0

0
0

文字

分享

0
0
0

想要皮膚白裡透紅,消除黑色素就可以了嗎?

MedPartner_96
・2016/10/28 ・4615字 ・閱讀時間約 9 分鐘 ・SR值 490 ・五年級

有很多同學來發問,到底要怎麼美白?美白如果這麼簡單,這世界還需要這麼多美白產品嗎?事情當然沒這麼簡單。要隨便講講,當然很簡單,但這樣你就是繼續去外面被各種美白產品騙,所以我們不能便宜行事,一定要從最基本讓你搞清楚。

今天我們就要來上美白的第一堂課:皮膚要怎樣看起來才會白?

我知道你一定要說「等等,不是要教美白嗎?」不行,趕快給我回位置上坐好~不搞懂這些,你活該被騙一輩子啊~

皮膚的顏色怎麼來?

要回答這個問題前,首先要先知道,你怎麼看到顏色的?登愣,趕快把你國中理化老師叫出來。好我知道你上完課就還給老師了,蹲著蹲著。不要害怕,今天保證講完你一定都搞懂,基測都考滿分。

-----廣告,請繼續往下閱讀-----

你看到的白光其實是不同顏色的光混合而成的,在 1666 年,頭殼被蘋果砸到的那位老兄牛頓,就用三稜鏡來玩太陽光,發現光其實可分成很多種不同顏色。

美白part1_三稜鏡-1
白光其實是不同顏色的光混合而成的。圖 / MedPartner 提供

你看到什麼顏色,取決於什麼顏色的光進到你的眼睛。

而物質基本上分成「透光」跟「不透光」兩種。透光物質會讓某些色光通過,吸收其他色光。例如你看到紅色玻璃紙,他就是讓紅色通過,吸收掉其它顏色的光。

美白part1_紅色玻璃紙-1
透光物質會讓某些色光通過,吸收其他色光。圖 / MedPartner 提供

不透光物質則會吸收色光,選擇性地讓某些色光反射回去。所以你今天看到一顆綠色芭樂,那是因為其他光被吸收,只有綠色光被反射了。

-----廣告,請繼續往下閱讀-----
美白part1_綠色芭樂-1
不透光物質則會吸收色光,選擇性地讓某些色光反射回去。圖 / MedPartner 提供

所以什麼光進去你眼睛,基本上就是你看到的東西(幻覺或錯覺除外)。所以物體本身的顏色、反射率、光滑的程度、透光的程度,都會影響到你看到的顏色跟感覺。搞懂這些,不管是要美白還是要化妝,通通用得到!接下來還會利用這些知識,教你打臉一堆假產品!!!

想一下,你看到不平整的柏油路面,跟光滑的結冰湖面,視覺上會有什麼差別?

美白part1_柏油路散射-2
圖 / MedPartner 提供

不平整的路面會產生很多散射,柏油光線也不容易穿透,幾乎不反射光,所以你就會看到一個粗糙而且暗沈的表面。

美白part1_湖面的折射與反射-1
圖 / MedPartner 提供

光滑的結冰湖面,表面不太會有散射,光線會很容易透過去,經過折射到冰底下的水面,再反射出水藍藍的顏色。所以你就會看到光亮、平滑、水水藍藍的感覺。

-----廣告,請繼續往下閱讀-----

所以皮膚也是一樣,如果表面是光滑的、反射率高的,有一定的透光性,表皮、真皮也沒什麼色素成分,再加上底下一點點微血管的反射,就會看到白裡透紅的完美肌膚。這道理用在臉部化妝也一樣,基本上目標就是要「產生平滑的覆蓋」,「遮蓋面部的瑕疵」、調整皮膚的「質地」、「顏色」跟「光澤」,來製造出你想要的視覺效果。

所以我們先做一個假設。假設我們最期待的皮膚是白裡透紅的水煮蛋肌(水煮蛋肌不是單一的美學標準,所以才說做個假設,小麥肌也很好看啊!),那皮膚的結構應該要長成什麼樣子,才能看起來是白裡透紅呢?

皮膚白裡透紅的要素

我們趕快再來看一下皮膚的結構。

美白part1_皮膚解剖-1
(點擊看大圖)皮膚的結構。圖 / MedPartner 提供

有了上面的概念,你就會知道,你的皮膚看起來是什麼顏色,共同取決於:

-----廣告,請繼續往下閱讀-----

1. 皮膚表面的光滑或粗糙程度(光線在皮膚表面的散射程度)

2. 角質層的排列情形、含水程度(碎石子地板跟排列很好的磨石子地板)

3. 皮膚厚度

4. 真皮層的厚度與含水程度

5. 角質層與表皮層的黑色素小體量

6. 胡蘿蔔素等外源性色素

7. 氧合血紅蛋白跟還原血紅蛋白的量

所以要追求白裡透紅的肌膚,你可以朝底下這些目標去努力:

1. 皮膚表面要儘量是光滑的。

2. 角質層的排列要儘量整齊,不能太厚也不能太薄,也要適當含水。

3. 皮膚的厚度不能太厚,但皮膚有分好幾層,如果角質層厚,顏色會偏黃。如果是顆粒層和透明層厚,會 比較偏向白色。所以黃種人通常是角質厚,白種人則是顆粒層跟透明層厚。但這部分基本上是基因有關,不太能後天努力。

-----廣告,請繼續往下閱讀-----

4. 要儘量避免黑色素累積在表皮跟真皮,也就是避免黑色素生成與促進代謝。

5. 避免過度的胡蘿蔔或木瓜攝取造成胡蘿蔔素的累積。

6. 皮膚薄的話,透光率會比較高,就會看到下面組織的顏色。皮膚厚則透光率低,只能看到角質層沈積的 黑色素或胡蘿蔔素,就會比較黑或黃。

7. 氧合血紅蛋白含氧量高,就會比較紅亮一點。還原血紅蛋白則會比較暗黑一點。

-----廣告,請繼續往下閱讀-----

很多血管性的黑眼圈,其實就是皮膚薄加上底下還原血紅蛋白多造成的喔!另外如果給予強烈的血管收縮素,血管都縮起來,看起來自然也會變白喔!

黑黃的皮膚與透白的皮膚

美白part1_皮膚比較-2
(點擊看大圖)黑黃的皮膚與透白的皮膚。圖 / MedPartner 提供

這邊是重點喔!等一下會考!!!

所以學到這裡,你還覺得「美白」是一件簡單的事情嗎?只要是所有「多因素」造成的問題,要解決起來一定不簡單。但我們還是可以從中找到相對容易的解決辦法的!不要急,我們繼續看下去。

剛看了很多黑色素的壞處,好像沒了黑色素,你的人生就圓滿了。但親愛的,你聽過一種病叫做「白化症」嗎?或者是說「白子」,這就是一種缺乏黑色素的疾病……另外你有聽過有人打雷射打到皮膚白斑嗎?那就是打過頭,把黑色素母細胞都打死了。黑還有得救,這種白斑是真的非常難救的啊!

-----廣告,請繼續往下閱讀-----

所以千萬不要把黑色素想成十惡不赦的壞人,反之,黑色素是跟你互相依存,一輩子都要取得微妙平衡的夥伴喔~(乖)

黑色素其實不是壞人?

吸收紫外線、清除自由基、保護膠原蛋白跟 DNA 都靠它!

這個社會上沒有什麼真正的好人或壞人。要看你從什麼角度看他。這句話好像很有哲理,但在黑色素身上,也真的是這樣。

人為什麼要有黑色素?其實黑色素是人類阻止紫外線對皮膚造成傷害的主要幫手!

黑色素就像是擋子彈一樣幫你吸收著紫外線,而且也會幫你清除皮膚內的自由基。

皮膚內的自由基會攻擊膠原蛋白和彈力蛋白,造成這些寶貴的蛋白質變性或老化。自由基也會攻擊細胞核的 DNA,如果 DNA 複製出錯,可能就會導致皮膚癌喔!

美白part1_黑色素對抗自由基-1
(點擊看大圖)黑色素就像是擋子彈一樣幫你吸收著紫外線,而且也會幫你清除皮膚內的自由基。圖 / MedPartner 提供

天生的膚色有它的意義存在,千萬別想太逆天啊!

所以你為什麼會是現在的這個顏色,其實是有道理的!這是一個演化物競天擇的概念!身處在地球上不同地區,每個種族的日光曝曬程度不同,自然就產生了不同的黑色素含量。例如赤道附近的種族,通常膚色很黑。反之居住在高緯度的種族,皮膚就比較白。

所以你可以想想,難道一定要皮膚白才算是好看嗎?其實只要均勻、有光澤、沒有疾病,就是很棒的膚色!你看白人女性成年後崩壞的速度比亞洲人或黑人高很多,黑色素的量少,對紫外線防護力弱,膠原蛋白容易流失,就是其中一個因素喔~

我就覺得台灣的女生很多雖然不特別白,但是非常健美又亮眼啊~因為媒體的渲染,很多年輕女孩病態地去追求自己基因和環境無法達到的白,亂吃藥、亂抹東西、亂打雷射,其實只是在折磨自己,最後會害慘自己。你天生的膚色就是大自然給你的最好的保護色,硬要逆天,不會有好事的啊!

接下來進入隨堂測驗時間!

說能淡化黑色素的產品,可不可能做到立即美白?

說可以的人出去外面蹲。黑色素在表皮層跟真皮層,黑色素細胞製造出黑色素小體,製造到運送到表皮的角質需要 28 天的時間。

所謂淡化黑色素,通常是抑制黑色素生成,或加速黑色素代謝,你覺得有可能「立即」做到美白嗎?所以一般來說使用美白產品需要一個月的時間評估有沒有效果喔。

那是不是真的不可能立即產生美白效果嗎?

覺得不可能的,出去外面蹲啊~~~老師這樣問就是有陷阱啊XD,我們隨便舉兩個例子。

1. 血管收縮素:瞬間讓你的微血管收縮,自然就會比較白囉。

2. 果酸:化學剝脫劑例如果酸等酸性美白成分,可以除去皮膚表層的角質細胞。

表皮的角質老化而且比較不平整,又含色素,除去之後就可以快速感到美白、光滑。但長期使用可能引起慢性發炎,反而導致皮膚的屏障功能受損,這就是「換膚症候群」,會導致對光熱敏感,皮膚發紅、脫屑、緊繃、水分過度喪失,反而老化。所以一般美白產品只能用 3% 以下濃度的果酸,20% 以上的高濃度果酸只可以在醫護人員指導下使用。

另外要注意的是,果酸只是讓老化角質層剝落產生美白效果,但對於基底層或真皮層的色素就處理不到囉!

另外一提,美白產品的使用也不是一勞永逸,如果是作為黑色素還原劑作用的美白產品,只是還原了黑色素,一旦停用,黑色素就會回到氧化狀態,顏色就又變黑啦。

日常生活不花錢就可以做到的美白動作

1.  防曬:這個沒做到,其他都不用說。

2. 適度保濕:如果洗完臉,感覺過度乾燥,可以換溫和一點的洗面乳。若還是乾燥,可以適度用一些保濕 產品。

3. 多喝水:每天至少要喝足 2000 CC 的水。

4. 避免含糖食物或飲料:糖化蛋白終產物 AGEs 是讓肌膚老化跟許多慢性病的原因,所以拜託要儘量避免 吃太甜的食物或飲料。

5. 不熬夜:正常的生理時鐘能讓內分泌處於平衡狀態,對於抗老很有幫助!

6. 不抽煙:抽煙真的只能說一個字,慘。造成的皮膚影響,你自己去 google 抽煙跟皮膚,就會看到一堆慘照了。這麼確定的證據還不信邪,那就沒人救得了你。

7. 多運動:可以幫助新陳代謝,也排除皮膚內的廢物。對全身的健康也有幫助!

8. 多吃抗氧化食物:黃、紅、橘、綠的深色蔬菜水果通常含有大量抗氧化物質,可以幫助身體對抗自由基。洋蔥、大蒜也都有不錯的效果啊~

然後防曬實在太重要了,一定要再講一遍!「歲月催人老,日曬最靠腰」,防曬是所有抗老跟美白的基本功,這件事情一定要做到!至於詳細的防曬機制跟產品說明,就要等我們之後有空再寫了啊~

至於會讓你花到錢的,就一定要講清楚讓你知道好處壞處,才不致於花了錢沒效果,就請待我們下回分解啦~

今天是美白的第一堂課。接下來會針對不同層次,不同類型產品來跟大家說明,敬請期待下一篇:美白全攻略2之「美白面膜有沒有用」?

另外補充:

有些東西因為實際機制過度複雜,會用儘量不失真的譬喻說明,如果真的真的真的真的真的很想知道精準的機制。(但應該不用啦,你背起那些機制圖也沒啥日常應用可能,會用到的我都會講)

建議可以參考以下這幾本書:

  1. Cosmetic dermatology and medicine: principles and practice
  2. Cosmeceuticals, 3rd edition
  3. Fitzpatrick’s Dermatology in General Medicine, 8th edition

不要害怕學習知識,把知識學起來應用在生活中是很有趣的~大家一起學習成長喔!


  • 編按:愛美是每個人的天性,不過對你而言光是看滿架的化妝品、保養品,各種醫美產品就令你眼花撩亂,更別說還有玻尿酸、膠原蛋白、類固醇這些有聽沒有懂的名詞來搗亂嗎?如果你想要聰明的美,不想要被各種不實廣告唬得團團轉,那麼泛科學這位合作夥伴 MedPartner 美的好朋友,就是你我的好朋友。

本文轉載自 MedPartner 美的好朋友

文章難易度
MedPartner_96
49 篇文章 ・ 17 位粉絲
一位醫師用一年時間和100萬,夢想用正確醫美和保養知識扭轉亂象的過程。 Med,是Medicine,醫學的縮解。Med 唸起來也是「美的」。我們希望用醫學專業,分享更多美的知識。Partner則是我們對彼此關係的想像。我們認為醫師和求診者不只是醫病關係,更應該是夥伴關係。 如果您也認同我們的理想,歡迎和我們一起傳播更多正確的醫美知識。 我們的內容製作,完全由MedPartner專業醫療團隊負責,拒絕任何業配。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

0

0
0

文字

分享

0
0
0
白斑症造成的膚色不均讓你困擾嗎?微創表皮移植手術可以解決!
careonline_96
・2024/04/03 ・2267字 ・閱讀時間約 4 分鐘

「曾經遇過一位老師,因為下巴有塊白斑,而相當困擾。」中國醫藥大學附設醫院美容醫學中心雷射美容科主任張長正醫師指出,「經過檢查後確認是黑色素細胞不足,雖然接受過治療,但沒有明顯改善,所以決定接受表皮移植手術。」

當時利用微創表皮移植系統吸取微泡,精準取下淺層表皮,然後移植到下巴白斑處。張長正醫師說,待受皮區癒合之後,再經過一系列的照光治療,讓移植皮膚的顏色符合周圍皮膚的顏色。表皮移植的成果看起來相當自然,從此不用再擔心下巴的白斑會引人側目,讓患者相當開心。

白斑症(Vitiligo)的成因大多與自體免疫有關,由於患者自身的免疫系統會攻擊自己的黑色素細胞,導致皮膚缺乏黑色素。張長正醫師說,有些外在因素可能對黑色素細胞造成影響,例如外傷、長期受到化學刺激等;另外也有部分患者的白斑與胚胎發育的過程有關。

白斑症患者的皮膚會失去黑色素細胞,而出現形狀不規則的白色斑塊。

白斑症患者的皮膚會失去黑色素細胞,而出現形狀不規則的白色斑塊。張長正醫師說,白斑症在身體任何位置都可能發生,讓患者相當困擾。

-----廣告,請繼續往下閱讀-----

白斑症的治療包括藥膏、口服藥、紫外線照光治療等,張長正醫師說,如果確定缺乏黑色素細胞,在狀況穩定後可以考慮接受表皮移植手術。表皮移植的主要目的是獲得黑色素細胞,像播種一般,讓病灶部位長出具有黑色素細胞的表皮。

在進行表皮移植手術時,必須從取皮區取下表皮。張長正醫師說,一般常用的方法是以一個試管大的口徑覆蓋在取皮區,然後利用負壓抽吸,待皮膚形成水泡後,再用剪刀把水泡剪下來,移植到受皮區。但是這種做法會讓取皮區在癒合後的外觀較不理想,受皮區的結果也不甚美觀。因為一次取下一大塊水泡,沒有辦法符合周圍皮膚的顏色與質地,常常會有一塊一塊的凸起,類似鵝卵石步道。

另一個方法是使用皮膚切片筆,每彈一下可削下一片表皮,再分別移植到受皮區。張長正醫師說,這種做法也會讓受皮區在癒合後凹凸不平,不甚美觀。 

微創表皮移植手術是運用水泡取皮的原理

近年來發展出的微創表皮移植手術是運用水泡取皮的原理,但有大幅度的進化。張長正醫師說,微創表皮移植系統會稍微加溫,幫助皮膚形成水泡,然後使用負壓抽吸,讓皮膚形成許多個直徑約 1.8 mm 的微泡,微泡間的間隔約 2 mm。

-----廣告,請繼續往下閱讀-----

微創表皮移植手術的優點在於水泡很小,所以取皮區的復原速度相當快。一般在兩個禮拜後就能完全癒合,幾乎看不到疤痕。張長正醫師說,微創表皮移植手術能夠精準取得淺層表皮,且排列非常整齊,因此在受皮區中,每個微泡都能以相同的速度生長,在癒合之後皮膚會比較平整,且顏色相近。白斑症患者想要接受治療的目的就是讓膚色均勻,所以在接受表皮移植後,醫師會測量黑色素指數,而微創表皮移植手術可以有高達八成、甚至九成的顏色相似度。 

微創表皮移植手術能夠精準取得淺層表皮,且排列非常整齊,因此在受皮區中,每個微泡都能以相同的速度生長,在癒合之後皮膚會比較平整,且顏色相近。

除了用於治療白斑症,微創表皮移植手術還可運用於小範圍燒燙傷或困難癒合的傷口。張長正醫師說,傷口在癒合時都是由邊緣開始生長,範圍較大的傷口會需要較長的時間,而且癒合之後的疤痕會比較明顯。利用微創表皮移植手術能夠加速傷口的癒合,也可達到較佳的外觀。

微創表皮移植手術不需要麻醉,沒有明顯疼痛,在門診就可以進行,便利性高。張長正醫師說,接受微創表皮移植手術後,請依照醫師指示照顧傷口,並避免過度活動或摩擦受皮區。

筆記重點整理

  1. 白斑症患者的皮膚會失去黑色素細胞,而出現形狀不規則的白色斑塊,在身體任何位置都可能發生。
  2. 白斑症的治療包括藥膏、口服藥、紫外線照光治療等。如果確定缺乏黑色素細胞,在狀況穩定後可以考慮接受表皮移植手術,像播種一般,讓病灶部位長出具有色素細胞的表皮。
  3. 微創表皮移植手術的優點在於水泡很小,所以取皮區的復原速度相當快。一般在兩個禮拜後就能完全癒合,幾乎看不到疤痕。
  4. 微創表皮移植手術能夠精準取得淺層表皮,且排列非常整齊,因此在受皮區中,每個微泡都能以相同的速度生長,在癒合之後皮膚會比較平整,且顏色高度相近。
  5. 除了用於治療白斑症,微創表皮移植手術還可運用於小範圍燒燙傷或困難癒合的傷口,能夠加速傷口的癒合,也可達到較佳的外觀。

討論功能關閉中。