細胞刺激素 (α-Melanocyte-stimulating hormone, α-MSH)
  2. 促腎上腺皮質素 (adrenocorticotropic hormone, ACTH)
  3. β-內啡肽 (β-Endorphin)
  4. 甲硫腦素 (Met-enkephalin)
POMC 經過細胞處理後,能產生多種激素。圖/The Importance of Melanocortin Receptors and Their Agonists in Pulmonary Disease

這四種激素每個要細講都很有故事,建議有興趣的讀者可自行查閱(畢竟它們不是這篇文章的主角),這邊只簡單羅列一下它們的功能:

-----廣告,請繼續往下閱讀-----
  • α-黑色素細胞刺激素( α-MSH):與調節食慾、性慾和黑色素生成有關
  • 促腎上腺皮質素 (ACTH):調控糖皮質素 (glucocorticoid) 的分泌,糖皮質素是腎上腺皮質素的一種,與人體內糖、脂肪、和蛋白質的生物合成和代謝的作用有關,還具有抗發炎、免疫抑制與中樞興奮等作用
  • β-內啡肽 (β-Endorphin)和甲硫腦素 (Met-enkephalin):前者是腦內啡,後者是腦啡肽。兩者都是內源性鴉片物質,會和中樞神經系統內的神經細胞,其細胞膜上的鴉片類受體 (Opioid receptors) 結合,達到鎮痛的效果。

MC1R 基因突變後,POMC 也沒了

紅毛小鼠因 MC1R 突變,使黑素細胞上的黑素皮質素受體 1 無法被活化,也就無法產生 POMC,由 POMC 分出的四種激素也不會產生。

起初研究團隊懷疑紅毛小鼠是因為 β-Endorphin 這種具有鎮痛效果的激素減少,而改變牠們的疼痛耐受性,但研究顯示,破壞正常小鼠產生 β-Endorphin 的能力,或者破壞正常小鼠神經細胞上的鴉片類受體,都不會讓小鼠的疼痛耐受性上升,只有破壞紅毛小鼠的鴉片類受體,才會降低牠們的疼痛耐受性。

因此他們排除紅毛小鼠是因 β-Endorphin 的減少,而有較高的疼痛耐受性,但鴉片類受體產生的下游訊號,會影響疼痛耐受性。

β-Endorphin 和鴉片類受體異常,不影響正常小鼠的疼痛耐受性。但鴉片受體異常,會降低紅毛小鼠的疼痛耐受性。圖/參考文獻 1

接著研究團隊把目光放在 POMC 所分出的另一個激素:α-MSH 上。

研究顯示,紅毛小鼠血液內的 α-MSH 量確實有減少。因此他們把 α-MSH 重新補充到紅毛小鼠體內,看會發生甚麼狀況,結果顯示,隨著 α-MSH 的量上升,紅毛小鼠的疼痛耐受性降低了!

這個結果讓研究團隊推測,神經細胞上 α-MSH 受體是影響紅毛小鼠疼痛耐受性的關鍵。

補充 α-MSH (Melanotan II) 會讓紅毛小鼠的疼痛耐受性降低。圖/參考文獻 1

當「親戚」也參一腳,耐痛能力又不同!

好巧不巧,神經細胞上 α-MSH 的受體,和黑素皮質素受體 1 是親戚,那就是黑素皮質素受體 4 (melanocortin 4 receptor,MC4R),而黑素皮質素受體 4 在人體中與食慾、性慾和食物代謝功能等有關8

研究團隊發現,破壞正常小鼠的黑素皮質素受體 4 後,牠們的疼痛耐受性確實上升了,這顯示黑素皮質素受體 4 確實會影響小鼠的疼痛耐受性。另外和紅毛小鼠(黑素皮質素受體 1 異常)一樣,黑素皮質素受體 4 異常的小鼠,如果鴉片類受體的下游訊號被抑制,疼痛耐受性也會降低。

MC4R 異常和紅毛小鼠一樣的疼痛耐受性會上升。同樣的,抑制鴉片類受體(加入 Naloxone)會讓 MC4R 異常和紅毛小鼠的疼痛耐受性降低。圖/參考文獻 1

耐痛的兩個關鍵:MC4R、鴉片類受體

腦導水管周圍灰質 (Periaqueductal gray, PAG) 的細胞會分泌腦啡肽抑制疼痛,PAG 的已知功能包括對疼痛的調控、防衛行為、生殖行為和發聲等功能,科學家也在小鼠的 PAG 區域觀察到:

鴉片類受體和黑素皮質素受體 4 會同時表現在此區的神經細胞上。

根據人腦的基因表現資料庫,研究團隊指出,除了 PAG 外,大腦中還有其他區域也會同時表現鴉片類受體和黑素皮質素受體 4,也有其他研究顯示,部分同時表現鴉片類受體和黑素皮質素受體 4 的區域,與調控疼痛有關1

綜合以上結果,研究團隊提出以下的模型:中樞神經細胞中的鴉片類受體和黑素皮質素受體 4 在調節疼痛上,彼此是互相抗衡的

也就是說,鴉片類受體的功能,是「抑制」疼痛;黑素皮質素受體 4 則相反,是「增加」疼痛。

而小鼠對疼痛的耐受性,會因這兩個受體下游訊號的平衡不同而被影響。

研究團隊提出的模型:神經細胞上的鴉片類受體和 MC4R 的平衡,會影響小鼠的疼痛耐受性。圖/參考文獻 1

根據提出的模型,他們推測紅毛小鼠的疼痛耐受性較高的原因如下:

紅毛小鼠因 MC1R 異常,無法產生POMC。這會讓小鼠體內的β-Endorphin和α-MSH的量降低。這兩個激素的降低,會讓神經細胞上的鴉片類受體和MC4R的下游訊號降低。但小鼠體內除了β-Endorphin,還有其他內源性鴉片物質 (如Endomorphin)可以活化鴉片類受體,讓鴉片類受體的下游訊號不像 MC4R 減少的那麼多。因此在神經細胞中,止痛的訊號 (鴉片類受體) 強過疼痛的訊號 (MC4R),這就讓紅毛小鼠有更強的疼痛耐受性了。

科學家尚未找出紅髮人不怕痛的細節

雖然小鼠的實驗結果顯示,黑素皮質素受體 1 異常會讓疼痛耐受性上升,但這個結果顯然跟以往的人類研究結果不太一樣,先前的研究顯示紅髮人對不同類型的疼痛,耐受性並不相同。

另外研究團隊提出的類鴉片受體/MC4R 平衡模型,是否在人體上也適用,還需要很多測試,畢竟人體產生 POMC 和內源性鴉片物質的機制,比小鼠更複雜。

而關於麻醉的問題,小鼠實驗(或者說團隊提出的模型)也無法解釋為何紅髮人比較難麻醉,畢竟疼痛耐受性的改變是否會影響麻醉抗性,目前沒有確切的證據能指出兩者的關聯。

儘管目前只有小鼠的實驗,但這篇研究不僅指出皮膚產生的訊號,會參與並調節疼痛,同時也開啟新的止痛研究方向,那就是黑素皮質素受體 4 。研究團隊也表示,未來會針對黑素皮質素受體 4 做更深入的研究,或許黑素皮質素受體 4 將是一個新的止痛標靶。

紅髮,不僅與眾不同,也不簡單!

看到這兒,不知道讀者們會不會有我看完這篇文章的感受:造就紅髮背後的機制,竟然可以延伸出這麼複雜的生理反應!

紅髮是最罕見的天然髮色,它的珍稀性不僅吸引人的目光,也開啟了新的研究道路。或許每個非主流事物的背後,都有著無限的可能,尊重並了解這些獨特,也將開啟我們的視野和思想!

參考資料

  1. Robinson KC, Kemény LV, Fell GL, Hermann AL, Allouche J, Ding W, Yekkirala A, Hsiao JJ, Su MY, Theodosakis N, Kozak G, Takeuchi Y, Shen S, Berenyi A, Mao J, Woolf CJ, Fisher DE. Reduced MC4R signaling alters nociceptive thresholds associated with red hair. Sci Adv. 2021 Apr 2;7(14):eabd1310
  2. 毛囊
  3. Melanocortin 1 receptor
  4. Robles-Espinoza, C., Roberts, N., Chen, S. et al. Germline MC1R status influences somatic mutation burden in melanoma. Nat Commun 7, 12064 (2016).
  5. Morgan, M. D., Pairo-Castineira, E., Rawlik, K., Canela-Xandri, O., Rees, J., Sims, D.,& Jackson, I. J. (2018). Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nature communications, 9(1), 5271.
  6. Liem EB, Joiner TV, Tsueda K, Sessler DI. Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology. 2005;102(3):509-514. 
  7. Proopiomelanocortin
  8. Melanocortin 4 receptor
  9. https://www.massgeneral.org/news/press-release/Research-reveals-why-redheads-may-have-different-pain-thresholds
文章難易度
所有討論 1
羅夏_96
52 篇文章 ・ 809 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
0

文字

分享

0
5
0
「痛、很痛、超級痛!」你有多痛?疼痛有客觀標準嗎?哪些因素會影響疼痛感受?——《痛:牛津非常短講》
左岸文化_96
・2024/03/25 ・6573字 ・閱讀時間約 13 分鐘

測量疼痛

疼痛程度能被客觀測量嗎?

在二十世紀的前半,設計來檢測人類痛覺的機制主要是呼應從純粹身體觀點量測痛覺組成的需求。痛的主觀特質(或更直接地稱為由受測者本人提供的證據)若是遭到忽視還算最好的情況,在最糟的情況下甚至會遭到貶抑。疼痛程度應該要可以客觀量測出來,或說這就是大家進行相關研究的基本依據;一個人感受自己疼痛的方式與個性、道德觀,或甚至性別及種族有關。

再加上醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點,只被視為反映出「眞正」問題的指標。疼痛的測量及客觀性因此被刻意保持著疏離、冷淡的狀態,與其說是缺乏同情的立論基礎,還不如說是完全置身於同情的範疇之外。

醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點。
圖|pixabay

研究者主要想建立的是痛覺敏感度指數。他們希望知道人體的疼痛要到什麼程度才可以被偵測出來。一般而言,在受控的條件下,不同的疼痛程度顯然可以反映出受試者的文明程度、犯罪傾向,又或者相對「野蠻」的狀態。大家一直都知道,每個人的疼痛閾値——痛無法再被忍受下去的臨界點——差異甚大,不過痛在每個人身上可以被感受出來的最低程度是否具有根本性差異仍是重要議題。

痛的現代史是建立在主張特定「種類」的人不是對痛的刺激更為敏感、就是更難以忍受疼痛的研究之上。這對尋求專業醫療協助的疼痛患者造成了實質上嚴重的後果。他們獲得治療的程度——包括施加的麻醉劑劑量和醫護人員提供的同情心——可能都會跟種族、年紀和性別直接相關。

-----廣告,請繼續往下閱讀-----

疼痛敏感度能成為犯罪證據?忽視痛覺主觀性,能幫助醫生更精準診斷嗎?

相當令人感到奇怪的是,生產可以測量疼痛敏感度的設備——痛覺計(algometer)或測痛儀(dolorimeter)——是心理學家和生理學家範疇內的工作。龍勃羅梭(一八三五─一九○九)因為在著作《犯罪人》(一八七六)中提出了犯罪類型分類而聞名,他採用了德國生理學家杜布瓦-雷蒙(一八一八-一八九六)開發的設備,透過電流刺激測量個體的疼痛敏感度及疼痛閾値。根據他的結論,成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。而疼痛測量儀的數據就可以提供證據。

龍勃羅梭認為成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。
圖|stocksnap

龍勃羅梭的研究是基於犯罪特質可以透過遺傳而來的理論,而且強調相關跡象都可以在人體上發現。他決心要透過比較(無論死活的)罪犯以及非罪犯之間的特質來證明這項理論,而獲得的結果非常驚人、具有高度影響力,但卻又毫無根據可言。不過他的例子可以反映出當時更為廣泛的趨勢。痛覺測量在機械領域的推進讓心理學家不再推敲心靈方面的非物質性運作,而改為追求物質性且具體可測的皮膚敏感度,並藉此探討大腦處理痛覺的各種相關能力(跟心靈完全不同的領域)。

另外在一九四○年的紐約醫院進行了一個計畫,他們將一盞燈的熱度聚焦在患者皮膚的一塊區域,然後記錄患者會開始感到疼痛的溫度,以及此疼痛到什麼程度會變得無法忍受。這是想將痛覺變成客觀可測量性質的一項新嘗試,其中帶有兩層意涵。

首先,痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。擁有機械測量的痛覺數據可以幫助臨床醫生超越(或甚至消滅)痛覺帶有各種隱喻且不甚精確的主觀性質。有些人就是會喜歡高報或低報自己受苦的程度,而這類傾向可以不再對醫療體系處理疼痛的藥物造成影響。

-----廣告,請繼續往下閱讀-----
痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。
圖|stocksnap

可是問題在於這個痛覺量測系統不管用,至少任何一個實驗室的結果都無法在其他實驗室複製出來,因為受測對象可以在受過訓練後忍受不同程度的疼痛。外界刺激在受控條件下首先被人感知到的數値至少算是有找到共同的範圍,但疼痛閾値卻因為各種理由而出現各式各樣的差異,更何況個體實在很少(甚至不知道是否可能有)處於不受任何外在條件影響的「中性」狀態。

各種機械理論

人類的所有特質、體驗都能被測量及量化?

如果說與疼痛相關的機械性研究大多得算是笛卡兒的功勞,那是因為他被認定說過一些話,而那些話又顯然能讓後人從中發現一種透過「疼痛路徑」運作的特定機制。若是遵循這樣的笛卡兒觀點,人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。十九世紀以降的生理學家在勤奮不懈的努力下開始尋找特定的痛覺接收神經,或說所謂的「傷害感受器」(nociceptor)。

人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。
圖|pexels

他們認定所有形式的人類特質及體驗都可以被測量及量化,於是透過大腦秤重的數據建立起以種族、性別為指標的智商系統、透過頭骨的測量顯示文明化的程度,甚至利用各種精良的技巧拍攝臉部後描繪出「犯罪可能性等級」。另外還有一些「疼痛纖維」(pain fibres)被描述成跟特定種類的疼痛有關、又或者跟不同規模的疼痛有關。根據這種方式,大腦只是用來接受特定疼痛輸入訊號的接收器。於是自一九六○年代以來,疼痛量表等級可能跟傷勢程度呈正相關的基本前提已被確信是明顯錯誤的想法。

將疼痛以機械性解釋有哪些侷限?

沒有被這種機械性簡化手段抹消並在當代神經科學中獲得進一步探究的部分,是科學家依據刺激的種類及程度,將受激發的不同神經末梢做出分類。我們現在知道,人的體驗和神經刺激之間沒有絕對的相關性。雖然我們還是會用「傷害感受器」這個詞,但它們發出的訊號在成為痛覺前必須先通過大腦的解讀。機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。

-----廣告,請繼續往下閱讀-----

為了解釋跟初始神經刺激不成比例的巨大疼痛反應,一八八○到一九五○年代出現了各種「(痛覺刺激及反應)模式」理論。有人假設一定是在脊髓中發生了某種反應,而且這個由原本末梢神經接收刺激所啟動的反應可以自我維持或甚至自我加強。隨著神經系統機制愈來愈常使用電機工程學的語言來比喻(而且使用的程度驚人),人們開始可以想像神經元在脊髓的「線路」中產生「反饋迴路」,因而「引起共振」並激發鄰近的其他神經元。正如原本那幅插圖所暗示,這種神經啟動的模式可以永無休止地延續下去,就算接受過治療或甚至原初起因已消失也沒關係(例如幻肢痛)。

機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。
圖|pexels

這個觀點的問題在於,這種帶有反饋迴路的電路板比喻想像起來容易,眞正要在實驗中發現卻有其難度。同樣地,疼痛方面的病變一直以來都被想像成一個「正常」的疼痛「電路系統」出現問題的結果,若要類比,就像是有訊號在特定種類的疼痛纖維中受到增強。在當代神經科學及疼痛管理領域中,這些理論的許多元素後來都證明在建構更全面性的疼痛體驗理論時很有幫助,但同時也必須超越「刺激帶來體驗」這種純然的機械性關係。

機械性關係以外的其他觀點?

直到一九六○年代,科學機構內外才開始出現批評的聲音——最有名的批評者是孔恩(一九二二-一九九六)和之後的拉圖(一九四七-)——這些人指出社會脈絡在科學工作中所扮演的重要角色,以及埋藏在社會脈絡中的各種想法及預設。到了更近期,達斯頓和蓋里森在他們的著作《客觀性》(二○○七)中重建了「客觀性」的概念。現在,所謂的「事實」已會被許多人視為透過特定框架後建構而來的偏頗資訊。這種不確定性為相關研究開展了全新的寬敞大道,但眞正的改變卻很慢才出現。

早在一八九四年,美國心理學家馬歇爾(一八五二-一九二七)曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」,不過就在目睹摩根生產出行為主義式「定律」的這一年,這種全面性的思考觀點卻幾乎沒產生什麼漣漪。當痛的研究在一九七○年代確實開啟了痛覺的情緒及社會組成的相關探討之際,在醫療實務上對於能夠確切測量、判斷並診斷的既存需求,卻讓痛覺和傷害之間的機械關係得以續命。

-----廣告,請繼續往下閱讀-----
馬歇爾曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」。
圖|pexels

傷害的意象

第一份讓患者掌握自身疼痛體驗內涵的醫療評估問卷?

臨床醫生數十年來都帶著對痛的多面向理解在實務現場工作。梅爾扎克(一九二九-)和托格森(一九二四-一九九九)在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。疼痛問卷將痛的形容詞及比喻根據痛的強度進行分組,然後依照「感覺」、「情感」、「評價」和「其他相關」四種項目進行分類,再搭配圖表指出身體上的疼痛位置,另外還會針對其他症狀及一般生活方式進行整體評估。

此問卷的前提在許多案例中獲得證實,也就是受疼痛所苦之人會用類似的詞彙來描述特定的疼痛症候群。因此,疼痛問卷帶來的質化觀點對臨床醫療人員很有幫助,能讓他們在一開始更有機會根據患者對自身疼痛狀況的評估做出正確診斷。

梅爾扎克和托格森在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。
圖|stocksnap

當言語無法精準描述,我們如何形容疼痛感受?

乍看之下,這是將疼痛體驗的情感特質重新導入醫療體系的成功應對方式,並因此讓臨床評估朝新的方向前進,但這種做法還是有其限制。疼痛問卷被翻譯成許多其他語言時使用了同樣的武器修辭,或說同樣有關受傷、割傷、刺傷、射傷、揍傷或壓傷的各種比喻。許多學者都指出,這些用來描述人類疼痛體驗的比喻被使用的時間久得驚人,彷彿我們沒有足以訴說疼痛的直接用詞,所以非得求助於這些傷害意象。

不過,這種顯而易見的限制掩蓋了存在於人們陳述中的驚人豐富性及深度。隨著時間過去,武器的種類當然改變了,描述武器對人類造成的傷害種類也出現了更多具有想像力的比喻性說法。此外,隨著語言的改變,人們會發現無論是問卷中的表達方式、代表意義及所處脈絡,都具有難以將其中分類普遍化的細微差異。翻譯的政治(更別說是做法)總是會引發誰的用語足以建立起基本分類架構的疑慮:我們應該要採用患者、醫生,還是譯者的用語?

-----廣告,請繼續往下閱讀-----
為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。
圖|pexels

一旦語言被認定為一個人描述主觀體驗的重要資訊載體,我們就很難將其限制在事先規範好的定義及分類中。疼痛問卷成功地將許多當時在英文中常用的疼痛描述整理在一起,不過也可能限縮了人們在未來描述疼痛的用詞。當醫療人員把一連串描述性用詞交給患者並要求他們找出「符合」自身痛感的詞彙時,這種做法很可能會被視為一種具有高度暗示性及影響力的策略,因為這份用詞淸單暗示了這些詞彙已捕捉到了疼痛的本質。

這種做法對某些人來說可能有用,但有些人即便感覺不太對勁,仍得努力將這些用詞硬套到自身的感受上。另外還有些人在覺得這些用詞完全無法用來描述自己的狀況時,甚至會開始質疑自己的疼痛是否眞實存在。為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。

說到底,一九七○和八○年代在尋求痛的情感特質時,是放入由固定價値觀所掌控的基模(schema)中,就像身體的疼痛値也是由機械主導的客觀數値來決定。患者的聲音並不是沒被聽見,但也受到既有的量測方式取代。

受教育程度會影響疼痛體驗嗎?疼痛分類因文化不同有所差異?

根據一份由哈里森所進行的研究指出,當麥吉爾疼痛問卷在科威特被翻譯成阿拉伯文時,編纂者非常淸楚意識到,即便是在當地社群內部也出現了溝通上的語言偏差。受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?我們很可能永遠不會知道,因為這類描述被有意識地迴避掉了。

-----廣告,請繼續往下閱讀-----

有意思的是,阿拉伯文譯者也迴避了對慢性疼痛患者伸出援手,因為「他們的痛覺評分標準跟那些……經歷急性疼痛的人相比有系統性的不同」。如果有人記得的話,麥吉爾疼痛問卷一開始的設計是要嘗試深入理解疼痛症候群的疼痛體驗——也就是完全以受到慢性疼痛所苦的人為目標——因此我們可以認定這個翻譯策略反而阻礙了這項量測工具原本的概念性目標。

受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?
圖|unsplash

二十世紀醫學對於調查對象必須在各項數値方面完全中立的需求,阻礙了我們去探索疼痛體驗中的一項核心元素,因為那個核心元素本身就是作為一種情感的主觀値。疼痛情感的語言表述——人們針對自身感受說出的話——本身抗拒任何精確的製表及分類作為。科威特的那些譯者對此擁有第一手體驗,他們發現原本在英文中被歸類為「感覺」的詞彙,在翻譯後更接近「情感」或「評價」的類別。

這些作者後來做出結論,「我們有很充足的理由認定,疼痛分類會因為不同文化而有所差異。」比如他們就找不出翻譯「射傷」(shooting)這種痛覺的詞彙。在此同時,義大利文把「射傷」這種痛覺翻譯成「像是床墊彈簧反彈」的痛。

整體而言,根據二○○九年由雪梨的喬治國際健康研究所做的研究,麥吉爾疼痛問卷被翻譯成了二十六種語言,研究發現這些翻譯後的問卷效力普遍不佳,並建議必須謹愼使用這些「非英語版本」的問卷。這些不同版本的問卷中描述疼痛的詞彙從四十二到一百七十六個不等,反映出了人類口中疼痛體驗的豐富程度。這些疼痛反抗或拒絕被分類列表的特質只顯示了人們不是(或說至少不完全是)機器。

-----廣告,請繼續往下閱讀-----

——本文摘自《:牛津非常短講 012》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

左岸文化_96
36 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。

0

15
5

文字

分享

0
15
5
我們需要覆蓋率更高的網路!低軌道衛星通訊的好處在哪?臺灣有機會發展自己的「星鏈」嗎?
PanSci_96
・2023/12/04 ・6233字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

要是海底電纜被截斷,馬斯克的星鏈又不幫忙?台灣會不會成為資訊孤島?

近年 SpaceX 不斷發射 Starlink,看起來野心滿滿,多到都成為光害了。

在烏俄戰爭爆發後,Starlink 為烏克蘭提供的不間斷網路服務,更讓全世界看見低軌道衛星通訊的重要性。

通訊戰已經逐漸打到太空,台灣也不遑多讓。今年 11 月 12 日,鴻海與中央大學合作的兩枚低軌道通訊衛星珍珠號,以及成功大學與智探太空合作的立方衛星「IRIS-C2」已經成功升空,三顆衛星都已經取得了聯繫。台灣,也能很快擁有自己的星鏈嗎?我們還欠缺哪些關鍵技術呢?

-----廣告,請繼續往下閱讀-----

什麼是低軌道衛星?它可以取代海底電纜嗎?

在全民都會上網的現代,我們的電腦網路依靠光纖等實體線路,手機、WIFI 通訊則仰賴周遭的基地台,因此只要手機離基地台太遠,就會收不到訊號。未來,這些問題低軌道通訊衛星都能解決。這些在天上快速移動的衛星,只要數量夠多,就能覆蓋整個地球表面。因此不論你是在遠離基地台的深山,甚至是高空中的飛機,都能透過通訊衛星來連線上網。

除此之外,在 5G 通訊逐漸成熟的現在,下一代通訊技術 B5G 追求更快、更低延遲的數據傳輸,也會需要低軌通訊衛星來解決傳統基地台功率與覆蓋性不夠的問題。

但因為人口密集、土地面積小,台灣現在的無線網路服務覆蓋率已經很高了。台灣需要擔心的另一個問題是對外的海底電纜斷裂,使我們與世界失去聯繫手段。

除了要擔心戰爭爆發時敵人為了封鎖台灣消息,而主動破壞電纜以外。台灣周邊的電纜也常因為底拖網、抽砂船作業時被破壞,甚至天災都可能導致電纜被破壞。例如 2006 年恆春地震發生時,高屏海底峽谷就產生海底濁流,也就是海底的土石流。這股海底濁流一衝而下,破壞了呂宋海峽的數條電纜,不只影響了整個東亞以及東亞到美國、英國之間的通訊,包括許多跨國銀行交易。海底電纜斷裂的影響層面非常廣,2006 年恆春電纜斷裂事件發生後,還被聯合國國際減災策略署(ISDR)形容為「現代新型態災難」。

-----廣告,請繼續往下閱讀-----
2006 年恆春地震震央與海底電纜位置。圖/wikimedia

不論海底電纜斷裂的原因會是什麼,我們都需要有充足的準備來應對,而低軌道通訊就是其中的首選。

目前全球有在發展低軌道通訊的不只有 SpaceX 的 Starlink,其他還有 Amazon 的 Kuiper、加拿大的 Telesat 和由美國、歐洲、日本等企業投資的 EutelSat OneWeb 等等。

當然,其中最受矚目的當然還是 Starlink,而且它的發展速度真的有夠誇張。Starlink 在 2020 年才開始在北美提供服務, 去年 4 月我們製作了一集節目在介紹 Starlink,當時就已經總共有 2,000 顆星鏈衛星被發射上太空,服務使用者有 25 萬人。到了今年 8 月,短短又 16 個月經過,在低軌道運行的衛星數量,從兩千顆增加到了 4500 顆,用戶人數從 25 萬人暴增到突破 200 萬人,這肯定是打了針或是吃了藥。當然,訂閱 Starlink 的服務可能需要考慮考慮,但訂閱泛科學頻道,請不要再考慮了,就在這邊,趕快按下去吧! 然後別忘了,SpaceX 的野心,是在天上佈下總計 42000 顆的通訊衛星,大約是現在數量的再十倍,當這個目標達成時,我們的通訊手段可能將迎來天翻地覆的變化。

你可能好奇,這些距離地面遙遠的通訊衛星,能提供多快的上網速度?會不會衛星通訊到頭來只是個噱頭?在光纖電纜的技術進步下,海底電纜的速度確實已經非常快,傳輸速度是低軌衛星的五千到十萬倍左右,這根本是阿烏拉對上芙莉蓮,只有被虐的份啊!

-----廣告,請繼續往下閱讀-----

世界越快心則慢,但網路越慢心更急。Starlink 到底夠不夠用呢?依照 Starlink 實際用戶的實測回饋,雖然星鏈服務的 Ping 值多落在 15~60ms 左右,下載約 100 Mbps,上傳約 15Mbps,但對於一般消費者來說已經算是能接受的了。尤其對於偏遠地區、研究站的通訊,又或是未來 B5G、6G 物聯網中,與大量自動駕駛汽車、智慧裝置的連動,通訊衛星都將成為可考慮的另類選擇。

星鏈服務的 Ping 值多落在 15~60ms 左右,下載約 100 Mbps,上傳約 15Mbps。圖/PanSci YouTube

但如果我們未來不想只看馬斯克或是大公司的臉色,勢必需要發展屬於自己的通訊衛星。那麼,發展一顆通訊衛星,需要哪些技術呢?

低軌道有多「低」?低軌道通訊衛星需要哪些技術?

實際上,在低軌通訊衛星出現之前,我們早就有使用衛星進行通訊的經驗,例如衛星電視使用的廣播衛星。然而廣播衛星和低軌道衛星卻有著完全不同的設計邏輯,這是挑戰,也是機遇。

廣播衛星位於地球同步軌道,距離地面約 4 萬 2 千公里,優點是距離地面遠,因此一顆衛星的覆蓋範圍極廣,只要三顆衛星就能覆蓋地球大部分地區。缺點就是距離地面真的太遠了,就算以光速傳遞訊息,來回 8 萬 4 千公里,就有 0.28 秒的延遲,想必沒有人希望用這種速度來上網。 而低軌道衛星,例如 Starlink,就將他們的衛星分布在距離地面 350 至 1500 公里之間,只有地球同步軌道的 120 分之一到 28 分之一的距離和訊號延遲。反過來說,低軌道的優點是延遲短,缺點就是覆蓋面積小,因此才需要那麼多的衛星來覆蓋整個地球。

-----廣告,請繼續往下閱讀-----

再來,在天線的設計上也完全不同。接收廣播衛星訊號的天線,就是我們暱稱為小耳朵的衛星碟形天線,通常設計成凹面鏡的樣子。根據光學原理,平行光入射凹面鏡後,會聚焦在焦點。也就是說,接收器不是圓盤本身,我們會將接收器放置在焦點來接受最強的訊號。除了小耳朵之外,大型電波望遠鏡的設計,也是出於同樣的原理。

Starlink 的做法則不是這樣,因為用戶不只有接收訊息,還需要發送訊息。Starlink 的天線,是一個稱作 Dishy McFlatface 的小圓盤,只是後來變成方形了就是了。當你在自家屋頂或庭院設置了 Dishy,它內建的 GPS 會鎖定自己與附近 Starlink 衛星的位置,並且建立點對點的雙向資料傳輸。

Starlink 的方形天線。圖/PanSci YouTube

重點來了,要做到點對點的傳輸,代表這些電磁波訊號不能再是廣播衛星那種廣發的波狀訊號,而是要聚集到一條又窄、能量密度又高,如同雷射般的筆直路線上。

有在看我們節目的泛糰肯定有印象,這是我們今年第三次提到這個技術了。沒錯,在無線獵能手環還有宇宙太陽能這兩集中,都有遇到需要遠距傳遞電磁波能量或訊號的情況。其實用到的技術都相同,那就是波束成型(Beamforming)。誒,我們都報明牌那麼明顯了,還不趕快找概念股,然後訂閱一下泛科學嗎?

-----廣告,請繼續往下閱讀-----

一般來說,電磁波都會如同水波般向外發散,波束成型會先把一個訊號源拆成數個小訊號源,將這些訊號源排成一排,並且控制大家的相位。在電磁波的互相干涉下,就會形成一條筆直前進的電磁波。你可以想像一群本來正各自單兵作戰的士兵,透過整隊與喊口號將大家都動作同步,那麼這些士兵就會一起筆直地朝一個方向前進。在比較舊的 Dishy 型號中,寬 55 公分的圓形接收器上,裡面共有 1280 個六角型,每個六角形裡面都是一個天線,這些天線在波束成型後,會構成一個筆直、能量又強的電磁波束,與天上的衛星展開通訊。

咦?但衛星一直在動啊,難道天線也要一直追著衛星跑嗎?其實不用,我們只要對這群士兵下向左轉、向右轉的口令就好。例如我們喊向左轉,那只要左邊的士兵步伐放慢,右邊的士兵加快速度,就能完成轉向。同樣的道理,我們只要改變每個訊號源發出訊號的時機,改變每個波的相位,就能讓干涉出的訊號朝向特定角度,而不用機械式的移動天線本身。而能做到這種功能的天線,我們稱為相控陣列天線。

相控陣列天線(Phased array)的工作原理是改變每個訊號源發出訊號的時機和每個波的相位,讓干涉出的訊號朝向特定角度。圖/wikimedia

知道了地面天線如何和低軌道通訊衛星取得聯繫後,還沒完。這些丟出去的指令,衛星收到了沒錯,但如果你想要連上網際網路,最終這些訊號還是要能連上有線網路。

在星鏈 1.0 時,每顆 Starlink 衛星都是單獨運作,衛星在接收地面天線發出的訊號後,會傳遞到附近的地面接收站 Gateways,接著 Gateways 一樣會走光纖電纜的方式與網際網路連接,讓用戶得以上網。地面接收站一般設有 9 個雷達天線,每個直徑 2.86 公尺。衛星本體,例如 Starlink 2.0 上,則配有四個陣列天線,兩個用來與使用者相連,兩個連向地面接收站。

-----廣告,請繼續往下閱讀-----

然而,這樣的設計限制了 Starlink 的服務,因為這代表地面接收站與你的天線,必須同時在同一顆衛星的訊號範圍內。但是低軌衛星的覆蓋範圍又不大,一個地面站只能照顧方圓 800 公里內的用戶。因此如果你家附近沒有地面接收站,抱歉,你還是收不到訊號的。如果你在廣闊的大海上,就更不用想了。再來,就算 Starlink 提供全台灣的無線網路服務,但如果這個地面接收站就設置在台灣,那麼當台灣的對外海底電纜斷了,就一樣回天乏術,星鏈的設置可說是毫無價值。

Starlink 2.0 上配有四個陣列天線,兩個用來與使用者相連,兩個連向地面接收站。圖/PanSci YouTube

SpaceX 當然也想擺脫地面接收站的束縛,況且如果到了海上就收不到訊號,那可遠遠無法稱上「全球通訊」。因此到了 Starlink 2.0 時,衛星間通訊技術 LISL (Laser Inter Satellite Link) 全面安裝到了衛星上,藉由衛星間的通訊,取代海底電纜的作用,進行跨地區的通訊服務。你看,現在不只海底有資訊高速公路,在天上也出現了網路任意門。比起過去衛星間使用的無線電傳輸,使用 LISL 技術的衛星與衛星之間,用的是雷射。雷射傳訊不僅頻寬較寬,因為光在真空中的速度是最快的,比在光纖中還快。因此與海底電纜相比,傳輸速度反而有可能更快,衛星間的雷射通訊技術,也成為目前太空研究領域中非常重要的一環。

在通訊研究中,除了硬體技術的革新外,另一個最大的問題是,如此龐大的星鏈星座網路該怎麼設計?如何選擇地面天線要與哪個衛星通訊?每個衛星該攜帶多少個雷射發射器與接收器?資料傳輸要經過幾個衛星,才不會因為過多的路由,造成網路延遲飆升。哇~諸如此類的網路設計難題,都是因應通訊衛星而生的新型態網路結構所需面對的課題。而當這些問題被解決,那麼 Starlink 將真正全面擺脫地面接收站,並且能向地球上任何一個角落提供不受限的網路服務。

台灣的低軌道通訊衛星

根據中央社報導,台灣和 SpaceX 從 2019 年開始就展開嘗試性商談,但至今仍未能談妥。今年 11 月 14 日,中華電信成功與另一家公司簽署了台灣低軌衛星的獨家代理合約。這間搶在 SpaceX 之前簽約的公司,就是前面也提到過的 Eutelsat OneWeb。相較於 SpaceX 已經發射升空的 Starlink 大約有 4500 顆,Eutelsat OneWeb 現在的低軌衛星數量大約有 600 顆。台灣的目標,則是在 2024 年底前,布建國內 700 個、國外 3 個非同步軌道衛星的終端設備站點、以及 70 個將資訊候傳的設備站點,建構能完整覆蓋全台的衛星通訊。

-----廣告,請繼續往下閱讀-----

除了與現有的低軌道通訊服務公司簽約外,在打造自製台版星鏈的道路上,也傳來令人振奮的消息,就在簽約的兩天前,11 月 12 日,由中央大學與鴻海科技集團共同研發的珍珠號 PEARL-1C 和 PEARL-1H,兩顆立方衛星升空,並且與地面取得聯繫。搭載的儀器除了中央大學的電離層探測儀之外,還包含了 Ka 頻段的通訊酬載以及剛剛介紹的相控陣列天線,希望能為台灣自製的低軌道衛星通訊打下基礎。

國家太空中心則預計在 2026 年,將第一顆低軌通訊衛星送入太空,2028 年發射第 2 顆。希望能推動 B5G 的發展,並成為發展台版星鏈的敲門磚。

目前台灣的太空領域,許多的技術都正在發展、測試階段。除了這集提到的相控陣列天線、衛星間通訊技術,還有這集還來不及提到的長時間航行的充電問題、姿態校正問題,甚至是未來自行發射衛星的所需要的火箭科技,都需要一步步來解決、實踐。而且根據太空中心估計,至少要擁有 120 顆低軌道通訊衛星,才能確保全台 24 小時的通訊都不間斷,要達成這個艱鉅的任務,我們還有好多路要走,好多衛星要升空。

但千里之行,始於足下,千星之鏈,始於發射架。從福衛系列衛星到獵風者衛星,台灣的太空路線越來越鮮明,也讓人期待包括火箭、衛星到通訊技術的未來發展。

這集我們以 Starlink 為例,詳細的介紹了低軌通訊衛星的重要性,以及需要面對的技術突破。

也想問問大家,你覺得未來低軌通訊衛星,會如何改變網路市場呢?

  1. 衛星通訊成為常態,到哪都可以上網,等等這代表不管去哪都無法以網路不穩當藉口了嗎?可惡!
  2. 衛星通訊只是壁花配角,有線的海底電纜終究是主流
  3. 先等等,衛星競爭太激烈,衛星都比星星還要多了,真的不會在天上發生連環車禍嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。