1

3
1

文字

分享

1
3
1

閏年怎麼來?為什麼是 2 月 29 日?事情沒有你想的那麼簡單

歐柏昇
・2016/02/29 ・3478字 ・閱讀時間約 7 分鐘 ・SR值 486 ・五年級

-----廣告,請繼續往下閱讀-----

source:google doodle
source:google doodle

四年一度的 2 月 29 日又來臨了,你是否有想過,到底是誰發明了這個莫名其妙多出來的一天呢?其實,我們現在使用的西曆,是源自於古羅馬的曆法,其中變遷的故事還真是源遠流長。

為什麼是加在 月 29 日而不是 12 月 32 日?

我們先來想想看,「 2 月 29 日」這個玩意兒,有什麼地方不太尋常的?先來問你一個問題:照常理來說,應該把多餘的日子加在一年的最後面才對,那不就應該是「 12 月 32 日」了,人們怎麼會選擇創造一個「2月29日」呢?

你可能會說,這個問題還需要想嗎?因為 2 月日數最少啊!2 月只有 28 天,加上個 29 日聽起來不怎麼奇怪;12 月已經有 31 天了,再加上一個 32 日也太好笑了吧!不過,事情沒有這麼簡單。

source:wikipedia
source:wikipedia

在早期的羅馬曆法(羅慕路斯曆)當中,其實一年只有十個月。這件事情在現在各月份的英文名稱當中,還留下了明顯的痕跡。例如說,十月的英文是 October,但是 octo -開頭的字是代表「八」的意思,所以 October 顧名思義是「八月」的意思!可以去看,章魚(octopus)是八隻腳的生物,而八邊形的英文稱為 octagon。那問題來了,為什麼「八月」突然變為十月了呢?

-----廣告,請繼續往下閱讀-----

事情發生在羅馬國王努瑪‧龐皮留斯(Numa Pompilius)的時候,當時發現原本每年十個月、304 天的曆法,造成每年年初的季節都不同了,人們的生業週期與曆法格格不入。這個道理很簡單,地球繞太陽公轉一圈(當然那時候人們不清楚地繞日這回事)大約 365 天,稱為一個「回歸年」,也就是太陽在黃道的位置移動了 360 度的時間。太陽「回歸」了之後,代表季節週期也「回歸」了一次,人們生產的週期也就又「回歸」了一次。

一年 304 天的古曆,實在與回歸年差距太大了,所以努瑪決定加上兩個月,讓曆法的一年變為 355 天,較接近太陽的週期。不過這時候,Ianuarius(January)和 Februarius(February)是加在一年的最後面,而不是一開始。

這個 355 天的曆法,我們就可以看出一些天文意義了。

第一,如我們剛才說的,比起原先的曆法,已經較為接近一個「回歸年」,符合地球上人們真實感受到的季節遞嬗週期。第二,這個數字不是沒有來頭的,它符合月亮盈虧的週期。月亮繞著地球公轉的週期有好幾種算法,其中一種稱為「朔望月」,也就是盈虧的週期,大約 29.53 天。計算一下,12 個朔望月大約 354.4 天,因此把曆法一年訂作 355 天是具有天文意義的。

-----廣告,請繼續往下閱讀-----

不過,接下來還有個問題,355 天還是不到 365 天,要怎麼補足呢?方法就是閏月了。那時候,人們的作法是一年的最後一個月:Februarius(February)身上動手腳,他們把這個月縮減到 23 或 24 天,接著在後面加上一個 27 天的閏月。掐指一算,這個「二月」原本有 28 天,被減去了 4 到 5 天,但後面的閏月加上了 27 天,所以置閏的年就有 377 或 378 天了。後來置閏的方法改了好幾次,Februarius(February)也從一年的最後一個月變為第二個月,但手腳仍然是動在 Februarius(February)身上,到現在依然如此,所以閏年的時候多出來的才是 2 月 29 日,而不是 12 月 32 日了!

一年有兩個 月 24 

source:wikimedia
尤利烏斯‧凱撒(Julius Caesar) source:wikimedia

在努瑪之後,羅馬另一次重大的曆法變革發生在西元前 46 年,主角是眾所周知的尤利烏斯‧凱撒(Julius Caesar)。凱撒打贏高盧戰爭與內戰之後,集大權於一身,並改革曆法,此新曆稱為「儒略曆」(Julian calendar)。為了整頓曆法,他先將西元前 46 年擴充到 445 天,隔年開始則按照他的規律。

凱撒的曆法,試圖解決一個問題:回歸年並不是正好 365 天,而是 365 天又 6 小時左右。他的做法是單一的「閏日」,置閏的位置是在「三月的第一天(Kalends of March)數回去第 6 天」,也就是 2 月 24 日。閏年稱為 bissextile (”twice sixth”,意思是「兩個第六天」)。那時候沒有所謂的「 2 月 29 日」,而是把 2 月 24 日延長為兩天的時間,但在法律上那兩天算作同一天,也就相當於有一個長達 48 小時的日子。

只不過,人算不如天算,新曆法實施沒多久,一件驚天動地的事情發生了──西元前 44 年,凱撒被暗殺了!原本凱撒的要求是每四年置閏一次,但此後死無對證,發生一個嚴重的誤解,人們三年就置閏一次。這樣一來,西元前一世紀的閏年發生好幾次錯誤,直到數十年後羅馬帝國君主屋大維(奧古斯都)才減少了幾次閏年,來彌補多閏的那幾次。一般認為,彌補之後恢復正常曆法的時間是西元 8 年。

-----廣告,請繼續往下閱讀-----

每四年有一次 29 天的二月,理論上是在凱撒啟用儒略曆時開始,但因為陰錯陽差,其實過了五十年左右,到了奧古斯都的時候才正式上軌道。當初的作法是延長 2 月 24 日,到了這幾百年才變成外加一個「 2 月 29 日」的方式。

消失的十天:格列哥里改曆

剛才我們對於「回歸年」的估算,還不夠仔細。依據現代的測量,我們知道,一個回歸年實際上是 365.2422 天。儒略曆每四年閏一次,所以它的一年平均是 365.25 天,乍看之下和回歸年差不多,但過了幾百年後就開始有差別了!簡單估算,一年差了約 0.0078 天,從西元元年到西元 1500 年,就可以差了 10 天左右了!

每年差一點點,對於人們生活週期可能還沒有太大的影響,但是對於宗教節慶就有不可輕忽的改變了。由於復活節的時間,是從春分的時間推算而來的。曆法上的年,與太陽、地球真實關係的回歸年有所偏移,就代表每年春分的時間位在曆法上的日期,也不斷地偏移。春分的時間偏移,復活節的時間也就跟著偏移,這對教廷來說是件大事。

(Pope Gregory XIII)source:wikipedia
格列哥里十三世(Pope Gregory XIII)source:wikipedia

於是,在 1582 年,教皇格列哥里十三世宣布改曆。他做了兩件事情:第一件事,改變置閏的規則。為了讓每年春分時間一致,必須讓曆法的年逼近回歸年。原來年份只要是 4 的倍數就要置閏,但這樣閏太多了,使得曆法平均一年(365.25 天)超過回歸年(365.2422天)太多,因此需要砍掉幾個閏年來修正這個餘額。這時採取的辦法是這樣的:以後年份如果是 100 的倍數但不是 400 的倍數,就不是閏年了。也就是說,西元 1700、1800、1900 年都不再是閏年,但 2000 年仍然是閏年。

-----廣告,請繼續往下閱讀-----

以上的作法,將「 4 年 1 閏」變為「400 年 97 閏」。簡單計算一下,1/4=0.25,儒略曆平均一年 365.25 天;97/400=0.2425,格列哥里曆平均一年 365.2425 天,與回歸年的誤差縮減到每年 0.0003 天,到三千多年左右才會誤差一天。這套格列哥里曆,就一直沿用成為現代的「公曆」了。

一年時間 置閏
努瑪曆 平年 355 天

閏年 377 或 378 天

外加一個月
儒略曆

(西元前46年凱撒改曆)

平年 365 天

閏年 366 天

[平均一年 365.25 天]

年份為4的倍數置閏
格列哥里曆

(西元1582年格列哥里改曆)

平年 365 天

閏年 366 天

[平均一年 365.2425 天]

原則上年份為4的倍數置閏;例外:年份為 100 的倍數但不為 400 的倍數則不置閏(1700、1800、1900 不置閏,2000 置閏)

格列哥里改曆,還做了第二件事情,目的是要讓春分回到 3 月 21 日,才能維繫復活節原定的時間。因此,他做了一個立即的修正,等於是大刀砍下去,把之前偏差掉的全部改了回來。還記得嗎?我們剛才估算的結果,儒略曆經過一千多年,整整多出了 10 天左右。這時候,教皇格列哥里十三世作法很直接,直接在 1582 年砍掉 10 天!所以,1582 年 10 月 5 日到 14 日,這十天就因為這次改曆而消失了。

然而,不是全世界都立刻採用這套曆法,並配合「消失的十天」。早在西元 1054 年,羅馬公教與東正教早已大分裂,這時羅馬教皇宣布改曆,東正教也就經過很多年都不認帳了。歐洲最後一個採用格列哥里曆的國家是希臘,採用的時間已經到 1923 年了。

那現在還有人在用古老的儒略曆嗎?廣義地說,其實還是有的,這種人叫作「天文學家」。你會覺得很奇怪,曆法不就是因為天文學家對太陽、地球運動的更嚴密計算,講求精確才不斷改正嗎?那為什麼天文學家自己偏偏要使用舊的標準呢?

-----廣告,請繼續往下閱讀-----

是這樣的,「閏年」的修正,是為了讓以「年」為週期的曆法,配合真實自然界的季節變化、太陽位置。一般人的生活、宗教儀式都需要以「年」為週期,但是天文學的紀錄沒有這個必要。「年/月/日」這樣的紀錄,在許多運算上太過麻煩,天文學家為了方便,只要一套以「日」為單位的系統,不斷遞加上去就好了。嚴格來說,天文學家用的也不是「儒略曆」了,而是一套以儒略曆定義的起點為標準的「儒略日」。比如說,今天是 2016 年 2 月 29 日,但儒略日記作「2457448」,後面還可以加小數點。網路上很容易找到公曆轉為儒略日的換算工具,可以上去試試看!

source:numerical
source:numerical

2016 年多出了一個 2 月 29 日,別以為是天上掉下來的禮物囉!人們對於天體運行規律的了解越來越多,又由於宗教等因素,才漸漸使得曆法中的一年接近自然界的「回歸年」。不管是有 48 小時的 2 月 24 日,還是多出一個 2 月 29 日,地球才不管這些呢!地球依然按照它的規律繞著太陽公轉,人們則配合自然規律來調整自己的生活步調。時間不斷在往前進,乍看之下多出了一天,其實地球的工作從不罷休喔!

source:Matt Preston
source:Matt Preston

參考資料:

  • Bonnie Blackburn and Leofranc Holford-Strevens, The Oxford companion to the year (Oxford: Oxford University Press, 1999).
文章難易度
所有討論 1
歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

1
2

文字

分享

0
1
2
把天空當時鐘:農業發展如何造就全世界最正統的天文學?——《全球科技大歷史》
azothbooks_96
・2019/12/02 ・2322字 ・閱讀時間約 4 分鐘 ・SR值 502 ・六年級

  • 作者:吳軍

早期文明的科技發展無一不圍繞著生存進行,而農業生產又是生存最重要的前提,因而農業成了科技的推動力。古代的天文學最初的發展就受益於此,農業發達地區,相應的天文學也隨之發展。

為什麼每四年就多一天?從太陽和天狼星相對位置而得

西元前 7000 多年,閃米人和當地的原住民就在尼羅河下游開始耕種。經過上千年的辛勤耕耘,他們把尼羅河畔的處女地開墾成良田,又經過上千年,那裡最古老的王國才建立起來。

尼羅河水每年會在固定的時間氾濫,等洪水退去之後,古埃及人便在洪水浸泡過的肥沃土地上耕種。為了準確預測洪水到來和退去的時間,當時的古埃及人開創了早期的天文學,制定了早期的曆法,根據天狼星和太陽的相對位置來判斷一年中的時間和節氣。

古埃及人的曆法中沒有閏年,他們的地球年每年是 365 天,比今天真正的地球年短了近 1/4 天。因此,如果按照地球年的時間耕種,過不了幾年節氣就不對了。而太陽系由於遠離天狼星,彼此的位置幾乎固定不變,因此,地球在太陽軌道上每年轉回到同一個位置時,所看到的遠處的天狼星位置是相同的。

當太陽和天狼星一起升起的時候,則是古埃及一個大年(恆星年)的開始,然後古埃及人每年根據天狼星的位置決定農時。圖/dom1706 @pixabay

古埃及人就用這種方法校正每年的農時。當太陽和天狼星一起升起的時候,則是古埃及一個大年(恆星年)的開始,然後古埃及人每年根據天狼星的位置決定農時。古埃及的大年(也稱為天狼星週期)非常長,因為要再過 1460 個天文上的地球年(等同於 365×4+1=1461 個古埃及地球年),太陽和天狼星相對的位置才恢復原位。

-----廣告,請繼續往下閱讀-----

1461 正好是地球上四年的天數,也就是說,古埃及人在 1460 個地球公轉週期中(儒略年)加入了一整年,等同於每四年中加入一天產生一個閏年。以天狼星和太陽同時做參照系,古埃及人可以準確地預測洪水在每年不同時間能到達的邊界。就這樣,出於農業生產的需要,古埃及發展起了天文學。

整個宇宙宛如一口大鐘:決定種植與收穫時程

在人類另一個早期的文明中心:美索不達米亞,天文學發展的動力同樣來自農業。從蘇美人到後來的古巴比倫人(約西元前 1894~前 1595 統治美索不達米亞地區),天文學家經過了近兩千年的觀測和總結,掌握了太陽、月亮、各星座的位置和每一年中具體的時間之間的對應關係,並把它們的位置作為一個精確測量時間的「大鐘」,再透過大鐘所指示的時間,指導種植和收穫莊稼。古巴比倫人保存的大量星座位置、日曆和農耕的書面記錄,使得我們能夠瞭解當時天文學發展的全貌。

天文學家掌握了太陽、月亮、各星座的位置和每一年中具體的時間之間的對應關係,並把它們的位置作為一個精確測量時間的「大鐘」,再透過大鐘所指示指導種植和收穫莊稼。圖/valentinsimon0 @pixabay

另外,我們今天所說的星座,最早是由蘇美人發明和使用的。到了後來的古巴比倫人統治時期,他們創造出黃道十二宮,標誌著太陽、月亮和行星在天空中移動的十二個星座。我們常說的星座的名稱,比如獅子座、金牛座、天蠍座、雙子座、摩羯座、射手座等,均來自美索不達米亞。至於為什麼要將天空分為十二個星座而不是其他數量,原因也很簡單,因為地球的公轉,古巴比倫人每個月看到的星空會有 1/12 和原來的不同。

夜空中最亮的星——天狼星是掌管尼羅河的神

由於天空星辰的位置與地面上氣候變化及其他一些自然現象(比如河水的漲落、海水的潮汐)相關,故而在人類文明的早期,天文學、占星術和迷信之間的邊界並不清晰。由於天狼星的位置和尼羅河氾濫的邊界相一致,因此,古埃及人認為天狼星是掌管尼羅河的神祇,於是為它建造神殿祭祀。

-----廣告,請繼續往下閱讀-----

在美索不達米亞,國王和僧侶們把星象和人間發生的事情(比如災禍)聯繫起來,認為上天會對人間的事情進行預言和警示,這種認識和中國古代的統治者有相通之處。既然星象能夠用來解釋人間的事情,並依此決定政治和宗教,美索不達米亞的歷代王朝便投入了大量精力研究天文學。

由於天狼星的位置和尼羅河氾濫的邊界相一致,因此,古埃及人認為天狼星是掌管尼羅河的神祇,於是為它建造神殿祭祀。圖/piyumi76 @pixabay

全世界天文學的正朔:美索不達米亞的古代天文學

美索不達米亞地區的古代天文學是今天全世界天文學的正朔。古希臘的天文學是在美索不達米亞天文學的基礎上建立起來的,當時古希臘的學者經常飄洋過海到美索不達米亞去學習數學和天文學。今天關於十二星座的神話起源,在整個西方世界,從美索不達米亞到古希臘,再到後來的古羅馬,幾乎是相同的。從文明的時間來看,也可以確定它們是從美索不達米亞向西傳到了古希臘島嶼。

美索不達米亞的天文學在古巴比倫人統治時期發展到一個高峰。他們發明了太陰曆,觀測到了行星運動和恆星的不同,並且發明了一種計算金星圍繞太陽運動週期的方法。當然,古巴比倫人把這個週期的長度定為 587 天,而實際值為 584 天。這細微的差別並不是因為古巴比倫人算得不準,而是他們試圖使這些天文週期與月亮的相位重合。古巴比倫人和後來的亞述人都能根據過去所發生的月食時間預測未來的月食時間。

古巴比倫人在天文學上的另一大貢獻是發明了天文學中座標系統的雛形。他們把天空按照兩個維度劃分成很多區間。後來,源於古巴比倫人把圓周劃分成 360 度,古希臘人便在此基礎上發展出了緯度和經度。

-----廣告,請繼續往下閱讀-----

——本文摘自《全球科技大歷史》,2019 年 9 月,漫遊者文化出版。

azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

0
0

文字

分享

0
0
0
《東風帶雨逐西風 又是一年立春時》——2019數感盃 / 高中職組專題報導類金獎
數感實驗室_96
・2019/05/17 ・3458字 ・閱讀時間約 7 分鐘 ・SR值 552 ・八年級

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2019數感盃青少年寫作競賽 / 高中職組專題報導類金獎 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 作者:李尚謙/臺中市立文華高級中學

立春是二十四節氣中的第一個節氣。古人常藉詩詠懷,如唐代詩人白居易曾寫道:「立春後五日,春態紛婀娜。白日斜漸長,碧雲低欲墮。」描寫的便是立春過後,春意漸濃的各種景物。

圖/pixabay

今年除夕在某網路媒體(2019.02.04)出現與立春相關的報導——

標題:《超罕見》今天除夕逢立春、豬年『兩頭無春』!下一次要等到2057年

內文:今年農曆除夕巧遇二十四節氣中的『立春』,也因此即將到來的農曆豬年『兩頭無春』。這種情況非常非常少見,100年裡只有3次,分別是2019年2月4日、2057年2月3日、2076年2月4日。換句話說,過了今天,下一次得等到38年之後的2057年……

-----廣告,請繼續往下閱讀-----

另外值得一提的是,農曆豬年為2019年2月5日至2020年1月24日,2019年的立春在2月4日,此時仍然是農曆狗年,2020年的立春同樣也在2月4日,但那時已經是農曆鼠年了。所以農曆豬年沒有『立春日」,也就是所謂的『兩頭無春』。

中國民間有一種說法,『兩頭無春」的年份在是『寡年』『盲年』,不適合嫁娶。」

這篇報導提到了一個說法——「兩頭無春」,並強調 100 年中只出現了 3 次。這引起了我的好奇,究竟什麼是「兩頭無春」?真的如此少見嗎?會不會有其它的可能性呢?

首先我搜尋了農曆與 24 節氣的規則,農曆其實是陰陽合曆,既考慮太陽運行的迴歸年,也納入月球運行的朔望月,朔望月平均長度 29.53 天,以朔日(完全没有月亮的那一天)為每月的初一日,農曆没有閏月的年份(以下簡稱農曆平年)有 12 個月,只有 354 或 355 天。有閏月的年份(以下簡稱農曆閏年)有 13 個月,總天數為 383 或 384 天。因此在農曆平年天數比國曆少了 11 天左右,但農曆閏年比國曆多了 18 天左右。而相鄰兩節氣間隔天數約 15 或 16 日,同一節氣例如春分至下一個春分的間隔是固定的,約是一個迴歸年的日數 365 或 366 日。

-----廣告,請繼續往下閱讀-----

因農曆平年比迴歸年少了 11 天,小於相鄰兩節氣間隔天數,有可能少了某一個節氣,所以平年節氣數為 23 或 24 個。而農曆閏年比迴歸年多出 18 天,大於相鄰兩節氣間隔天數,必會多出一至二個節氣,所以閏年節氣數為 25 或 26 個。

接著我想要知道農曆閏年多出或平年短少的節氣一定是立春嗎?

我查詢了農曆置閏的規則,其中最重要的是若兩個相鄰的冬至間(即歳實)有 13 個朔日(就是没有月亮的日子即初一),則此歳中第一個無中氣月需設置閏月。另一個相關的規則是冬至必在農曆十一月內,而冬至通常在國曆 12/21 或 12/22。若冬至落在最早的農曆十一月初一,則正月初一就出現在二個月後。若冬至落在最晚的農曆十一月三十,則正月初一就出現在一個月後。因此春節通常出現在國曆 1/21 至 2/20 間。

按此推算,因農曆閏年較迴歸年多出約 18 至 19 日,而翌年的春節不可能晚於國曆 2/20,所以農曆閏年的正月初一不可能晚於國曆 2/2,自時憲曆 1645 年施行一千年內,閏年春節出現在最晚的 2/2 有三次,分別是 1832 年、2204 年、2318 年。

-----廣告,請繼續往下閱讀-----

若閏年春節出現在最早的國暦 1/21,翌年的春節將出現在 2/8 或 2/9。

若閏年春節出現在最晚的 2/2,翌年的春節將出現在 2/20 或 2/21。

因此,無論閏年春節出現早或晚,該年都將有兩個立春。而平年天數較迴歸年少,節氣數只會少於或等於 24 個,不會有第二個重覆的節氣,故雙立春必僅出現在閏年。

接下來我想知道除了立春以外,有没有其它節氣會有類似的狀況嗎?

-----廣告,請繼續往下閱讀-----

上文提到春節通常在國曆 1/21至2/20 間,這段時間可能經歷 3 個節氣,依序為大寒(1/19~21)、立春(2/3~5)、雨水(2/18~20),若春節早於大寒或立春,或者晚於雨水,在一個農曆年內就有可能頭尾重覆出現同樣的節氣,立春已於上文討論,只剩下大寒與雨水有機會。

所以農曆年有可能包含兩個雨水嗎?

雙雨水的出現,除了必要的閏年條件外,因閏年的春節最晚出現在 2/2,必在雨水(2/18~20)之前,所以若下一年的春節晚於雨水出現的日子,農曆閏年即可包含兩個雨水。

(1)若雨水在國曆 2/18,那麼春節應該出現在 2/19 或 2/20。

-----廣告,請繼續往下閱讀-----

(2)若雨水在國曆 2/19,那麼春節應該出現在 2/20。

(3)若雨水在國曆 2/20,除非春節出現在正常區間以外的 2/21。

在 1645 年到 2644 年的 1000 年當中,春節次數統計如下表

出現在國曆 2/19 的 29 次春節中,其中有 6 次(*)雨水出現在 2/18。下圖以西元年依序排列

-----廣告,請繼續往下閱讀-----

出現在國曆 2/20 的 10 次春節中,其中有 8 次(*)雨水出現在 2/18 或 2/19。

以過去最接近的 1985 年為例,春節出現在 2/20,當年的雨水出現在 2/19,那一天是農曆甲子年的 12 月 30 日,前一年 1984 年的雨水也在 2/19,那一天是農曆 1 月 18 日,也就是  1984 甲子年出現了兩個雨水。雙立春雙雨水常被視為吉兆,象徵風調雨順、國泰民安,下一個將到來的雙春雙雨將出現在 2033 癸丑年。

更極端的例子出現在 2319 年,在 1000 年中出現了唯一 2/21 的春節,當年的雨水在 2/20,那一天是農曆戊戌年的 12 月 30 日,前一年 2318 年的雨水在 2/19,那一天是農曆戊戌年的 1 月 18 日,也就是 2318 戊戌年出現了兩個雨水。

總結在 1000 年中,雙春雙雨共出現了 15 次,但頻率並不固定,相鄰兩次間隔可近至 19 年,但也可超過 150 年,依西元年表列如下:

-----廣告,請繼續往下閱讀-----

那麼農曆年有可能包含兩個大寒嗎?

農曆年若要包含兩個大寒,除了必要的閏年條件外,春節必須出現的極端地早,必須早於或至少等於大寒日,而大寒通常在國曆 1/19 至 1/21,春節通常在國曆 1/21 至 2/20 間,如下圖如示。春節早於大寒日的可能性極低,但有機會出現在 1/21 最晚的大寒日,亦即大寒和春節同時出現在 1/21,

若大寒和春節同時出現在 1/21,連帶地排在前二個序位節氣的冬至也會最晚,應該出現在可能日期中的農曆十一月最後一日。冬至到大寒為相鄰兩中氣,差距約 29 日又 10 時,變動不大,而十二月初一到正月初一為相鄰兩朔日,差距為一個朔望月,變動幅度較大,最長可達 29 天 19 小時,最短為 29 天 6 小時,平均長度約為 29 天 12 小時。冬至與農曆十二月初一相差一日,但兩節氣相距時間與兩朔日相距時間相差有限,幾乎相等。

下圖假設大寒與春節同為 1/21 的情況真的發生時,冬至和朔日間的關係,可以看出大寒與春節同時出現在國曆 1/21 的可能性非常低,幾乎不可能發生。

在1645年到2644年的1000年當中,1/21春節只出現了18次。依西元年排列:

其中没有任何一次大寒出現在 1/21,這意味著自 1645 年時憲曆施行後一千年內並未出現雙大寒的情形。

我將以上資料與推論作一個總整理:

(一)農曆閏年是雙節氣的必要條件,閏年必有雙立春,雙立春必出現在閏年,約二至三年出現一次,出現雙春的下一年未必無春。若 2 年一閏,第一年閏年必有雙春,第二年平年必無春,若 3 年一閏,第一年閏年必有雙春,第二年平年可能為尾春或無春,對應第三年平年可能為無春或頭春,如右圖。

在農曆 19 年 7 閏周期中,必有 19 個立春。7 個閏年代表有 7 個雙春年,每一個雙春年必對應一個無春年,剩下 5 個單春年,但單春年的立春出現在年頭或年尾皆有可能。

雙春年出現機率為 7÷19≒0.37,無春年出現機率也為 7÷19≒0.37,反而一年內只有一個立春的單春年出現機率只有 5÷19≒0.26,平均約 4 年才會出現一次單春年。

(二)除了雙立春以外,農曆閏年也可能出現雙雨水,但難得一見,在 1645 年到 2644 年的 1000 年當中,雙立春雙雨水共出現了 15 次,間隔並不固定,出現機率為 15÷1000=0.015。

(三)出現雙大寒的可能性極低,1000 年中未曾出現過。

(四)除了立春與雨水外,同一個農曆年內不會有其它節氣重覆出現。

媒體報導中的「兩頭無春」非常非常少見,100 年裡只有 3 次,應是指除夕適逢立春,翌年又是無春年的特殊情形,即便如此,仍比不上雙雨水的百年罕見。

面對誇大的新聞標題,我們應保持理性客觀檢視並深入探討,才有機會撥雲見日。

參考資料

  1. 維基百科-農曆
  2. 風傳媒:超罕見》今天除夕逢立春、豬年「兩頭無春」!下一次要等到2057年
  3. 新加坡國立大學數學系:The Mathematics of the Chinese Calendar
  4. 新唐人電視台:東風化雨逐西風 又是一年立春時
數感實驗室_96
60 篇文章 ・ 40 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
1

文字

分享

0
0
1
【特輯】關於春分,除了晝夜等長外這些事你知道嗎?
PanSci_96
・2019/03/20 ・4322字 ・閱讀時間約 9 分鐘 ・SR值 494 ・六年級

source:Google Doodle

關於春分,我們大多都能直接地說出這天晝夜等長;但除此之外,你知道春分曾經因為曆法的關係而歪的很嚴重嗎?這一天除了感受日夜長度差不多,還有哪些美景可以欣賞呢?讓我們一起來看看關於春分的二三事吧!

閏年太多的儒略曆讓春分的時間跑掉了

在公元前60年,儒略曆法通行前的羅馬曆油畫。source:Wikipedia

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

實行儒略曆後,凱薩的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒也從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

-----廣告,請繼續往下閱讀-----

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

春分歪掉,復活節也跟著歪掉啦

而這還會有什麼問題呢?

每年差一點點,對於人們生活週期可能還沒有太大的影響,但是對於宗教節慶就有不可輕忽的改變了。由於復活節的時間,是從春分的時間推算而來的。曆法上的年,與太陽、地球真實關係的回歸年有所偏移,就代表每年春分的時間位在曆法上的日期,也不斷地偏移。春分的時間偏移,復活節的時間也就跟著偏移,這對教廷來說是件大事。

source:Petr Kratochvil

於是,在1582年,教皇格列哥里十三世宣布改曆。他做了兩件事情:第一件事,改變置閏的規則。為了讓每年春分時間一致,必須讓曆法的年逼近回歸年。原來年份只要是4的倍數就要置閏,但這樣閏太多了,使得曆法平均一年(365.25天)超過回歸年(365.2422天)太多,因此需要砍掉幾個閏年來修正這個餘額。這時採取的辦法是這樣的:以後年份如果是100的倍數但不是400的倍數,就不是閏年了。也就是說,西元1700、1800、1900年都不再是閏年,但2000年仍然是閏年。

-----廣告,請繼續往下閱讀-----

以上的作法,將「4年1閏」變為「400年97閏」。簡單計算一下,1/4=0.25,儒略曆平均一年365.25天;97/400=0.2425,格列哥里曆平均一年365.2425天,與回歸年的誤差縮減到每年0.0003天,到三千多年左右才會誤差一天。這套格列哥里曆,就一直沿用成為現代的「公曆」了。

一年時間 置閏
努瑪曆 平年355天

閏年377或378天

外加一個月
儒略曆

(西元前46年凱撒改曆)

平年365天

閏年366天

[平均一年365.25天]

年份為4的倍數置閏
格列哥里曆

(西元1582年格列哥里改曆)

平年365天

閏年366天

[平均一年365.2425天]

原則上年份為4的倍數置閏;例外:年份為100的倍數但不為400的倍數則不置閏(1700、1800、1900不置閏,2000置閏)

格列哥里改曆,還做了第二件事情,目的是要讓春分回到3月21日,才能維繫復活節原定的時間。因此,他做了一個立即的修正,等於是大刀砍下去,把之前偏差掉的全部改了回來。還記得嗎?我們剛才估算的結果,儒略曆經過一千多年,整整多出了10天左右。這時候,教皇格列哥里十三世作法很直接,直接在1582年砍掉10天!所以,1582年10月5日到14日,這十天就因為這次改曆而消失了。

想體驗手算日出的感覺嗎?來試試日出方程式

 

如上圖所示,從外太空看地球側面,水平基準線 OH 為地球赤道,垂直線 OG 為太陽在春分或秋分照射地球時的日夜分界線,斜線 OB 為太陽其它日期照射地球的日夜分界線,日夜分界線的地方就是日出或日落的地方。

有了日出方程式,就可以計算出太陽在不同的赤緯,地球各地不同緯度的日出和日落精確時間:

-----廣告,請繼續往下閱讀-----

ω0 是日出(當數值為負數時)或日落(當數值為正值時)時,以度為單位的時角;
ψ 是在地球上觀測者的緯度;

δ 是太陽的赤緯;

日出的定義為太陽剛從地平線出現的一剎那,而非整個太陽離開地平線,而日落是以太陽完全沒入地平線,太陽盤面大小約0.5°。還有大氣折射影響,太陽在地平面會被抬升約 0.6°。

因此,需要再加 a = -0.85°(= 0.6°+0.5°/2) 修正

-----廣告,請繼續往下閱讀-----
想體驗手算日出的感覺嗎?不如就從春分這天開始吧!

或是找個地方靜靜地,享受春分帶來的美景

天體運動的成因有好幾個,包括地球繞著太陽做軌道運動、地球以地軸為中心自轉,還有因為地球的北極並非位於與軌道面垂直的位置。從這三點延伸得到的觀測結果,就是太陽在天空中的位置會在一年當中不斷改變。太陽每天會從地平線上不同的位置昇起落下,在天空中移動的軌跡也都不一樣。

一年之中,在春分秋分這兩天,太陽會從正東方昇起、於正西方落下;而在夏至冬至時,太陽在地平線上東昇西落的位置會分別最偏向北方和南方。

世界有許多古代遺址的岩石和建築物,是依據星辰和太陽的起落和位置所精心排列,像是青蔥蒼翠的索爾茲伯里平原 (Salisbury Plain) 上矗立的巨石陣、安納沙茲人 (Anasazi) 建於查科峽谷 (Chaco Canyon) 的卡薩林克納達神廟 (Casa Rinconada),還有懷俄明州大角山脈 (Bighorn Range) 山頂的大醫藥輪 (Great Medicine Wheel)。

圖片3
依照天文現象排列的古代遺址:(左) 巨石陣、(中) 卡薩林克納達神廟、(右) 大角山脈的醫藥輪。

有時候,現代都市的地標排列也會與時鐘般規律的天體運行呈現巧妙的呼應,或許是有意設計的,但多半都是出於偶然。看看曼哈頓島 (Island of Manhattan) 就知道了,這座島位於哈德遜河 (Hudson River) 的河口,對角線往南北方向偏斜;最早有人在此定居時,街道都是隨意開闢的,像大部分的古老城市一樣雜亂無章地發展。這些曲折小路看起來大同小異、難以辨別,讓整個城區儼然成為不斷擴大的迷宮,最後終於根據 1811 年委員會計劃 (Commissioners’ Plan of 1811) 將整座城市的發展方針制定為棋盤式的街道。

-----廣告,請繼續往下閱讀-----

當時對於棋盤式街道的規劃,是依照和島嶼海岸平行的方向,開闢出略偏南北方向的一條條大道;因此,和這些幹道交叉的橫向街道都略為偏往東西向,與正東西方向的偏斜角度大約為 25 到 30 度,結果正巧讓所有的橫向街道幾乎正對著夏至時日出日落的方向!這個現象在大約十年前由奈爾·德葛拉司·泰森 (Neil deGrasse Tyson) 提出而廣為人知,他將這個現象稱為「曼哈頓巨石陣」(Manhattanhenge)。

manhattan-solstice-13

 

圖片5
曼哈頓 (左) 和芝加哥 (右) 的棋盤式街道。街道的幾何排列方式決定了你有沒有機會看到角度剛好的日出或日落,讓你一睹城市中的巨石陣。

不過若想欣賞與天文現象排列一致的現代建築景觀,也不是非得大老遠跑到曼哈頓去,很多城鎮都市的街道都是以棋盤式排列。如果是以東西向和南北向規劃鋪設的街道系統,在每年三月和九月的春分秋分,都有機會目睹這種魔幻奇景。芝加哥市就是一例,當地的街道 (大致上) 是呈現矩形的棋盤狀排列,與羅盤方位一致,所以在三月的春分和九月的秋分時,就可以拍攝到「芝加哥巨石陣」的景象!

圖片6
芝加哥巨石陣的例子 [圖片來源:Ken Ilio’s Uncommon Photographers]。
無論你身在何處,都有機會將你居住的城市化為現代巨石陣,拍下太陽不斷變換推移的運動軌跡,就算是像加拿大安大略省 Vankleek Hill 這樣的小城鎮也不例外。這個小鎮大約位於渥太華 (Ottawa) 和蒙特婁 (Montreal) 的中間,人口只有 2000 人左右。這裡的棋盤式街道往羅盤方位偏斜,大致上平行於從安大略湖 (Lake Ontario) 流入聖羅倫斯灣 (Gulf of Saint Lawrence) 的河流。這樣的角度,就可以在夏至和冬至時正對著太陽了,像這張由 Gabriel Landriault 所拍攝的照片一樣。

圖片7
(左) 安大略省 Vankleek Hill 的棋盤式街道,與東西方向約有 20 度的偏斜。(右) 夏至時在 Vankleek Hill 街道上所見的光景 [攝影:Gabriel Landriault]。
這張 Vankleek Hill 的照片也顯示出值得注意的一點:Vankleek Hill 的街道只與正東西方向偏斜 20 度左右,而夏至時的太陽會更為偏向北方,所以此時並不是完全正對著街道的。但是在一年之中總會有一天是完全對準的

-----廣告,請繼續往下閱讀-----

這可以從我們的地平線日曆中推敲得知,因為太陽從地平線昇起落下、不斷移動,在夏至和冬至、春分和秋分時,可以預料太陽在地平線上昇起落下的固定位置,但若經過仔細的規劃、觀測還有模擬 (可以使用 Stellarium 一類的天文館模擬器),你就會發現自己居住的城市街道在什麼時候會正對著日出和日落的方向。

圖片8
透過 Adler Planetarium 產生春分時的模擬情形,使用的是 StarryNight 桌面天文台軟體。

不妨就趁著春分的今天,趕快看準時間走出戶外,到離你最近的東西向街道上,拿出手機拍下正對著日出或日落的獨特景象吧!