因為可以提高開口率、減少耗電,這項技術早已廣泛使用在行動裝置的面板螢幕中。你我手邊的手機,十支有九支(好吧,我沒有真的統計過,不過到現在我還沒看過沒用上這項技術的),只是沒有任何一家公司拿出來說嘴,說這是「非常大的突破」。而在 DisplaySearch 的文中也提到,已經有超過 25% 的 LCD 面板應用了這項技術(這裡指的是所有的 LCD 面板,含 LCD TV 等,LCD TV 由於成本考量及開口率/耗電需求沒那麼大,比較少應用此技術),如果單就行動裝置(也就是不插電靠電池的裝置),這個比例會高上許多。
我完全不知道,一項早已被廣泛使用的技術,有什麼好拿來說嘴的。
我喜歡 Apple 那種以人為本,以使用者體驗為導向,不強調科技和技術規格的格調。為了達到完美的使用者體驗,可以毫不手軟地用上一堆先進甚至嚇人的技術(巷子內的人才知道 iPhone4 的工藝真的是….),但不代表在對消費者訴說新 iPad 的特點時,可以拿這種行之有年的「Super High Aperture」技術作為新產品螢幕的「關鍵」技術。
-----廣告,請繼續往下閱讀-----
新 iPad 能在 9.7 吋的螢幕裡用非晶矽(amorphous silicon)或是氧化物半導體(oxide semiconductor)做到 264ppi 的確有其過人之處,但是最最最關鍵幕後功臣才不是你想像的 Super High Aperture 技術,而是其他不方便說、不容易簡單地說、消費者不會也不應該關心的技術。那些技術讓宅宅工程師去煩惱,消費者快樂地體驗使用就好了,這才是真正重要的。
而 engadget 中文版的這篇文章把他說成「新 iPad 螢幕成功的幕後功臣」、還說「但不出意外,這項技術又將藉由 Apple 之手被發揚光大」,這就更超過了。一個已經被使用多年、廣泛使用,你的 iPhone、HTC、Nokia、Sony、Motorolla 手機上都已經在使用的技術,要「藉由 Apple 之手被發揚光大」,未免太錦上添花了些。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。