5

0
0

文字

分享

5
0
0

新 iPad 螢幕成功的「幕後功臣」,才不是你想像的那樣

活躍星系核_96
・2012/03/15 ・1917字 ・閱讀時間約 3 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

文/PipperL

之前看 The new iPad 的特點介紹時,就覺得有地方怪怪的:(翻譯摘錄自iPhone4.tw 所製作的繁體中文字幕

在技術上,可不只是簡單擠出更多畫素。
若你在同一個空間中擠入四倍的次畫素,
訊號就會打架,螢幕就會閃爍,
為了解決這個問題,我們必須把訊號分層傳遞,分別傳送。
這是一個非常大的突破(This is a major breakthrough),
這也就是讓畫素可以這麼小且這麼緊密相依在一起的關鍵。

咦?訊號分層傳遞,是在說什麼?非常大的突破?而且是關鍵?

-----廣告,請繼續往下閱讀-----

基於我是一個水電工人,身上帶著板手也是正常的,所以當看到 Display Search 的《 How Apple Squeezes Four Times the Number of Pixels into its New iPad Retina Display》,就點進去看了一下。

原來是指 Super High Aperture(SHA)/ Ultra High Aperture(UHA)(被翻成超高孔徑)技術啊。嗯,好像沒什麼啊,為什麼 Apple 會說成「非常大的突破」??

SHA / UHA 是一個行之有年的技術用來提升所謂的開口率,也就是面板的透光性。這一切,都要從 coupling / flicker 開始說起。面板上薄膜電晶體所需之訊號電路(Gate line 和 data lline),由於跟畫素電極(Pixel electrode)只用數百奈米的絕緣層隔開,所以很容易在訊號電路有訊號通過時,透過隅合效應,影響畫素電極的電壓。而當畫素電極的電壓被影響,連帶著使著跨過液晶的電壓被影響,進而影響液晶分子的扭轉程度,而使得該次畫素呈現的顏色被改變,也就是文中所謂的「訊號就會打架、螢幕就會閃爍」。就像手拿一杯水,小小的晃動都會使水晃來晃去,甚至潑濺出來。

其中一個解決方式,就是把小杯水換成大杯水,也就是增加次畫素中儲存電容的容量。水愈多,coupling 所造成的電壓變化愈小。然而這是需要付出代價的,電容畫的面積愈大,就會降低開口率,也就是說會降低面板的透光性。

-----廣告,請繼續往下閱讀-----

(圖片引用自 DisplaySearch,懶得自己畫了。)

所以 SHA / UHA 試著從另一個角度來解決這個問題:把訊號電路和畫素電極隔得開開的 — 用一層夠厚(~3000奈米,實務上依需求而定)、低介電常數的絕緣層。這層絕緣材料一開始是液體,塗佈在基板上之後,再經過加熱烘烤和紫外線處理後,就會硬化成為一絕緣層。這麼厚的絕緣層要挖洞很麻煩,所以材料廠商 JSR 特別設計讓這層材料對光敏感,可以用微影機台直接定義出要挖洞的地方。

(主要推廣的廠商之一 JSR,是因為他們開發了那層光感壓克力樹脂材料。XD  大家用的愈多,他就賣的愈多,而且還賣得很貴!!比一般的光阻還貴多了)

只要把訊號電路和畫素電極隔得開開的,就不用設計太大的儲存電容。儲存電容變小了,開口率就上升了,要達到同樣的亮度就不需要那麼多背光 LED,於是耗電就減少了。

-----廣告,請繼續往下閱讀-----

上面的技術細節不懂沒關係(雖然我已經寫得很白話了),重點來了:

因為可以提高開口率、減少耗電,這項技術早已廣泛使用在行動裝置的面板螢幕中。你我手邊的手機,十支有九支(好吧,我沒有真的統計過,不過到現在我還沒看過沒用上這項技術的),只是沒有任何一家公司拿出來說嘴,說這是「非常大的突破」。而在 DisplaySearch 的文中也提到,已經有超過 25% 的 LCD 面板應用了這項技術(這裡指的是所有的 LCD 面板,含 LCD TV 等,LCD TV 由於成本考量及開口率/耗電需求沒那麼大,比較少應用此技術),如果單就行動裝置(也就是不插電靠電池的裝置),這個比例會高上許多。

我完全不知道,一項早已被廣泛使用的技術,有什麼好拿來說嘴的。

我喜歡 Apple 那種以人為本,以使用者體驗為導向,不強調科技和技術規格的格調。為了達到完美的使用者體驗,可以毫不手軟地用上一堆先進甚至嚇人的技術(巷子內的人才知道 iPhone4 的工藝真的是….),但不代表在對消費者訴說新 iPad 的特點時,可以拿這種行之有年的「Super High Aperture」技術作為新產品螢幕的「關鍵」技術。

-----廣告,請繼續往下閱讀-----

新 iPad 能在 9.7 吋的螢幕裡用非晶矽(amorphous silicon)或是氧化物半導體(oxide semiconductor)做到 264ppi 的確有其過人之處,但是最最最關鍵幕後功臣才不是你想像的 Super High Aperture 技術,而是其他不方便說、不容易簡單地說、消費者不會也不應該關心的技術。那些技術讓宅宅工程師去煩惱,消費者快樂地體驗使用就好了,這才是真正重要的。

engadget 中文版的這篇文章把他說成「新 iPad 螢幕成功的幕後功臣」、還說「但不出意外,這項技術又將藉由 Apple 之手被發揚光大」,這就更超過了。一個已經被使用多年、廣泛使用,你的 iPhone、HTC、Nokia、Sony、Motorolla 手機上都已經在使用的技術,要「藉由 Apple 之手被發揚光大」,未免太錦上添花了些。

讓我更憂慮的是,一旦偏離現實太遠,那些看似華麗的詞藻,只會淪為口號,等著讓(內行的)人吐嘈,並懷疑這個公司其他的部份是否也言過其實。

有很多可以學,不要只學到現實扭曲力場啊~~

-----廣告,請繼續往下閱讀-----

本文轉載自終極邊疆BLOG

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
0

文字

分享

0
2
0
從半導體到量子晶片:台灣成為全球量子科技的核心力量!
PanSci_96
・2024/10/14 ・2209字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

台灣首台量子電腦誕生:量子時代的到來

2024 年 1 月,台灣自主研發的第一台量子電腦正式於中央研究院誕生,儘管僅具備5個量子位元(qubits),卻為台灣在全球量子電腦競技場上佔據一席之地揭開了序幕。這一具有歷史性意義的事件不僅代表台灣科技能力的進步,也喚醒了人們對量子電腦的未來潛力的無限期待。

量子電腦,不再僅是科幻小說中的幻想,而是實實在在的科技新星,逐漸改變人類面對複雜問題的解決方式。台灣,身為全球半導體製造的重要支柱,正在迎接量子電腦進入量產的時代,而這將與材料學、晶片製程技術緊密相關。當量子技術進一步發展,台灣的製程技術無疑能為這場科技革命提供關鍵助力。

但在我們深入了解量子電腦的潛力之前,必須先理解它的基本運作原理。畢竟,要瞭解該投資哪些量子概念股,或者選擇哪些科系來掌握未來的科技趨勢,我們首先需要清楚量子電腦究竟是如何運作的。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子電腦?從電晶體到量子位元

2019 年,Google 推出了 53 量子位元的量子電腦「梧桐」(Sycamore),並宣告達成「量子霸權」,即其量子電腦在短短 200 秒內完成了傳統超級電腦需要 1 萬年才能處理的計算任務。這標誌著量子計算能力的突破,為計算科學開啟了全新的紀元。

-----廣告,請繼續往下閱讀-----

量子電腦之所以強大,是因為它利用了量子力學的「疊加」與「糾纏」現象。傳統電腦使用二進制的「0」和「1」來進行計算,而量子位元可以同時處於「0」和「1」的狀態,這使得量子電腦能在同一時間進行更多複雜的計算,大大提高了運算效率。

這樣的技術突破意味著,我們不再只依賴電子流過電晶體來實現運算,而是可以直接操控單一電子或其他粒子,讓它們同時攜帶 0 與 1 的信息,從而極大地提升了計算能力。

掌握電子的挑戰:從不確定性到操控技術

量子力學的另一個特性——不確定性原理——使得控制電子變得非常困難。電子極其微小,甚至無法用肉眼觀察。當我們試圖「觀察」一顆電子時,光子的介入會改變電子的狀態,這種不確定性使得同時測量電子的位置和動量幾乎不可能。

這種量子現象的捉摸不定,給科學家們帶來了巨大的挑戰。然而,正是這些現象,讓科學家們探索出了全新的計算方式——量子計算。在這一領域,超導體成為了實現量子位元的關鍵技術。

-----廣告,請繼續往下閱讀-----

超導體與量子電腦的結合:解鎖未來的關鍵

2023 年 7 月,韓國科學家宣布發現了一種名為 LK-99 的高溫超導體,這一發現引起了全球的轟動,因為超導體具備零電阻和磁浮現象,與量子力學有著密切的聯繫。超導體是未來量子電腦的潛在材料,它能夠在極低溫下讓電子以「庫柏對」的形式運動,這些電子對能夠在原子之間暢通無阻,產生零電阻效應。

通過利用「約瑟夫森效應」,兩個超導體之間夾入絕緣體,可以讓電子對穿越絕緣體,形成「超導電流」。這種穿隧效應是量子電腦中量子位元的重要基礎,讓我們能夠構建出穩定且有效的量子系統。

然而,現有的超導量子電腦仍面臨兩個主要挑戰。首先,超導現象只能在接近絕對零度的極低溫環境下出現,這意味著要在家庭或企業中大規模應用量子電腦,仍需克服極端溫控的技術難題。其次,超導量子位元非常容易受到外界干擾而失去量子狀態,這使得量子計算的穩定性成為一個尚未解決的問題。

由美國國家標準技術研究所研發的約瑟夫森接面陣列晶片。圖/wikimedia

量子電腦的多元發展:超導不是唯一的答案

儘管超導體被廣泛應用於當前的量子電腦技術中,但它並不是唯一的發展途徑。其他量子計算技術也在不斷進步,包括基於離子阱技術、光子學量子電腦等。

-----廣告,請繼續往下閱讀-----

離子阱技術利用激光操控單一原子來進行計算,這種技術具有極高的精度和穩定性,但也面臨著技術複雜性和成本的問題。而光子學量子電腦則利用光子來承載和傳輸信息,具有快速且易於擴展的潛力,然而,目前的光子學技術還存在一定的技術障礙,尤其是在量子糾纏狀態的穩定性上。

因此,量子計算的未來發展並不會只依賴一種技術,而是可能出現多元化的方案,根據不同的應用場景,選擇最合適的技術路徑。

台灣的量子未來:機遇與挑戰並存

隨著全球對量子技術的關注不斷提升,台灣有望在這一領域佔據重要地位。台灣的半導體技術、材料科學研究和製造實力,無疑為量子電腦的發展提供了堅實的基礎。從傳統的半導體製程轉換到量子晶片製造,台灣擁有豐富的技術積累與創新潛力。

然而,量子電腦技術的發展速度迅猛,台灣必須在全球競爭中不斷推動自主研發能力。未來,量子電腦的應用範圍將涵蓋人工智能、金融運算、材料科學、新藥開發等領域,這將進一步改變現有的產業結構和科技生態。

-----廣告,請繼續往下閱讀-----

對於投資者和學生來說,理解量子電腦的運作原理與未來趨勢,將是未來掌握科技變革的關鍵。而量子電腦的崛起,也標誌著下一場技術革命的序幕已經開啟。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

5

0
0

文字

分享

5
0
0
新 iPad 螢幕成功的「幕後功臣」,才不是你想像的那樣
活躍星系核_96
・2012/03/15 ・1917字 ・閱讀時間約 3 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

文/PipperL

之前看 The new iPad 的特點介紹時,就覺得有地方怪怪的:(翻譯摘錄自iPhone4.tw 所製作的繁體中文字幕

在技術上,可不只是簡單擠出更多畫素。
若你在同一個空間中擠入四倍的次畫素,
訊號就會打架,螢幕就會閃爍,
為了解決這個問題,我們必須把訊號分層傳遞,分別傳送。
這是一個非常大的突破(This is a major breakthrough),
這也就是讓畫素可以這麼小且這麼緊密相依在一起的關鍵。

咦?訊號分層傳遞,是在說什麼?非常大的突破?而且是關鍵?

-----廣告,請繼續往下閱讀-----

基於我是一個水電工人,身上帶著板手也是正常的,所以當看到 Display Search 的《 How Apple Squeezes Four Times the Number of Pixels into its New iPad Retina Display》,就點進去看了一下。

原來是指 Super High Aperture(SHA)/ Ultra High Aperture(UHA)(被翻成超高孔徑)技術啊。嗯,好像沒什麼啊,為什麼 Apple 會說成「非常大的突破」??

SHA / UHA 是一個行之有年的技術用來提升所謂的開口率,也就是面板的透光性。這一切,都要從 coupling / flicker 開始說起。面板上薄膜電晶體所需之訊號電路(Gate line 和 data lline),由於跟畫素電極(Pixel electrode)只用數百奈米的絕緣層隔開,所以很容易在訊號電路有訊號通過時,透過隅合效應,影響畫素電極的電壓。而當畫素電極的電壓被影響,連帶著使著跨過液晶的電壓被影響,進而影響液晶分子的扭轉程度,而使得該次畫素呈現的顏色被改變,也就是文中所謂的「訊號就會打架、螢幕就會閃爍」。就像手拿一杯水,小小的晃動都會使水晃來晃去,甚至潑濺出來。

其中一個解決方式,就是把小杯水換成大杯水,也就是增加次畫素中儲存電容的容量。水愈多,coupling 所造成的電壓變化愈小。然而這是需要付出代價的,電容畫的面積愈大,就會降低開口率,也就是說會降低面板的透光性。

-----廣告,請繼續往下閱讀-----

(圖片引用自 DisplaySearch,懶得自己畫了。)

所以 SHA / UHA 試著從另一個角度來解決這個問題:把訊號電路和畫素電極隔得開開的 — 用一層夠厚(~3000奈米,實務上依需求而定)、低介電常數的絕緣層。這層絕緣材料一開始是液體,塗佈在基板上之後,再經過加熱烘烤和紫外線處理後,就會硬化成為一絕緣層。這麼厚的絕緣層要挖洞很麻煩,所以材料廠商 JSR 特別設計讓這層材料對光敏感,可以用微影機台直接定義出要挖洞的地方。

(主要推廣的廠商之一 JSR,是因為他們開發了那層光感壓克力樹脂材料。XD  大家用的愈多,他就賣的愈多,而且還賣得很貴!!比一般的光阻還貴多了)

只要把訊號電路和畫素電極隔得開開的,就不用設計太大的儲存電容。儲存電容變小了,開口率就上升了,要達到同樣的亮度就不需要那麼多背光 LED,於是耗電就減少了。

-----廣告,請繼續往下閱讀-----

上面的技術細節不懂沒關係(雖然我已經寫得很白話了),重點來了:

因為可以提高開口率、減少耗電,這項技術早已廣泛使用在行動裝置的面板螢幕中。你我手邊的手機,十支有九支(好吧,我沒有真的統計過,不過到現在我還沒看過沒用上這項技術的),只是沒有任何一家公司拿出來說嘴,說這是「非常大的突破」。而在 DisplaySearch 的文中也提到,已經有超過 25% 的 LCD 面板應用了這項技術(這裡指的是所有的 LCD 面板,含 LCD TV 等,LCD TV 由於成本考量及開口率/耗電需求沒那麼大,比較少應用此技術),如果單就行動裝置(也就是不插電靠電池的裝置),這個比例會高上許多。

我完全不知道,一項早已被廣泛使用的技術,有什麼好拿來說嘴的。

我喜歡 Apple 那種以人為本,以使用者體驗為導向,不強調科技和技術規格的格調。為了達到完美的使用者體驗,可以毫不手軟地用上一堆先進甚至嚇人的技術(巷子內的人才知道 iPhone4 的工藝真的是….),但不代表在對消費者訴說新 iPad 的特點時,可以拿這種行之有年的「Super High Aperture」技術作為新產品螢幕的「關鍵」技術。

-----廣告,請繼續往下閱讀-----

新 iPad 能在 9.7 吋的螢幕裡用非晶矽(amorphous silicon)或是氧化物半導體(oxide semiconductor)做到 264ppi 的確有其過人之處,但是最最最關鍵幕後功臣才不是你想像的 Super High Aperture 技術,而是其他不方便說、不容易簡單地說、消費者不會也不應該關心的技術。那些技術讓宅宅工程師去煩惱,消費者快樂地體驗使用就好了,這才是真正重要的。

engadget 中文版的這篇文章把他說成「新 iPad 螢幕成功的幕後功臣」、還說「但不出意外,這項技術又將藉由 Apple 之手被發揚光大」,這就更超過了。一個已經被使用多年、廣泛使用,你的 iPhone、HTC、Nokia、Sony、Motorolla 手機上都已經在使用的技術,要「藉由 Apple 之手被發揚光大」,未免太錦上添花了些。

讓我更憂慮的是,一旦偏離現實太遠,那些看似華麗的詞藻,只會淪為口號,等著讓(內行的)人吐嘈,並懷疑這個公司其他的部份是否也言過其實。

有很多可以學,不要只學到現實扭曲力場啊~~

-----廣告,請繼續往下閱讀-----

本文轉載自終極邊疆BLOG

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
1

文字

分享

0
3
1
「光」革新突破半導體極限 矽光子晶片即將上陣
宜特科技_96
・2024/09/22 ・3808字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

矽光子是近年熱門議題,晶圓大廠計劃將先進封裝整合 CPO 及矽光子技術,預計兩年後完成並投入應用。早在 2020 年,Intel  就指出矽光子將是先進封裝發展的關鍵,如今矽光子已真正成為半導體產業的核心研發方向。面對這次「電」轉「光」的新革命,您準備好了嗎?

本文轉載自宜特小學堂〈光革新突破半導體極限 矽光子晶片即將上陣〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

隨著半導體積體電路技術的不斷發展,我們見證了摩爾定律的演進,元件尺寸的微縮和新材料的應用,都是為了提高單位面積內的元件數量,以加速 IC 的運算速度,同時改善散熱效能和節省能源。然而,隨著尺寸的微縮接近物理極限,製程技術面臨挑戰,良率問題也隨之浮現。

因應這一挑戰,專家開始探索將不同功能的 IC 集合成單一晶片、採用 3D 堆疊封裝技術等新途徑,但這些技術的核心仍然是用金屬線連接各個元件。自從晶片問世以來,「電子」一直是主要的訊號傳輸媒介,它的傳輸速度直接決定了晶片的性能。近年來高效能運算(HPC)、人工智慧(AI)、雲端數據等需求爆炸性成長,如何能突破限制實現更高效能的傳輸呢?於是大家把目光轉向了「光子」,藉由更快速的「光子」引入,是否可以加快元件的運作呢?

什麼是矽光子(Silicon photonics,簡稱 SiPh)?

矽光子(Silicon photonics,簡稱 SiPh) 是一種結合電子與光子的技術,是將光路微縮成一小片晶片,利用光波導在晶片內傳輸光信號。若能將處理光訊號的光波導元件整合到矽晶片上,同時處理電訊號和光訊號,便可達到縮小元件尺寸、減少耗能、降低成本的目標,但目前矽光子仍有許多技術難題需克服。

光通訊運用的「光纖」系統,能於世界各地以每秒數萬億 bit 的速度傳送數據,1968 年貝爾實驗室工程師很早就想到了。到了 21 世紀初發現光子技術不僅能在國與國之間做數據的傳遞,亦可在數據中心甚至是 CPU 之間,乃至於在晶片與晶片之間做數據傳輸。之所以採用「光」是因為玻璃(SiO2)對於光來說是透明的,不會發生干擾的現象,基本上,可以透過在 SiO2 中,結合能夠傳遞電磁波的光波導(Waveguide)通路來高速地傳輸數據。

-----廣告,請繼續往下閱讀-----

而矽(Si)材料的折射率(Refractive index)對比在紅外線的波長下高達 3.5,這也意味著,它比許多其他光學中所用的材料,更能有效地控制光的彎折或減速。一般光學傳輸的波長是 1.3 和 1.55 微米,在這兩個波段下矽材料不會吸收光線,因此光線能夠直接穿透矽材料。這種相容性使矽基設備能夠長距離傳輸大量數據,不會明顯失去訊號。

因此,矽光子技術透過原本 CMOS 矽(Si)的成熟技術,結合光子元件製程,可以使處理器核心之間的資料傳輸速度提高數百倍以上,且耗能更低;CPO(共同封裝光學)則是利用矽光子技術,將光通訊元件和交換器做整合,放在同一個模組內,這樣能縮短傳輸路徑,並在高速傳輸時,降低延遲與功耗。現今各大廠的目標是透過CPO和矽光子,實現更高效的光電封裝整合,大幅提升傳輸性能。

除了前面提到高效運算跟人工智慧需求不斷增加,光學雷達、生醫感測也非常適合使用光子元件,世界前幾大 IC 製造商都相繼發表矽光子是未來 IC 技術的關鍵及趨勢,本文將與大家分享相關文獻,了解矽光子元件組成與決定效能的關鍵。

矽光子元件組成,材料以「鍺」為首選

矽光子元件的基本組成是使用能將「光」轉換成「電」訊號的 p-i-n diode(PIN二極體)光電偵測器,加上傳輸訊號的光波導(Wave guide)與電訊號轉成光子的調變器(Modulator)、耦合器(Coupler)等所組合成的一個單晶片,斷面的結構大致如圖一所示。

-----廣告,請繼續往下閱讀-----
圖一:完整的 CEA LETI 矽光子單晶片平台用於結合被動和主動作用元件的橫剖面示意圖。[1]

其中最關鍵的製造技術即在圖一最右側 PIN 二極體,首選的半導體材料為鍺(Ge),因為鍺具有準直接能隙(Quasi-Direct band gap)且僅有 0.8eV 小於光子能量,能夠有效吸收光並轉換成電訊號,並且對於光的吸收係數很高,更適合用於光電偵測器,是一種非常好的取代材料。

PIN 是由一組高摻雜P (p+)型區和N (n+)型區之間夾著一層本質(Intrinsic)區所組成。在負偏壓下二極體的空乏寬度(Depletion width, Wd)會擴展至整個本質層。如圖二下能帶結構所示,當入射到本質層中的光子被吸收後,於導電和價電帶間產生電子–電洞對的漂移而形成電流。在矽光子元件的研發中最重要的方向,就是在不影響常規 CMOS 元件的特性下透過調整光電偵測器 PIN 的製程,且能使效能與頻寬達到最佳化。

圖二:PIN 二極體與負偏壓下受光效應產生的能帶結構示意圖。[2]

如何辨別 Ge-PIN 的品質?

先以圖三簡單的說明一顆單晶片的設計,Ge-PIN 光電偵測器與 Si -光波導的相對位置,(a)圖為剖面結構示意圖,光波導位於本質層下方,(b)圖為正面 Layout。

圖三:光子元件中 PIN 偵測器與光波導之(a)剖面結構相對位置圖,(b)為正面 Layout。[3]

因為 Ge-PIN 的品質差異會影響到偵測器的光電效能,鍺(Ge)的磊晶製程與 矽(Si)之間會有晶格不匹配與離子植入產生的差排缺陷等影響品質,圖四是Ge-PIN藉由穿透式電子顯微鏡(TEM)的觀察,可以明顯看出在本質層(Intrinsic)與 P 區均呈現亮區,代表沒有明顯缺陷,反觀在右側的 N 區則呈現暗灰色,這應該是源自於離子植入製程所產生的晶格缺陷。(延伸閱讀:破解半導體差排軌跡  TEM 技術找出晶片漏電真因

-----廣告,請繼續往下閱讀-----
圖四:TEM 觀察 Ge-PIN 的斷面結構影像。[4]

此外,藉由 EDS 來分析波導中的矽(Si)是否有朝向 Ge-PIN 擴散的情形。圖五為鍺(Ge)層中沿著波導方向矽(Si)的含量分佈。矽(Si)摩爾百分比從接觸窗(Window)最高約 35%,向輸入側減少至低於 EDS 檢測極限的 2%,約是在 11mm 的位置處,表示發生明顯的擴散現象。

圖五:EDS 分析從接觸窗(0mm)到光電偵測器的輸入端(15mm)矽(Si)的分佈。[5]

如何觀察影響光電偵測器效能空乏區寬度的大小?

矽光子元件主要是採用與矽基產品相同的 CMOS製程,藉由掃描電容顯微鏡(SCM)的分析技術可以量測 PIN 在不同製程條件下,觀察本質層中空乏區寬度(Wd)的變化,圖六說明經由 SCM 二維載子分布圖(Mapping)影像以及從一維載子線分佈(Line Profile),分別能區分 P/N 接面(Junction)的位置與 Wd 的示意圖。

圖六:PIN 的斷面 SCM 2D  載子 mapping  影像與 1D line profile。 [6]

圖七:在圖三(B)中 x3 位置的斷面 SCM (a)2D mapping 影像與(b)1D Line profile。 [7]

在圖三中 X3 與 X4 兩位置區域的剖面 SCM 一維載子分布的結果於圖八中,可以量得 p/n 接面位置偏移了約 215nm (兩條虛線間距)。上述都是透過 SCM,可觀測出空乏區寬度(Wd)的變化,而空乏區的寬度決定電流流過的多寡,將會直接影響到元件品質與性能。

-----廣告,請繼續往下閱讀-----
圖八:SCM 一維載子分布圖顯示 X3 和  X4 兩位置之間的 p/n 接面位置的偏移。[8]

本文中談到離子植入產生的晶格缺陷或是矽波導朝向本質層擴散現象,以及 N/P dopant 擴散速率的差異影響 Wd 寬度等,這些要素皆決定了矽光子元件的品質,都是目前研發單晶片矽光子製程技術,所需面對的課題。

此外,在設計 Waveguide 材料或形狀,以及其他相關製程的研發中,均可藉由奈米材料分析技術如 TEM、EDS 與 SCM 等,宜特科技擁有大量材料分析實戰經驗,可以提供客戶有效的濃度分布的數據分析,並以此依據改善研發製程細節。

事實上,現有相關矽光子產品大多是將數位交換晶片與光收發模組(Transceiver)利用先進封裝包裝在一起,就是使用我們前面所說的 CPO(Co-Packaged Optics)的方式來商品化,但這種產品仍有能耗與體積的問題,未來採用「矽光子單晶片」才能真正達到短小節能的目標,矽光子技術可以提供高速、節能的整合解決方案,從而徹底改變資料中心、人工智慧、電信、感測和成像以及生物醫學應用等行業。

宜特科技長期觀察半導體產業趨勢,我們認為儘管矽光子技術存在整合和設備製造相關的挑戰,相信各家大廠仍會持續加速研發腳步,在全球共同努力下,突破摩爾定律關鍵技術的誕生終將指日可待。

-----廣告,請繼續往下閱讀-----

本文出自 宜特科技

參考文獻

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
9 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
0

文字

分享

0
2
0
有興趣的事就可以做很久——張允崇專訪
顯微觀點_96
・2024/09/07 ・2954字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

首圖用
圖/顯微觀點

「從高中生開始到大學生,甚至到研究所碩士、博士,其實你只要做一件事-叫做找到有興趣的問題」。

從藍光 LED 起始的奈米研究之旅

中研院應用科學研究中心副研究員張允崇近年致力於光電推廣教育工作,不僅作為國際光電工程學會 SPIE 的光學推廣委員會成員,還擔任中華民國光電學會教育委員會主任委員,並已連續舉辦兩屆光電學會光電教具創作競賽

張允崇自台灣大學物理系畢業後前往北卡羅萊納州立大學攻讀電機博士。時值台灣開始發展半導體的年代,加上他對光學和雷射很有興趣,因此選擇光電半導體作為研究領域,其中又以藍光 LED 為其研究重點。

LED(發光二極體,light-emitting diode)是一種半導體光源。當電流通過這個半導體電子元件時,電子與電洞複合以光子的形式釋放能量,而發出單色光。光線的波長、顏色則和採用的半導體材料種類以及故意摻入的元素雜質有關。

-----廣告,請繼續往下閱讀-----

一開始以磷化鎵砷(GaAsP)為材料的 LED 僅能發出紅光且效率低,因此僅作為指示燈使用。而後雖出現可發出綠光的 LED,但一直缺少藍光 LED,就無法以光的三原色-藍、綠、紅,來任意組成不同的顏色,尤其是可供照明的白光。

直到 1993 年,日本日亞化學(Nichia Corporation)的中村修二成功把鎂摻入,成功以氮化鎵和氮化銦鎵(InGaN)開發具有商業應用價值的藍光發光二極體。

有了藍光 LED 後,白光 LED 也隨即問世。因此 2014 年諾貝爾物理學獎也以「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」的理由,將獎項頒給中村修二,以及製成高品質 GaN 並首次以 pn 結構完成藍色 LED 的日本科學家赤崎勇與天野浩。

2001 年博士學位並於 2003 年返台至成大任教的張允崇說,當時藍光 LED 領域正好當紅,因此博士班期間以及回台任教之初,便以此為研究材料進行研究。

-----廣告,請繼續往下閱讀-----

但很快地,藍光 LED 材料愈來愈便宜且效率也已提升很多,相關應用和研究到達瓶頸,要再突破已非易事。相關領域的學者不是已經放棄,就是必須做出變化。張允崇亦是如此。

台灣從 2003 年開始,投入新台幣約 250 億元執行「奈米國家型科技計畫」,推動奈米科技發展。因此,張允崇也將研究視角轉向開發各種不同奈米製程,其中一個便是奈米球鏡微影術(Nanospherical-Lens Lithography,NLL)。

奈米球鏡微影術是使用奈米球將入射的紫外光聚焦於下方光阻,藉以製作出大面積的金屬圓盤陣列,這樣不僅可以大面積生產,使用的設備也是產業界既有生產設備,成本相對低廉。

「到 2018 年,我們幾乎可以宣稱我們是全世界做奈米球做厲害的人」。但張允崇表示,儘管奈米球鏡顯微影術可以大面積、有效率地提升製程產量,但在學術發表上外界期望看到「新功能」,加上後來到中研院任職,資源較多,便不再限制於奈米球上,而是開發各種奈米製程和新功能。

-----廣告,請繼續往下閱讀-----
張允崇
擔任 2024 Taiwan顯微攝影競賽評審的張允崇認為,像顯微攝影這樣「較為學術」的攝影競賽,加分之處在於拍攝者發揮創意,在平凡無奇圖案中找到有趣的地方,例如某個角度像朵花或是用不同的染色變成有趣的圖案。圖/顯微觀點

直觀研究取代考試教學

「我可以講 30 分鐘的研究,沒有任何一個公式在投影片裡」,張允崇笑稱因為自己的數學不太好,所以研究的題目「數學不會太多」。

他以奈米金屬為例,儘管背後有很多數學推導,但在他們實驗室的研究開發中,便僅以「奈米顆粒對環境折射率非常靈敏」的直覺,進一步對其作為感測器進行研究。

但與其說是「受限於數學不好」,不如說張允崇更看重科學直覺和實作,這不僅表現在他的研究,也體現在他的教學和近年致力推廣的光電教具創作競賽中。

張允崇提到之所以投入光電教具創作競賽,起因於他參與國際光電工程學會(International Society for Optics and Photonics, SPIE)的年會時,擔任其中一個類似教具競賽的外展活動評審,氣氛不錯。

-----廣告,請繼續往下閱讀-----

加上當時張允崇在台大物理系兼職,教授光電半導體課程。「考試學到的東西很有限」,比起考試他更希望學生能從做中學,因此便參考年會外展活動的概念,讓學生執行期末計畫。

「當時想法只是覺得課堂裡好的作品可以到國際參賽,就像區域競賽比得好,比全國再比國際」。張允崇後來遇到一些志同道合的老師,才將全國競賽籌備起來。

不過,競賽今年邁入第三屆之際,回顧這一路走來,張允崇認為,競賽帶來的收穫、好處和原本初衷略有不同。而最大的好處在於讓學生「提早認識實驗室」。

他表示,許多學生到大三、大四要做專題進實驗室時,早已聽從學長姐和外界的聲音「立志進台積電」。

-----廣告,請繼續往下閱讀-----

「現在多學生大三大四就直接聽學長姐說哪一個領域很好,可以去台積電啊。如果你研究所找了老師就是做這個領域,你就被他綁住了,博士班再讀(其他領域)好了,其實也跳不太開了。」張允崇說,不只選錯路不易回頭,進而出現「學用落差」外,學術熱忱也不易被點燃。

但藉由教具競賽,讓大一、大二的學生及早進實驗室「東摸摸、西摸摸」。「大一暑假找一個老師,不喜歡;大二可以換一個、大三再換一個,老師沒有再看到你也不會覺得怎麼樣」,張允崇表示,就算學生不用跟著老師的計畫題目,教具做不出來也沒關係,單純和老師討論教具專題也能略知實驗室的研究內容,進而評估是否對該領域有興趣。

張允崇說,考試答案都是已知的,學生也只是努力搞清楚老師「要考什麼」。但工作、研究卻不是如此,答案都是未知的,因此培養解決問題的能力,包含問對人找到解決方法,更為重要。

而要培養解決問題能力,最快方式就是進實驗室直接動手做。由於實驗室基礎能力需要的是各種能力的展現,不僅限於書本與公式;例如自動控制需要電腦程式能力、有些人手巧適合精工,甚至 3D 繪圖等。學生及早進入實驗室,就算「自認不適合讀書」,也能從中發現自己的專長和定位。

-----廣告,請繼續往下閱讀-----

從半導體到奈米光學,再到生物感測,張允崇的研究領域很廣,「奈米領域所有問題都有興趣」。他笑稱,「優點是領域很廣,但缺點是『你問我做什麼題目,我講不出來』」。但只要找到有興趣的東西,就可以做好一件事,「因為你會願意花很多時間」。

電子顯微鏡
使用電子顯微鏡拍下的奈米球,如同擺放在球釘上的高爾夫球。圖/顯微觀點

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
19 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。