2

1
0

文字

分享

2
1
0

盤點全球生活條件——我們需要多少能量,才能讓所有人過上體面的生活?

安比西林_96
・2021/10/01 ・2933字 ・閱讀時間約 6 分鐘

每天煩惱三餐要吃什麽、出門要怎麽穿、回家後有沒有舒適的被窩可以鑽,應該是我們大部分人的日常。然而,在社會的某些角落,「貧窮」卻可能讓人連基本生理需求都難以滿足。

要消除貧窮,免不了增加資源消耗,但全球暖化危機當前,人類又不得不展開節能減碳的行動。面對「對抗貧窮和調適氣候變遷,兩者是否相互衝突」的疑問,科學家們提出了一個直指核心的問題:我們需要多少能量,才能讓所有人過上體面的生活?

打造放諸四海皆準的人類基本福祉指標!

為了解答這個大哉問,來自國際應用系統分析研究所(IIASA)的研究者們,提出了一個新的指標——「體面生活標準」(Decent Living Standards,DLS )。它源自於基本人權與公平正義的普世理念,定義為任何人都應享有的一系列基礎物質與社會滿足要件;不論你出身何處、對好的生活有何想法,或擁有什麽訴求

這些基礎條件,可以分為五大面向:營養(Nutrient)、庇護所(Shelter)、健康(Health)、社會互動(Socialization)及可移動性(Mobility)。在食衣住行方面,除了三餐溫飽及空間大小充裕的住處外,DLS 更貼心地考慮生活的細緻之處,例如乾淨的衛浴、可以烹飪、保存食物的基礎家電,以及高緯度地區在冬、夏兩季不可或缺的溫控設備等等。DLS 也不止步於基本物質需求,更涵括一個健全生活的人應享有的醫療服務、義務教育,使用基本通訊和交通設施,以及進行社交聯繫和政治參與的權利。

「體面生活標準」所列出的指標。圖/參考資料 2

逐項列出統一化的 DLS 各面向的要求後,研究者們會根據不同國情,例如氣候、都市化程度、文化及科技經濟結構的程度,去計算各國達成這些基準的閾值能量。除了國與國的差異,在計算上,也會納入在地的城鄉差距。

舉例來説,訂定了擁有足夠空間和熱舒適的房屋通用標準後,研究者會把它換算成各地所用的不同建材,及建設與維持各類民生服務的基礎設施(如水電廠、運輸系統等)所需耗費的能量。有了 DLS 的理想標竿值,再與每個國家目前用於實現 DLS 的能源進行比較,就可估算出填補 DLS 缺口所需的能源需求。

為什麼要以「能量」衡量生活標準?

過去,我們總是以滿足生活標準的最低收入,來制定貧窮線的水平。但 DLS 作為最低限度理想生活的基準,採用的是計算能源消耗量(energy consumption)常用的單位,即千兆焦耳(Gigajoule,GJ)或十萬億焦耳(Exajoule,EJ)。一般國家的能源消耗量,都與基礎建設有關,大部分來自化學燃料的燃燒,以及水力發電、核電、風力發電、太陽能發電等。

值得注意的是,DLS 分析結果顯示,無法過上體面生活的人,數量遠比處在貧窮線底下的人來得多!這說明:現有衡量貧富的指標,跟實際情況是脫節的。以金錢收入作為生活水平的衡量單位,是預設個人能透過消費,去換取相應的生活品質。但現實中,有一大部分的人,即使收入高於貧窮門檻,現今社會所投入建設的能源,卻未必足以讓他們過上體面的生活。

因此比起以金錢為單位,DLS 由下而上(bottom-up)去推算建設和維持基本物質需求所耗費能量的模式,也許更適合作為反映人類生活品質的指標。以消耗能量為單位的 DLS 不只有物質條件,也納入社會層面的需求,因此可以為政策制定者在思考資源規劃時,提供更直接、全面的參考。

世界並不公平,尤其在所需耗費的能量上

上方柱狀圖中表示的是各區域平均人口與 DLS 之間的差距,空白間隙及其上數值越大,表示距離達至 DLS 的缺口越大。而下方光譜顯示由 0 至 1 表示體面生活至缺乏體面生活的量度,顔色越深則表示越沒有體面的生活。圖/參考資料 1

搭配各國戶口統計調查、世界銀行(World Bank)發展指標等數據,研究者推算出世界各國在不同面向上與 DLS 的差距。結果顯示,北半球的北美與歐洲,大部分人民都過著與 DLS 相距不遠的生活。然而,南方卻呈現截然不同的境況。

在撒哈拉以南的非洲國家,有超過 60% 的人口在居家、溫控、衛浴與飲用水設施上,都相當匱乏。部分南亞與太平洋地區也面臨類似困境,尤其缺少乾淨的保暖與烹飪設施。這與他們使用的傳統生質能源帶來的不良健康影響有關。此外,部分亞洲、中東、拉丁美洲地區,也存在不便取得飲用水和保暖設施等等的缺口。

那麽,要投入資源做新建設,弭平當今與未來人口與 DLS 之間的距離,我們還需要多少能量呢?研究者設定情境估算,在 2040 年前,我們總共需要 290 EJ 的累積能量——大概是如今全世界每年所消耗能量的四分之三!是的,當今世界平均所消耗的能量,其實早已超過滿足每個人 DLS 的額度。在提升生活標準的耗能中,有大半會是拿來打造適宜的居所,四分之一用以建設以公共交通為主的交通設施,而改善健康營養所需的能量,會比推動社會互動來得少。

上圖顯示 2015 年至 2040 年間,全球用以投入建設以達到 DLS 所需的累積能量。不同顏色的區塊代表不同 DLS 的面向,而區塊大小則表示其所占總能量的比例。圖/參考資料 1

如果我們能成功在 2040 年時,讓所有人都達到 DLS,那在 2050 年時達到體面生活,最終需要年均 156 EJ 的能量,其中 108 EJ 會是供南方世界所用。到時候,人類生活的耗能大抵都會用在移動、通勤上,其次是維持健康及居住品質,而投入在維持社會互動所需的能量所占比例最低。

2050 年時,用以支持全球人口達到 DLS 所需的年均能量。圖/Kikstra, et al. (2021)

另一個研究的重要發現是,由於各地的氣候、文化和交通管道不同,即使在同一套 DLS 下,有些地區就是會比其他地區耗費更多能量,才能達到相同的基準,這個能量差異甚至可達 4 倍!例如,高緯度國家會需要耗費更多能量,來維持相同舒適的室内溫度;同樣的通勤距離,公共交通覆蓋率高的國家不需太多能量就能完成,但在個人擁車率高的地區,就會產生更多耗能。

結論:消除貧窮與對抗氣候變遷不衝突

總體而言,DLS 的研究結果,在貧富懸殊與氣候正義議題上提供了新的視野,告訴我們:投入消除貧窮的能量,並不會對調適氣候變遷的行動產生威脅。現今人類社會所產生的能量,其實大都挹注在讓原本就充裕的生活更好,而非幫助仍在體面生活基準下的人。因此,各國如何在經濟成長與耗能規劃上取捨,找出更公正、有效率的資源重分配方式,才是關鍵解決之道。

參考資料

  1. Decent living gaps and energy needs around the world
  2. Decent Living Standards: Material Prerequisites for Human Wellbeing
  3. Energy requirements for decent living in India, Brazil and South Africa
  4. 让全球老百姓过上体面生活不会拖累气候减排目标
  5. How much energy do we need to achieve a decent life for all?
  6. 維基百科:貧窮門檻

文章難易度
所有討論 2
安比西林_96
7 篇文章 ・ 5 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)


0

0
1

文字

分享

0
0
1

如果可以簡單,誰想要複雜?2021 諾貝爾化學獎得獎的是……讓合成變簡單的「不對稱有機催化劑」! ft. 陳榮傑博士【科科聊聊 EP62】

PanSci_96
・2021/10/26 ・3018字 ・閱讀時間約 6 分鐘
2021 年諾貝爾化學獎得主 Benjamin List 和 David MacMillan。圖/TheNobelPrize

化學反應中,能夠加快反應過程的物品就叫做「催化劑」。我們的生活處處都有催化劑,據估計,世界上大概有 35% 的 GDP ,是和某種化學催化有關的。但想想看,如果能讓催化劑的效率提升,是不是更能讓省去繁雜的製程,提高工作效率呢?

今年的諾貝爾化學獎,就是頒發給革新催化劑的 Benjamin List 和 David MacMillan!他們開發出「不對稱有機催化劑」,不只改善催化效率,也克服了「不對稱金屬催化劑」的缺點。說到這,什麼是「不對稱催化劑」?不對稱「有機」催化劑和不對稱「金屬」催化劑又有什麼差別?

為了解答這個問題,這次泛泛泛科學請到中央研究院化學研究所的陳榮傑老師,來替我們解說本屆獲獎的「不對稱催化劑」到底是什麼?另外,陳榮傑老師還說出 2020 年僅用兩週就做出轟動全台的「瑞德西韋」背後小故事!就讓我們一起來了解本次諾貝爾化學獎的內容吧!

本次專訪感謝 台灣科技媒體中心 的協助。

  • 00:57 陳榮傑老師的研究

中央研究院化學研究所的陳榮傑老師主要研究「有機合成」,包括天然物的全合成、不對稱有機催化反應。有時他的實驗室也會運用合成能力協助開發藥物,最著名的即是在 2020 年,他們僅用兩週就合成出可以協助治療新冠肺炎的「瑞德西韋(Remdesivir)」藥物,純度還高達 97%。

延伸閱讀:武漢肺炎/中研院7人團隊2週合成瑞德西韋 純度達97%

  • 03:39 2021 諾貝爾化學獎得獎研究

李斯特(Benjamin List)在研究催化性抗體時,雖然以前就有人以脯氨酸(proline)做催化劑,但卻因為當時沒有系統性發展,所以研究後繼無人。結果在他簡單的測試下,不僅證明脯氨酸是有效的催化劑,也證明它能驅動不對稱催化。

麥克米倫(David MacMillan)則是為了能夠讓不對稱催化劑能夠大規模工業生產,所以開始改良不對稱催化劑,最後他利用胺基酸的衍生物合成,開發出以他命名的催化劑 MacMillan catalyst。

延伸閱讀:

The Nobel Prize in Chemistry 2021

【2021諾貝爾化學獎】更高效率且環保的化學合成——「不對稱有機催化劑」

2021諾貝爾化學獎記者會 會後新聞稿

  • 06:33 想了解「不對稱催化劑」要先知道「鏡像異構物」

不對稱合成也可以稱為手性合成、掌性合成、鏡像異構物合成。有些分子會產生鏡像異構物(enantiomer),宛如一個分子照了鏡子,結構左右互換,又好似人的左右手雖然對稱但算是兩種不同的結構。同一組鏡像異構物的沸點、熔點、光譜都一樣,兩者唯一不同的是用偏極光照射時,正常分子是右旋的位移,但鏡像異構物則會產生左旋的位移。

延伸閱讀:左旋還是右旋?化學對稱跟你我的身體有關!

  • 09:37 不對稱合成

生物體內組成的基本單位如氨基酸、醣類,很容易會產生鏡像異構物,這些鏡像異構物也需要不同的酵素去辨認,如同你的左右手只能分別套上左右手的手套。在製藥上無可避免的須要只合成其中一種鏡像異構物才會有效果,而用化學的方式選擇性合成單一的鏡像異構物,這就叫做「不對稱合成」。

另外如有兩種鏡像異構物也需要分別測試,陳榮傑老師舉例 1960 年代的沙利竇邁(Thalidomide)事件就是不清楚沙利竇邁的右旋結構可以抑制孕婦害喜症狀,左旋結構卻會導致新生兒畸形,才會造成畸形兒比例異常升高。

2001 年時就有另一組人馬(William S. Knowles, Ryoji Noyori, K. Barry Sharpless)以不對稱催化獲得當年諾貝爾化學獎,不過當年開發的催化劑含有金屬成份,今年獲獎的催化劑研究則不含金屬,避免了金屬造成的問題。

延伸閱讀:鏡像異構物的分離方法(上)

  • 15:47 為什麼需要「不對稱催化劑」?

要達成不對稱合成,最好的方式是透過催化劑,讓反應活化能降低,加速反應進行。如果不採用不對稱催化劑加以控制,合成出的化合物會是各佔一半含量的異構物。

延伸閱讀:不對稱催化(Asymmetric Catalysis)(一)─ 不對稱氫化反應(Catalytic Asymmetric Hydrogenation)

  • 17:47 催化的重要性

根據估計,世界上有 35% 的 GDP,都在某種程度上涉及到化學催化 。因為催化劑可以降低反應活化能,原來需要高溫或高壓的反應,有了催化劑就可以在較低的條件下進行,節省了大量能量。諾貝爾化學獎至今頒發過七組關於催化的研究,不只是製藥,石油產業、高分子材料等等也都是催化研究的受益者,可見催化對我們的生活有著巨大的影響力。

  • 20:22 2001年也有不對稱催化劑的研究獲得諾貝爾化學獎,與今年的差別是?

2001 的諾貝爾化學獎由 William S. Knowles、Ryoji Noyori、K. Barry Sharpless 三位獲得,他們的不對稱催化劑含有金屬成份,有些還是貴金屬或重金屬,合成過程中需要特別去除重金屬污染,會有殘留的風險。而今年得獎的 Benjamin List 與 David  MacMillan 開發的「不對稱有機催化劑」屏除金屬,使用更精細的方式設計分子的立體結構。用量只要原來金屬催化劑的百分之一,還能維持效用與不對稱的選擇性,而且沒有重金屬的污染問題。比起許多酵素必須在人體內作用還有過往的金屬催化劑,不對稱有機催化劑能做的事情更多,未來延續性更加廣泛!

延伸閱讀:

The Nobel Prize in Chemistry 2001

【2001諾貝爾化學獎】催化性的不對稱合成

  • 25:32 Benjamin List 與 David MacMillan 的得獎關鍵

早在 1970 年代就有人在研究以脯氨酸(proline)用做催化劑,但卻沒有人繼續研究下去,Benjamin 認為可能是其效果不甚理想。抱著先試試的態度,Benjamin 測試了是否能夠催化讓兩個碳原子結合的羥醛反應(aldol reaction)。令他驚訝的是結果相當的有效。透過實驗,Benjamin 不僅證明脯氨酸是一種有效的催化劑,也證明了這種氨基酸可以驅動不對稱催化。

MacMillan 早年投身在天然物全合成領域,接受紮實的有機合成訓練。在研究有機金屬不對稱催化的過程中產生了避免使用金屬成分的想法,後來發展出與 Benjamin List 基底不太一樣但殊途同歸的研究結果。

  • 31:51 陳榮傑老師在「天然物全合成」的研究歷程

「天然物全合成」就是要動用所有可能的方法合成標的化合物,由於天然物的結構複雜,合成的方法也是非常紮實的訓練。

  • 35:07 科學家為了化繁為簡研究催化劑

可以簡單,誰想要複雜?為了把工作過程簡單化,並更有效率地完成工作,科學家們才願意研究催化劑。此外,化學反應的步驟越多,最後的產率可能會變低,所以如果能夠簡化步驟,就不會白白浪費物質與時間成本。

  • 42:39 2020 年轟動全台的瑞德西韋
  • 54:13 每個研究的背後,都有一個為社會付出的科學家

在每個領域,都有人在做很基礎的事情。希望能藉這次的化學獎,讓大家知道基礎研究的重要;大家也要想到,在這些受獎人的光環之下,其實背後也是有許多基礎研究在支撐的。

PanSci_96
156 篇文章 ・ 376 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策