0

0
0

文字

分享

0
0
0

什麼是「天文」?又為什麼要研究天文學?

屋頂上的天文學家
・2018/04/23 ・3294字 ・閱讀時間約 6 分鐘

天文是什麼?大部分的人對數學、物理學、化學,這些領域都能說得清楚,但是對天文的瞭解卻非常模糊,而且常常和氣象學、地球科學、太空科學分不清,甚至還跟占星術混在一起。

天文,最古老的科學

早期人們從事農耕,生活簡單,日出而作,日落而息,到了晚上沒有電視可看,手機可以滑,也沒有百貨公司或夜市可以逛,甚至連電燈都沒有。不過因為沒有燈光,也就沒有光害,夜晚的星空,不受塵世燈光影響,閃亮的星星和壯麗的銀河反而格外清晰,它們就成了夜晚說故事的題材。古希臘人把夜空中的星星串連起來,想像成一個個的星座,再將這些星座和神話故事連結,這些精彩的星座故事就一直流傳到現在。

古代的人一開始可能只是看看星星和星座,然後發現每個季節的星座都不相同,例如春季看到的星座就和夏、秋、冬三季不一樣。一些先進古文明對天象的觀察,讓他們掌握「天機」,進而改善他們的生活,有了好的生活才能發展出強盛的文明。例如,古埃及人會在日出前觀察東方的天空,如果看見天狼星比太陽還早升起(稱為天狼星偕日升),表示尼羅河即將氾濫。其實尼羅河氾濫和天狼星沒有關係,每年 8 月中旬,天狼星就會比太陽還早升起,每年這個時候南方兩千公里外,尼羅河上游的衣索比亞高原正受到季風影響下著大雨,這才是造成下游尼羅河氾濫的原因。

每年八月中旬,天狼星會比太陽還早升起,古埃及人知道尼羅河即將氾濫。(Stellarium軟體製作)

追根究底,造成衣索比亞季風的是太陽,而太陽運行直接影響各地氣候。太陽運行造成四季變化,這對農耕漁獵非常重要,動物依照季節變化遷徙,日照長短更影響農作物生長,藉由觀察太陽運行,人類才能掌握這些變化,所以天文是最古老的科學之一。

天文學的範圍

早期的人類,把天上的現象或物體都當作天文的一部分,從天上的雲、閃電、彩虹、日暈、極光,到太陽、月亮、行星和星星,都被歸類為天文學。到了近代,科學家把大氣層內的區域劃分為大氣科學和氣象學,所以雲、彩虹、日暈、幻日這些大氣層內的現象,屬於大氣科學的一部分。有趣的是,當看到彩虹、日暈、幻日這些現象時,有時還會請教天文學家,這些現象的照片也會在天文相關網站或雜誌中發表,雖然這些都是屬於大氣科學的範圍。

日暈是大氣層裡的現象,是冰晶折射太陽光造成的結果。攝影:李昫岱

自從 1957 年人類發射第一顆人造衛星後,許多太空船進入太空探索太陽系的各個天體,於是產生了新的學門:太空科學(或行星科學),太空科學是以研究太陽系為主的科學,研究的對象有行星、衛星、彗星、小行星、矮行星等等。另外,地球科學是研究地球的科學,研究的是地球的海洋、大氣及地質,重點是和地球相關的研究。

物理學是最接近天文學的科學,實際上天文學是物理學的一個分支,天文學家運用物理學的知識和定律,來解釋我們所觀測到的現象。天文和物理最大的差別在於,物理通常可以在實驗室作實驗,而天文卻不能,天文學家只能觀測「實驗」的結果,天文實驗可能是「造物者」專屬的權利!

天文學所研究的範圍通常是指我們太陽系以外的區域,包括了恆星、星系和整個宇宙。我們的銀河系裡有數千億個恆星系統,而太陽系只是數千億個系統中的一個,當然廣義的天文學包括了我們的太陽系。

哈伯太空望遠鏡拍攝的影像,圖中密密麻麻的天體幾乎都是一個個的星系。影像來源:NASA

物理、氣象、地球科學、太空科學、行星科學及天文,這些都是以科學的方法來作研究,只是研究的目標不同。而推測個人命運和運勢的占星術並不是科學,占星術跟天文學沒有直接的關係。

為什麼要研究天文?

為什麼要研究天文?同樣的問題也可以問,為什麼要研究歷史?為什麼要研究文學、音樂和藝術?滿足人類的求知慾,了解宇宙,了解我們的過去,甚至未來,這跟研究歷史相同。對喜歡天文的人來說,宇宙美得像首詩、像幅畫,那跟很多人喜歡文學、音樂和藝術是一樣的。

仰望滿天星斗會不會想知道,天上的星星是怎麼來?宇宙中有多少顆星星?宇宙有多大?宇宙是怎麼來的?真的有外星生物存在嗎?這些其實都是天文學家研究、想回答的問題。想像一下,有個小孩發問,宇宙怎麼來的?如果只能告訴他,宇宙是盤古開天闢地創造出來的,小孩會滿意這樣的答案嗎?

哥倫布能夠發現新大陸,除了優秀的航海技術,天文知識也很重要!1503 年 6 月 30 日,從歐洲出發的哥倫布抵達牙買加,當地的原住民一開始很歡迎他們,還提供食物,但是後來一些不肖的水手欺騙而且偷竊原住民的東西,於是原住民停止供應他們食物。哥倫布從船上的天文年鑑中得知 1504 年 3 月 1 日即將發生月全食,於是告訴原住民如果不再提供食物給他們,神會發怒而且讓月亮變紅。3 月 1 日晚上,月亮果然如哥倫布所言,變成血紅色的月亮,原住民以為神真的生氣了,所以趕緊提供哥倫布食物。

哥倫布讓牙買加的原住名以為神生氣了,所以讓月亮變成血紅色。Author: Camille Flammarion

培根說:「知識就是力量」,哥倫布運用天文知識,讓牙買加的原住民繼續提供食物給他們,如果哥倫布不知道月食即將發生,他們能夠得到食物嗎?如果牙買加的原住民也知道月食即將發生,那麼他們會受騙嗎?如果有一天外星人來到地球,告訴我們地球即將毀滅,要我們提供所需,外星人才願意幫助我們,我們是不是有足夠的知識,能夠判斷外星人說的是不是正確?還是我們只能當牙買加的原住民?

不僅僅是月食,早期的人類對其他的一些天文現象也充滿恐懼,日食是天狗把太陽吞了,地上的人敲鑼打鼓要把天狗趕跑,彗星則是帶來厄運的掃把星,避之唯恐不及,流星雨就像世界末日一般,天上的星星都掉下來。不過當我們了解這些天象的來龍去脈,它們反而成為眾人追逐的對象,不少人為了看日食,不遠千里到世界各地觀看這難得天象,彗星更是大家追逐的目標,流星雨發生時,各個觀星地點更是人滿為患!

改變人類的價值觀

中世紀的時候,歐洲人普遍接受托勒密(Claudius Ptolemy)的地心說,也就是地球是整個宇宙的中心,太陽、月亮及行星都繞著地球運行。文藝復興時期的哥白尼(Nicolas Copernicus, 1473-1543)提出日心說,認為太陽才是宇宙的中心,地球和其他行星都是繞著太陽運行。布魯諾(Giordano Bruno, 1548-1600)更進一步地認為,太陽只是太陽系的中心,而它僅僅是銀河系眾多恆星中的一顆而已。

太陽只是銀河系中數千億顆恆星中的一顆,那麼我們的銀河系是宇宙中唯一的星系嗎?哈伯(Edwin Hubble, 1889-1953)證明仙女座星雲其實是銀河系外的一個星系,而我們的銀河系只不過是宇宙中許許多多星系中的一個!

宇宙如此的廣大,那麼它是怎麼來的呢?哈伯發現距離我們愈遠的星系,遠離我們的速度就愈快,不過我們並不是宇宙的中心,而是每個星系都在遠離彼此,這推翻了牛頓和愛因斯坦認為宇宙是靜止的想法。哈伯的這個發現後來衍生出大霹靂理論,大霹靂理論認為宇宙大約是137億年前誕生的,從一個非常小、非常炙熱的點膨脹到現在的樣子。我們的宇宙會繼續的膨脹下去嗎?是的,而且膨脹的速度還愈來愈快!天文學家不斷的改變我們的想法,從自我為中心到接受各種可能,就像所有科學探索的過程,一步一步朝著真理前進。

卡爾·薩根(Carl Sagan)建議讓遠離太陽系的航海家1號(Voyager 1),回頭對地球拍攝一幅影像,1990 年 2 月 14 日航海家 1 號已經遠在冥王星軌道之外,拍攝的影像中地球比一個畫素還小!如果不知道地球在影像中的位置,大概沒人能找到我們的家在哪裡,這個「蒼藍小點」就是地球上的生物世世代代生老病死的地方。

藍色圓圈中的小點就是我們的地球,棕色的條紋是太陽光芒造成的。影像來源:NASA航海家一號

離開地球,遠離太陽系,飛向宇宙,浩瀚無垠,那裡無限寬廣,沒有束縛,沒有限制,更沒有疆界,天文科學上許多未知等著我們去探索!

文章難易度
屋頂上的天文學家
18 篇文章 ・ 4 位粉絲
屋頂上的天文學家-李昫岱,天文學博士,曾服務於中央研究院天文所及美國伊利諾大學厄巴納-香檳分校。大學時交了一群天文社的朋友,從此過著離不開天文的生活,希望透過寫作拉近遙遠天體的距離,讓你發現天文的美好! 歡迎來「屋頂上的天文學家」臉書和部落格,一起航向宇宙,浩瀚無垠!

1

4
0

文字

分享

1
4
0

整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域

CASE PRESS_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

參考資料

所有討論 1
CASE PRESS_96
207 篇文章 ・ 1123 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策