0

0
0

文字

分享

0
0
0

愚人節是曆法修改下的副產物?3分鐘搞懂羅馬曆、儒略曆到現行的格里曆──《我們如何丈量世界》

三采文化集團_96
・2018/05/01 ・2031字 ・閱讀時間約 4 分鐘 ・SR值 427 ・四年級

我們所用的曆法其實經過非常多次的變革。圖/MaeM@pixabay

從一年十個月的羅馬曆到十二個月的儒略曆

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。他的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒並且從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

因為自己生日在那個月就多加一天,當羅馬執政官還真任性。圖/aaandrea@pixabay

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

現行的公曆:格里曆如何修正閏年

格里曆就是現在多數國家所採用的公曆,由義大利天文學家阿洛伊修斯.里利烏斯(Luigi Lilio)改良儒略曆而來,可惜他在說服梵蒂岡於採用此曆前便過世了。後來,修訂格里曆的重任就落在德國數學家克里斯托佛.克拉烏(Christopher Clavius)身上。

-----廣告,請繼續往下閱讀-----
德國數學家克里斯托佛.克拉烏(Christopher Clavius)協助修訂格里曆。via wikipedia

1582 年,教宗格里.高利十三世(Pope Gregory XIII)宣布改行此曆,因而得到「格里曆」之名。

格里曆的閏年規則與儒略曆不同,基本上也是四年一閏,但如果是千禧年,該年必該同時能被 4 100 整除(也就是要能被 400 整除),才行閏年,因此公元1700 年、1800 年、1900 年都不是閏年,公元2000 年才是。在這個設定下,格里曆每 400 年只有 97 個閏年,比較接近每 3,300 年才誤差 1 天的回歸年(也就是我們現在使用的太陽年)。

愚人節的由來

4 1 日之所以被定為愚人節,很可能跟格里曆有關。以前英國人在三月底開始新年節慶,慶祝活動至四月的第一天達到高峰然後結束。改行格里曆後,很多人因為不知道曆法改變了,仍然按照儒略曆的日期慶祝新年。在 1750 那個年代,資訊傳播得很慢,導致有些偏遠地區的居民在錯的日子慶祝新年,看在城巿親戚的眼裡自然十分可笑。

其他國家當然不乏慶賀春天到來的瘋狂節日,但英國人之所以在 4 1 日彼此作弄,的確是從改行格里曆後才開始的。所以,如果愚人節不是特定傳統,它的出現應該要「歸功」於格里曆。

-----廣告,請繼續往下閱讀-----
愚人節有可能跟曆法修改有關?圖/Alexas_Fotos@pixabay

 

本文摘自《我們如何丈量世界?從生活的單位看見科學的趣味》,三采文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
飛天企鵝與口哨輸入法,那些愚人節限定的有趣故事
PanSci_96
・2019/04/01 ・1775字 ・閱讀時間約 3 分鐘 ・SR值 468 ・五年級

-----廣告,請繼續往下閱讀-----

  • 撰文者/郭宜蓁

不久前,安海瑟威在艾倫的節目上,談到自己學會一招關於柑橘的養生法「柑橘療法」。艾倫和台下一大群觀眾,邊聽她說如何得知這個療法,一邊剝橘子,然後照著她所說的步驟,透過柑橘調整呼吸,結果她問大家覺得有效嗎?「這才不可能有效!因為這是她自己編出來的故事。」

透過這個故事其實是想告訴大家,「不要因為名人說什麼,你就全然相信」。接下來就讓我們一起來看看,愚人節時,有哪些有趣的騙人事件吧!

演化奇觀,企鵝飛起來了!

企鵝家族裡的企鵝會滑雪橇,快樂腳的企鵝會跳踢踏舞,BBC紀錄片中的企鵝會飛?

有一年愚人節BBC(英國廣播公司)發布了一支企鵝飛起來的紀錄片,影片中的企鵝還不是因為跳躍看似飛起來,而是像候鳥一般,成群結隊地起飛大遷徙,甚至飛到數千英里外的亞馬遜雨林中,到底是發生什麼事了?

其實這支紀錄片,是透過動畫技術做出來的影片。透過動畫技術模擬企鵝飛行,透過綠幕,將主持人剪到影片當中,再透過有說服力的話術,把觀眾騙得團團轉。而現實世界的企鵝,還是不會滑雪橇、不會跳踢踏舞、不會飛,也當然不會降落在亞馬遜雨林中。

-----廣告,請繼續往下閱讀-----

發現新物種,到底有沒有南極熊?

圖/pixabay

2017年的愚人節,WWF(世界自然保護基金會)宣布,他們發現了棲息在南極洲的新熊種,這個新物種的紀錄由WWF Japan調查隊發現!

最初是由於調查員發現企鵝及海豹屍體,並從其傷口研判,應是某種肉食性動物所為,因此展開調查。幾天後,研究小組目擊到外形和北極熊相似的動物,很幸運地拍下照片,也採集到部分毛髮樣本進行DNA的分析。

DNA分析發現這個新物種,與棲息在南美洲的眼鏡熊親緣相近,但牠的生態習性和外形,則被認為與北極熊有趨同演化的情形。

-----廣告,請繼續往下閱讀-----

然而事實上,這個新熊種隨著被大家發現這是愚人節的玩笑之後,存在大家的心裡幾分鐘後,便滅絕了。對於我們現存瀕臨絕種的北極熊,大家也要好好愛護牠們呀!隨手關電源,救救北極熊吧!

Google日語輸入法的創(惡)新(搞)作品

近幾年來,每到愚人節, Google 日語輸入法團隊,就會推出新產品。在此介紹幾個有趣的產品:

  • 2014年的魔術手。當你的手可能因為剛做好指甲、戴手套、貼OK繃,或是出現各種不便於碰觸手機的情況時,就是使用魔術手的好時機。在不同的情況下,還可以選用不同風格的手指進行操作。

  • 2015年的吹龍口哨。簡單來說就是透過紅外線紀錄紙卷吹出的長度,系統根據長度自動輸入文字的輸入法,使用者可以在無法手動輸入文字,或是無法使用語音的環境中,自動輸入想說的話,真是具有革命性的產品呀!

看完產品介紹影片,真的很想說:不要這麼正經八百的亂講話啦!(哈哈)

那些年,泛科學差一點推出的作品

說到愚人節,最愛玩的我們當然也不能錯過囉!我們在 2016 年推出了「第一款有聲動態貼圖」,派出了萌噠噠的  Mouse 編從泛科動畫日入侵到 Line!到了 2017 年,泛科學則開發出全台第一款自製科研系戀愛懸疑遊戲「心跳實驗室 DokiDokiLab」,帶著大家回到最單純卻也最複雜的科研時光。

-----廣告,請繼續往下閱讀-----

2018 年,我們更下定決心前進二次元世界,發行《週刊少年泛科學 EX. 》豪華版創刊號,從網路新聞走入紙本書的市場,為的就是將科學帶給大家!

(好啦以上都是唬爛,但真的好想實現啊嗚嗚嗚……以下開放大家募資!

既然是愚人節,好像就能理所當然的騙人了(誤)。還是要提醒大家,在看到各種訊息時,都要展現獨立思考的能力,不要覺得是某個名人或權威說的話,就傻傻地相信了唷!2019 年的愚人節,還會有什麼有趣的整人事件呢?感覺很值得期待呢!

貼心小叮嚀:開開玩笑,還是要抓好分寸,友誼的小船可是說翻就翻的唷~

參考資料:

  1. WWF、南極大陸で新種、ナンキョクグマを発見》—世界自然保護基金會(WWF)
  2. 泡泡紙讀卡器、爵士鼓鍵盤⋯⋯Google日語輸入法8件超鬧作品,還開放原始碼》—數位時代
  3. マジックハンドバージョン》—Google 日本語入力
  4. ピロピロバージョン》—Google 日本語入力
-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
愚人節是曆法修改下的副產物?3分鐘搞懂羅馬曆、儒略曆到現行的格里曆──《我們如何丈量世界》
三采文化集團_96
・2018/05/01 ・2031字 ・閱讀時間約 4 分鐘 ・SR值 427 ・四年級

-----廣告,請繼續往下閱讀-----

我們所用的曆法其實經過非常多次的變革。圖/MaeM@pixabay

從一年十個月的羅馬曆到十二個月的儒略曆

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。他的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒並且從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

因為自己生日在那個月就多加一天,當羅馬執政官還真任性。圖/aaandrea@pixabay

-----廣告,請繼續往下閱讀-----

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

現行的公曆:格里曆如何修正閏年

格里曆就是現在多數國家所採用的公曆,由義大利天文學家阿洛伊修斯.里利烏斯(Luigi Lilio)改良儒略曆而來,可惜他在說服梵蒂岡於採用此曆前便過世了。後來,修訂格里曆的重任就落在德國數學家克里斯托佛.克拉烏(Christopher Clavius)身上。

德國數學家克里斯托佛.克拉烏(Christopher Clavius)協助修訂格里曆。via wikipedia

1582 年,教宗格里.高利十三世(Pope Gregory XIII)宣布改行此曆,因而得到「格里曆」之名。

-----廣告,請繼續往下閱讀-----

格里曆的閏年規則與儒略曆不同,基本上也是四年一閏,但如果是千禧年,該年必該同時能被 4 100 整除(也就是要能被 400 整除),才行閏年,因此公元1700 年、1800 年、1900 年都不是閏年,公元2000 年才是。在這個設定下,格里曆每 400 年只有 97 個閏年,比較接近每 3,300 年才誤差 1 天的回歸年(也就是我們現在使用的太陽年)。

愚人節的由來

4 1 日之所以被定為愚人節,很可能跟格里曆有關。以前英國人在三月底開始新年節慶,慶祝活動至四月的第一天達到高峰然後結束。改行格里曆後,很多人因為不知道曆法改變了,仍然按照儒略曆的日期慶祝新年。在 1750 那個年代,資訊傳播得很慢,導致有些偏遠地區的居民在錯的日子慶祝新年,看在城巿親戚的眼裡自然十分可笑。

其他國家當然不乏慶賀春天到來的瘋狂節日,但英國人之所以在 4 1 日彼此作弄,的確是從改行格里曆後才開始的。所以,如果愚人節不是特定傳統,它的出現應該要「歸功」於格里曆。

愚人節有可能跟曆法修改有關?圖/Alexas_Fotos@pixabay

-----廣告,請繼續往下閱讀-----

 

本文摘自《我們如何丈量世界?從生活的單位看見科學的趣味》,三采文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

0
1

文字

分享

0
0
1
【特輯】關於春分,除了晝夜等長外這些事你知道嗎?
PanSci_96
・2019/03/20 ・4322字 ・閱讀時間約 9 分鐘 ・SR值 494 ・六年級

source:Google Doodle

關於春分,我們大多都能直接地說出這天晝夜等長;但除此之外,你知道春分曾經因為曆法的關係而歪的很嚴重嗎?這一天除了感受日夜長度差不多,還有哪些美景可以欣賞呢?讓我們一起來看看關於春分的二三事吧!

閏年太多的儒略曆讓春分的時間跑掉了

在公元前60年,儒略曆法通行前的羅馬曆油畫。source:Wikipedia

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。

-----廣告,請繼續往下閱讀-----

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

實行儒略曆後,凱薩的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒也從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

春分歪掉,復活節也跟著歪掉啦

而這還會有什麼問題呢?

-----廣告,請繼續往下閱讀-----

每年差一點點,對於人們生活週期可能還沒有太大的影響,但是對於宗教節慶就有不可輕忽的改變了。由於復活節的時間,是從春分的時間推算而來的。曆法上的年,與太陽、地球真實關係的回歸年有所偏移,就代表每年春分的時間位在曆法上的日期,也不斷地偏移。春分的時間偏移,復活節的時間也就跟著偏移,這對教廷來說是件大事。

source:Petr Kratochvil

於是,在1582年,教皇格列哥里十三世宣布改曆。他做了兩件事情:第一件事,改變置閏的規則。為了讓每年春分時間一致,必須讓曆法的年逼近回歸年。原來年份只要是4的倍數就要置閏,但這樣閏太多了,使得曆法平均一年(365.25天)超過回歸年(365.2422天)太多,因此需要砍掉幾個閏年來修正這個餘額。這時採取的辦法是這樣的:以後年份如果是100的倍數但不是400的倍數,就不是閏年了。也就是說,西元1700、1800、1900年都不再是閏年,但2000年仍然是閏年。

以上的作法,將「4年1閏」變為「400年97閏」。簡單計算一下,1/4=0.25,儒略曆平均一年365.25天;97/400=0.2425,格列哥里曆平均一年365.2425天,與回歸年的誤差縮減到每年0.0003天,到三千多年左右才會誤差一天。這套格列哥里曆,就一直沿用成為現代的「公曆」了。

-----廣告,請繼續往下閱讀-----
一年時間 置閏
努瑪曆 平年355天

閏年377或378天

外加一個月
儒略曆

(西元前46年凱撒改曆)

平年365天

閏年366天

[平均一年365.25天]

年份為4的倍數置閏
格列哥里曆

(西元1582年格列哥里改曆)

平年365天

閏年366天

[平均一年365.2425天]

原則上年份為4的倍數置閏;例外:年份為100的倍數但不為400的倍數則不置閏(1700、1800、1900不置閏,2000置閏)

格列哥里改曆,還做了第二件事情,目的是要讓春分回到3月21日,才能維繫復活節原定的時間。因此,他做了一個立即的修正,等於是大刀砍下去,把之前偏差掉的全部改了回來。還記得嗎?我們剛才估算的結果,儒略曆經過一千多年,整整多出了10天左右。這時候,教皇格列哥里十三世作法很直接,直接在1582年砍掉10天!所以,1582年10月5日到14日,這十天就因為這次改曆而消失了。

想體驗手算日出的感覺嗎?來試試日出方程式

 

如上圖所示,從外太空看地球側面,水平基準線 OH 為地球赤道,垂直線 OG 為太陽在春分或秋分照射地球時的日夜分界線,斜線 OB 為太陽其它日期照射地球的日夜分界線,日夜分界線的地方就是日出或日落的地方。

有了日出方程式,就可以計算出太陽在不同的赤緯,地球各地不同緯度的日出和日落精確時間:

ω0 是日出(當數值為負數時)或日落(當數值為正值時)時,以度為單位的時角;
ψ 是在地球上觀測者的緯度;

-----廣告,請繼續往下閱讀-----

δ 是太陽的赤緯;

日出的定義為太陽剛從地平線出現的一剎那,而非整個太陽離開地平線,而日落是以太陽完全沒入地平線,太陽盤面大小約0.5°。還有大氣折射影響,太陽在地平面會被抬升約 0.6°。

因此,需要再加 a = -0.85°(= 0.6°+0.5°/2) 修正

想體驗手算日出的感覺嗎?不如就從春分這天開始吧!

或是找個地方靜靜地,享受春分帶來的美景

天體運動的成因有好幾個,包括地球繞著太陽做軌道運動、地球以地軸為中心自轉,還有因為地球的北極並非位於與軌道面垂直的位置。從這三點延伸得到的觀測結果,就是太陽在天空中的位置會在一年當中不斷改變。太陽每天會從地平線上不同的位置昇起落下,在天空中移動的軌跡也都不一樣。

-----廣告,請繼續往下閱讀-----

一年之中,在春分秋分這兩天,太陽會從正東方昇起、於正西方落下;而在夏至冬至時,太陽在地平線上東昇西落的位置會分別最偏向北方和南方。

世界有許多古代遺址的岩石和建築物,是依據星辰和太陽的起落和位置所精心排列,像是青蔥蒼翠的索爾茲伯里平原 (Salisbury Plain) 上矗立的巨石陣、安納沙茲人 (Anasazi) 建於查科峽谷 (Chaco Canyon) 的卡薩林克納達神廟 (Casa Rinconada),還有懷俄明州大角山脈 (Bighorn Range) 山頂的大醫藥輪 (Great Medicine Wheel)。

圖片3
依照天文現象排列的古代遺址:(左) 巨石陣、(中) 卡薩林克納達神廟、(右) 大角山脈的醫藥輪。

有時候,現代都市的地標排列也會與時鐘般規律的天體運行呈現巧妙的呼應,或許是有意設計的,但多半都是出於偶然。看看曼哈頓島 (Island of Manhattan) 就知道了,這座島位於哈德遜河 (Hudson River) 的河口,對角線往南北方向偏斜;最早有人在此定居時,街道都是隨意開闢的,像大部分的古老城市一樣雜亂無章地發展。這些曲折小路看起來大同小異、難以辨別,讓整個城區儼然成為不斷擴大的迷宮,最後終於根據 1811 年委員會計劃 (Commissioners’ Plan of 1811) 將整座城市的發展方針制定為棋盤式的街道。

-----廣告,請繼續往下閱讀-----

當時對於棋盤式街道的規劃,是依照和島嶼海岸平行的方向,開闢出略偏南北方向的一條條大道;因此,和這些幹道交叉的橫向街道都略為偏往東西向,與正東西方向的偏斜角度大約為 25 到 30 度,結果正巧讓所有的橫向街道幾乎正對著夏至時日出日落的方向!這個現象在大約十年前由奈爾·德葛拉司·泰森 (Neil deGrasse Tyson) 提出而廣為人知,他將這個現象稱為「曼哈頓巨石陣」(Manhattanhenge)。

manhattan-solstice-13

 

圖片5
曼哈頓 (左) 和芝加哥 (右) 的棋盤式街道。街道的幾何排列方式決定了你有沒有機會看到角度剛好的日出或日落,讓你一睹城市中的巨石陣。

不過若想欣賞與天文現象排列一致的現代建築景觀,也不是非得大老遠跑到曼哈頓去,很多城鎮都市的街道都是以棋盤式排列。如果是以東西向和南北向規劃鋪設的街道系統,在每年三月和九月的春分秋分,都有機會目睹這種魔幻奇景。芝加哥市就是一例,當地的街道 (大致上) 是呈現矩形的棋盤狀排列,與羅盤方位一致,所以在三月的春分和九月的秋分時,就可以拍攝到「芝加哥巨石陣」的景象!

圖片6
芝加哥巨石陣的例子 [圖片來源:Ken Ilio’s Uncommon Photographers]。
無論你身在何處,都有機會將你居住的城市化為現代巨石陣,拍下太陽不斷變換推移的運動軌跡,就算是像加拿大安大略省 Vankleek Hill 這樣的小城鎮也不例外。這個小鎮大約位於渥太華 (Ottawa) 和蒙特婁 (Montreal) 的中間,人口只有 2000 人左右。這裡的棋盤式街道往羅盤方位偏斜,大致上平行於從安大略湖 (Lake Ontario) 流入聖羅倫斯灣 (Gulf of Saint Lawrence) 的河流。這樣的角度,就可以在夏至和冬至時正對著太陽了,像這張由 Gabriel Landriault 所拍攝的照片一樣。

-----廣告,請繼續往下閱讀-----

圖片7
(左) 安大略省 Vankleek Hill 的棋盤式街道,與東西方向約有 20 度的偏斜。(右) 夏至時在 Vankleek Hill 街道上所見的光景 [攝影:Gabriel Landriault]。
這張 Vankleek Hill 的照片也顯示出值得注意的一點:Vankleek Hill 的街道只與正東西方向偏斜 20 度左右,而夏至時的太陽會更為偏向北方,所以此時並不是完全正對著街道的。但是在一年之中總會有一天是完全對準的

這可以從我們的地平線日曆中推敲得知,因為太陽從地平線昇起落下、不斷移動,在夏至和冬至、春分和秋分時,可以預料太陽在地平線上昇起落下的固定位置,但若經過仔細的規劃、觀測還有模擬 (可以使用 Stellarium 一類的天文館模擬器),你就會發現自己居住的城市街道在什麼時候會正對著日出和日落的方向。

圖片8
透過 Adler Planetarium 產生春分時的模擬情形,使用的是 StarryNight 桌面天文台軟體。

不妨就趁著春分的今天,趕快看準時間走出戶外,到離你最近的東西向街道上,拿出手機拍下正對著日出或日落的獨特景象吧!

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
愚人節是曆法修改下的副產物?3分鐘搞懂羅馬曆、儒略曆到現行的格里曆──《我們如何丈量世界》
三采文化集團_96
・2018/05/01 ・2031字 ・閱讀時間約 4 分鐘 ・SR值 427 ・四年級

我們所用的曆法其實經過非常多次的變革。圖/MaeM@pixabay

從一年十個月的羅馬曆到十二個月的儒略曆

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。他的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒並且從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

因為自己生日在那個月就多加一天,當羅馬執政官還真任性。圖/aaandrea@pixabay

-----廣告,請繼續往下閱讀-----

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

現行的公曆:格里曆如何修正閏年

格里曆就是現在多數國家所採用的公曆,由義大利天文學家阿洛伊修斯.里利烏斯(Luigi Lilio)改良儒略曆而來,可惜他在說服梵蒂岡於採用此曆前便過世了。後來,修訂格里曆的重任就落在德國數學家克里斯托佛.克拉烏(Christopher Clavius)身上。

德國數學家克里斯托佛.克拉烏(Christopher Clavius)協助修訂格里曆。via wikipedia

1582 年,教宗格里.高利十三世(Pope Gregory XIII)宣布改行此曆,因而得到「格里曆」之名。

-----廣告,請繼續往下閱讀-----

格里曆的閏年規則與儒略曆不同,基本上也是四年一閏,但如果是千禧年,該年必該同時能被 4 100 整除(也就是要能被 400 整除),才行閏年,因此公元1700 年、1800 年、1900 年都不是閏年,公元2000 年才是。在這個設定下,格里曆每 400 年只有 97 個閏年,比較接近每 3,300 年才誤差 1 天的回歸年(也就是我們現在使用的太陽年)。

愚人節的由來

4 1 日之所以被定為愚人節,很可能跟格里曆有關。以前英國人在三月底開始新年節慶,慶祝活動至四月的第一天達到高峰然後結束。改行格里曆後,很多人因為不知道曆法改變了,仍然按照儒略曆的日期慶祝新年。在 1750 那個年代,資訊傳播得很慢,導致有些偏遠地區的居民在錯的日子慶祝新年,看在城巿親戚的眼裡自然十分可笑。

其他國家當然不乏慶賀春天到來的瘋狂節日,但英國人之所以在 4 1 日彼此作弄,的確是從改行格里曆後才開始的。所以,如果愚人節不是特定傳統,它的出現應該要「歸功」於格里曆。

愚人節有可能跟曆法修改有關?圖/Alexas_Fotos@pixabay

-----廣告,請繼續往下閱讀-----

 

本文摘自《我們如何丈量世界?從生活的單位看見科學的趣味》,三采文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界