0

0
1

文字

分享

0
0
1

【特輯】關於春分,除了晝夜等長外這些事你知道嗎?

PanSci_96
・2019/03/20 ・4322字 ・閱讀時間約 9 分鐘 ・SR值 494 ・六年級

-----廣告,請繼續往下閱讀-----

source:Google Doodle

關於春分,我們大多都能直接地說出這天晝夜等長;但除此之外,你知道春分曾經因為曆法的關係而歪的很嚴重嗎?這一天除了感受日夜長度差不多,還有哪些美景可以欣賞呢?讓我們一起來看看關於春分的二三事吧!

閏年太多的儒略曆讓春分的時間跑掉了

在公元前60年,儒略曆法通行前的羅馬曆油畫。source:Wikipedia

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

實行儒略曆後,凱薩的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒也從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

-----廣告,請繼續往下閱讀-----

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

春分歪掉,復活節也跟著歪掉啦

而這還會有什麼問題呢?

每年差一點點,對於人們生活週期可能還沒有太大的影響,但是對於宗教節慶就有不可輕忽的改變了。由於復活節的時間,是從春分的時間推算而來的。曆法上的年,與太陽、地球真實關係的回歸年有所偏移,就代表每年春分的時間位在曆法上的日期,也不斷地偏移。春分的時間偏移,復活節的時間也就跟著偏移,這對教廷來說是件大事。

source:Petr Kratochvil

於是,在1582年,教皇格列哥里十三世宣布改曆。他做了兩件事情:第一件事,改變置閏的規則。為了讓每年春分時間一致,必須讓曆法的年逼近回歸年。原來年份只要是4的倍數就要置閏,但這樣閏太多了,使得曆法平均一年(365.25天)超過回歸年(365.2422天)太多,因此需要砍掉幾個閏年來修正這個餘額。這時採取的辦法是這樣的:以後年份如果是100的倍數但不是400的倍數,就不是閏年了。也就是說,西元1700、1800、1900年都不再是閏年,但2000年仍然是閏年。

-----廣告,請繼續往下閱讀-----

以上的作法,將「4年1閏」變為「400年97閏」。簡單計算一下,1/4=0.25,儒略曆平均一年365.25天;97/400=0.2425,格列哥里曆平均一年365.2425天,與回歸年的誤差縮減到每年0.0003天,到三千多年左右才會誤差一天。這套格列哥里曆,就一直沿用成為現代的「公曆」了。

一年時間 置閏
努瑪曆 平年355天

閏年377或378天

外加一個月
儒略曆

(西元前46年凱撒改曆)

平年365天

閏年366天

[平均一年365.25天]

年份為4的倍數置閏
格列哥里曆

(西元1582年格列哥里改曆)

平年365天

閏年366天

[平均一年365.2425天]

原則上年份為4的倍數置閏;例外:年份為100的倍數但不為400的倍數則不置閏(1700、1800、1900不置閏,2000置閏)

格列哥里改曆,還做了第二件事情,目的是要讓春分回到3月21日,才能維繫復活節原定的時間。因此,他做了一個立即的修正,等於是大刀砍下去,把之前偏差掉的全部改了回來。還記得嗎?我們剛才估算的結果,儒略曆經過一千多年,整整多出了10天左右。這時候,教皇格列哥里十三世作法很直接,直接在1582年砍掉10天!所以,1582年10月5日到14日,這十天就因為這次改曆而消失了。

想體驗手算日出的感覺嗎?來試試日出方程式

 

如上圖所示,從外太空看地球側面,水平基準線 OH 為地球赤道,垂直線 OG 為太陽在春分或秋分照射地球時的日夜分界線,斜線 OB 為太陽其它日期照射地球的日夜分界線,日夜分界線的地方就是日出或日落的地方。

有了日出方程式,就可以計算出太陽在不同的赤緯,地球各地不同緯度的日出和日落精確時間:

-----廣告,請繼續往下閱讀-----

ω0 是日出(當數值為負數時)或日落(當數值為正值時)時,以度為單位的時角;
ψ 是在地球上觀測者的緯度;

δ 是太陽的赤緯;

日出的定義為太陽剛從地平線出現的一剎那,而非整個太陽離開地平線,而日落是以太陽完全沒入地平線,太陽盤面大小約0.5°。還有大氣折射影響,太陽在地平面會被抬升約 0.6°。

因此,需要再加 a = -0.85°(= 0.6°+0.5°/2) 修正

-----廣告,請繼續往下閱讀-----
想體驗手算日出的感覺嗎?不如就從春分這天開始吧!

或是找個地方靜靜地,享受春分帶來的美景

天體運動的成因有好幾個,包括地球繞著太陽做軌道運動、地球以地軸為中心自轉,還有因為地球的北極並非位於與軌道面垂直的位置。從這三點延伸得到的觀測結果,就是太陽在天空中的位置會在一年當中不斷改變。太陽每天會從地平線上不同的位置昇起落下,在天空中移動的軌跡也都不一樣。

一年之中,在春分秋分這兩天,太陽會從正東方昇起、於正西方落下;而在夏至冬至時,太陽在地平線上東昇西落的位置會分別最偏向北方和南方。

世界有許多古代遺址的岩石和建築物,是依據星辰和太陽的起落和位置所精心排列,像是青蔥蒼翠的索爾茲伯里平原 (Salisbury Plain) 上矗立的巨石陣、安納沙茲人 (Anasazi) 建於查科峽谷 (Chaco Canyon) 的卡薩林克納達神廟 (Casa Rinconada),還有懷俄明州大角山脈 (Bighorn Range) 山頂的大醫藥輪 (Great Medicine Wheel)。

圖片3
依照天文現象排列的古代遺址:(左) 巨石陣、(中) 卡薩林克納達神廟、(右) 大角山脈的醫藥輪。

有時候,現代都市的地標排列也會與時鐘般規律的天體運行呈現巧妙的呼應,或許是有意設計的,但多半都是出於偶然。看看曼哈頓島 (Island of Manhattan) 就知道了,這座島位於哈德遜河 (Hudson River) 的河口,對角線往南北方向偏斜;最早有人在此定居時,街道都是隨意開闢的,像大部分的古老城市一樣雜亂無章地發展。這些曲折小路看起來大同小異、難以辨別,讓整個城區儼然成為不斷擴大的迷宮,最後終於根據 1811 年委員會計劃 (Commissioners’ Plan of 1811) 將整座城市的發展方針制定為棋盤式的街道。

-----廣告,請繼續往下閱讀-----

當時對於棋盤式街道的規劃,是依照和島嶼海岸平行的方向,開闢出略偏南北方向的一條條大道;因此,和這些幹道交叉的橫向街道都略為偏往東西向,與正東西方向的偏斜角度大約為 25 到 30 度,結果正巧讓所有的橫向街道幾乎正對著夏至時日出日落的方向!這個現象在大約十年前由奈爾·德葛拉司·泰森 (Neil deGrasse Tyson) 提出而廣為人知,他將這個現象稱為「曼哈頓巨石陣」(Manhattanhenge)。

manhattan-solstice-13

 

圖片5
曼哈頓 (左) 和芝加哥 (右) 的棋盤式街道。街道的幾何排列方式決定了你有沒有機會看到角度剛好的日出或日落,讓你一睹城市中的巨石陣。

不過若想欣賞與天文現象排列一致的現代建築景觀,也不是非得大老遠跑到曼哈頓去,很多城鎮都市的街道都是以棋盤式排列。如果是以東西向和南北向規劃鋪設的街道系統,在每年三月和九月的春分秋分,都有機會目睹這種魔幻奇景。芝加哥市就是一例,當地的街道 (大致上) 是呈現矩形的棋盤狀排列,與羅盤方位一致,所以在三月的春分和九月的秋分時,就可以拍攝到「芝加哥巨石陣」的景象!

圖片6
芝加哥巨石陣的例子 [圖片來源:Ken Ilio’s Uncommon Photographers]。
無論你身在何處,都有機會將你居住的城市化為現代巨石陣,拍下太陽不斷變換推移的運動軌跡,就算是像加拿大安大略省 Vankleek Hill 這樣的小城鎮也不例外。這個小鎮大約位於渥太華 (Ottawa) 和蒙特婁 (Montreal) 的中間,人口只有 2000 人左右。這裡的棋盤式街道往羅盤方位偏斜,大致上平行於從安大略湖 (Lake Ontario) 流入聖羅倫斯灣 (Gulf of Saint Lawrence) 的河流。這樣的角度,就可以在夏至和冬至時正對著太陽了,像這張由 Gabriel Landriault 所拍攝的照片一樣。

圖片7
(左) 安大略省 Vankleek Hill 的棋盤式街道,與東西方向約有 20 度的偏斜。(右) 夏至時在 Vankleek Hill 街道上所見的光景 [攝影:Gabriel Landriault]。
這張 Vankleek Hill 的照片也顯示出值得注意的一點:Vankleek Hill 的街道只與正東西方向偏斜 20 度左右,而夏至時的太陽會更為偏向北方,所以此時並不是完全正對著街道的。但是在一年之中總會有一天是完全對準的

-----廣告,請繼續往下閱讀-----

這可以從我們的地平線日曆中推敲得知,因為太陽從地平線昇起落下、不斷移動,在夏至和冬至、春分和秋分時,可以預料太陽在地平線上昇起落下的固定位置,但若經過仔細的規劃、觀測還有模擬 (可以使用 Stellarium 一類的天文館模擬器),你就會發現自己居住的城市街道在什麼時候會正對著日出和日落的方向。

圖片8
透過 Adler Planetarium 產生春分時的模擬情形,使用的是 StarryNight 桌面天文台軟體。

不妨就趁著春分的今天,趕快看準時間走出戶外,到離你最近的東西向街道上,拿出手機拍下正對著日出或日落的獨特景象吧!

文章難易度
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
破解史前巨石陣謎團!科學家分析核心樣本找到石材來源
活躍星系核_96
・2020/08/21 ・2121字 ・閱讀時間約 4 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/韻涵|以人文視角洞察科普,淺顯轉述科學奧義。這輩子離不開地球,只能遙望星空。

巨大石塊突兀地聳立在平原上,它們怎麼會出現在這,為什麼會圍成一個圓,是用作神秘儀式,還是外星人傑作?數百年來,科學家試圖探索英格蘭史前遺跡巨石陣(Stonehenge)之謎,如今多虧了保存在美國逾半世紀的巨石核心樣本,巨石陣石材的身世謎團終於解開。

圖/Pixabay

英格蘭布萊頓大學(University of Brighton)地形學家納許(David Nash)領導的研究團隊,利用 X光分析組成巨石陣的 52 塊淺灰色砂岩「撒森岩」(sarsens)的化學組成,發現其中含有 99% 的矽土,以及其他諸多化學成分。

科研團隊檢測的 52 塊撒森岩中,有 50 塊與距離 25 公里外的西伍茲(West Woods)的岩石組成相似;西伍茲位於英格蘭威爾特郡(Wiltshire)馬堡丘陵(Marlborough Downs)南方,距離巨石陣約 25 公里。納許說:「大部分岩石都有著共同的化學物質,顯示它們來自同一區。」

圖/Google Map

納許表示,「撒森岩建構巨石陣標誌性的外圈,以及中央的馬蹄形三石結構,非常龐大。」英格蘭遺產委員會(English Heritage)介紹,三石結構指的是兩塊垂直岩石支撐上方的一塊水平石塊。巨石陣約在西元前 2500 年建造,經年風蝕雨淋,許多石塊已然掉落或失蹤,目前最高聳的石塊約 9.1 公尺,最重的石塊達 30 噸。

-----廣告,請繼續往下閱讀-----

關鍵巨石核心棒,失而復得

1958 年,考古學團隊聘請鑽石切割公司「萬磨」(Van Moppes)搶救一組掉落的三石結構,工程人員在巨石上鑽了三個孔,取出三支巨石核心棒,再嵌入足以支撐三石結構的金屬棒。

其中一支直徑約 25 公分、長約 108 公分的巨石核心樣本,送給參與修復工程的萬磨雇員菲力普斯(Robert Phillips),他 1977 年獲准攜帶這個巨石陣樣本移民美國,輾轉各州後落腳佛羅里達; 2019 年,菲力普斯90大壽前夕,決定把樣本歸還英格蘭遺產委員會,讓研究團隊有機會一探巨石陣石材的來歷。

這支「菲利浦斯核心」(Phillips core)巨石核心樣本歸還的消息傳開後,第二支核心棒也在附近博物館被找著,但它並不完整,只剩18公分,其餘的部分以及第三支核心棒至今仍下落不明。

英格蘭遺產委員會將半根「菲利浦斯核心」交由納許團隊研究分析,另外半根則由委員會妥善保存。納許團隊利用「感應耦合電漿質譜儀」(Inductively coupled plasma mass spectrometry,簡稱 ICP-MS),詳盡分析半根「菲利浦斯核心」,精準辨識更多化學元素,接著比對另外 20 處的岩石樣本,發現巨石陣的岩石與西伍茲的岩石組成最接近。

-----廣告,請繼續往下閱讀-----

納許說:「利用 21 世紀的科學技術探索新石器時代(Neolithic)的歷史,最終解答考古學家辯論數個世紀之謎,著實令人興奮。」

這項發表於開放式科學期刊《科學進展》(Science Advances)的研究結果,呼應了巨石陣在 4500 多年前被運送到現今地點的理論,當時是巨石陣建造的第二階段,凸顯建造者來自高度組織化的社會。

英格蘭遺產委員會考古學研究員蘇珊‧葛瑞尼里(Susan Greaney)說:「新研究得以確定巨石陣建造者在西元前 2500 年取材的地點,著實令人興奮。我們猜測撒森岩可能來自馬堡丘陵,但之前還無法確定,威爾特郡許多地區都有撒森岩,石材可能來自四面八方。」她表示,新證據反映出「建造者在此階段規劃縝密且考量周全」。

新研究結果也推翻了過往文獻假說,該假說認為其中一塊大型的「席爾石」(Heel Stone)為就地取材或早在其他石柱聳立前就已經在那兒。

-----廣告,請繼續往下閱讀-----

17 世紀的英國自然哲學家約翰奧布里(John Aubrey)曾假設,奧佛頓森林(Overton Wood)與巨石陣之間可能有關係,奧佛頓森林可能是西伍茲的舊稱。葛瑞尼里說:「建造者想利用當時能找到最大且最耐用的石材,就近尋找也很合理。」

巨石陣的石材從何而來,一直是科學家想要搞懂的問題。圖/Photo © Pam Brophy (cc-by-sa/2.0)

青石來歷,去年驗明

地質學家和考古學家長期以來知道,巨石陣中較小的「青石」(bluestones)來自威爾斯(Wales)西方的普萊西利群丘(Preseli Hills),離巨石陣約 200 公里處;然而,此論點直到去年才有確切的地質學研究佐證。

英國考古學家湯瑪斯(Herbert Henry Thomas)1923 年宣稱,青石源自威爾斯西部,但當年缺乏有力科學證據而遭學界質疑。

英國倫敦大學(UCL)考古學研究所教授皮爾森(Mike Parker Pearson)領導的科研團隊,利用地球化學分析石柱的元素組成,確認青石來自威爾斯西部,但並非湯瑪斯所說的 Carn Menyn 礦場,而是普萊西利群丘的 Carn Goedog 和 Craig Rhos-y-felin 採石場,研究結果 2019 年刊載於《古物》(Antiquity)期刊。

-----廣告,請繼續往下閱讀-----

學界普遍認為,新石器時代的建造者利用人力和畜力拖拉,或以木製滾輪運送等方式搬運巨石,但運輸路線仍是個謎。納許說:「當時肯定費了一番功夫,巨石陣的建造石材來自不同地區。」納許表示,研究團隊未來企盼運用各種技術,進一步解答巨石陣石材運送路線等謎團。

參考文獻

  1. Nash, D. J., Ciborowski, T. J. R., Ullyott, J. S., Pearson, M. P., Darvill, T., Greaney, S., … & Whitaker, K. A. (2020). Origins of the sarsen megaliths at Stonehenge. Science Advances, 6(31), eabc0133. DOI: 10.1126/sciadv.abc0133
  2. Pearson, M. P., Pollard, J., Richards, C., Welham, K., Casswell, C., French, C., … & Bevins, R. (2019). Megalith quarries for Stonehenge’s bluestones. Antiquity, 93(367), 45-62. DOI: 10.15184/aqy.2018.111
  3. 英格蘭遺產委員會
  4. Live Science:Returned chunk of Stonehenge solves long-standing monument mystery
  5. 路透 Scientists solve mystery of the origin of Stonehenge megaliths
  6. Science alert: We Finally Know Where The Megaliths of Stonehenge Really Came From
  7. 英國廣播公司 Missing part of Stonehenge returned 60 years on
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
1

文字

分享

0
0
1
【特輯】關於春分,除了晝夜等長外這些事你知道嗎?
PanSci_96
・2019/03/20 ・4322字 ・閱讀時間約 9 分鐘 ・SR值 494 ・六年級

-----廣告,請繼續往下閱讀-----

source:Google Doodle

關於春分,我們大多都能直接地說出這天晝夜等長;但除此之外,你知道春分曾經因為曆法的關係而歪的很嚴重嗎?這一天除了感受日夜長度差不多,還有哪些美景可以欣賞呢?讓我們一起來看看關於春分的二三事吧!

閏年太多的儒略曆讓春分的時間跑掉了

在公元前60年,儒略曆法通行前的羅馬曆油畫。source:Wikipedia

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

實行儒略曆後,凱薩的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒也從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

-----廣告,請繼續往下閱讀-----

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

春分歪掉,復活節也跟著歪掉啦

而這還會有什麼問題呢?

每年差一點點,對於人們生活週期可能還沒有太大的影響,但是對於宗教節慶就有不可輕忽的改變了。由於復活節的時間,是從春分的時間推算而來的。曆法上的年,與太陽、地球真實關係的回歸年有所偏移,就代表每年春分的時間位在曆法上的日期,也不斷地偏移。春分的時間偏移,復活節的時間也就跟著偏移,這對教廷來說是件大事。

source:Petr Kratochvil

於是,在1582年,教皇格列哥里十三世宣布改曆。他做了兩件事情:第一件事,改變置閏的規則。為了讓每年春分時間一致,必須讓曆法的年逼近回歸年。原來年份只要是4的倍數就要置閏,但這樣閏太多了,使得曆法平均一年(365.25天)超過回歸年(365.2422天)太多,因此需要砍掉幾個閏年來修正這個餘額。這時採取的辦法是這樣的:以後年份如果是100的倍數但不是400的倍數,就不是閏年了。也就是說,西元1700、1800、1900年都不再是閏年,但2000年仍然是閏年。

-----廣告,請繼續往下閱讀-----

以上的作法,將「4年1閏」變為「400年97閏」。簡單計算一下,1/4=0.25,儒略曆平均一年365.25天;97/400=0.2425,格列哥里曆平均一年365.2425天,與回歸年的誤差縮減到每年0.0003天,到三千多年左右才會誤差一天。這套格列哥里曆,就一直沿用成為現代的「公曆」了。

一年時間 置閏
努瑪曆 平年355天

閏年377或378天

外加一個月
儒略曆

(西元前46年凱撒改曆)

平年365天

閏年366天

[平均一年365.25天]

年份為4的倍數置閏
格列哥里曆

(西元1582年格列哥里改曆)

平年365天

閏年366天

[平均一年365.2425天]

原則上年份為4的倍數置閏;例外:年份為100的倍數但不為400的倍數則不置閏(1700、1800、1900不置閏,2000置閏)

格列哥里改曆,還做了第二件事情,目的是要讓春分回到3月21日,才能維繫復活節原定的時間。因此,他做了一個立即的修正,等於是大刀砍下去,把之前偏差掉的全部改了回來。還記得嗎?我們剛才估算的結果,儒略曆經過一千多年,整整多出了10天左右。這時候,教皇格列哥里十三世作法很直接,直接在1582年砍掉10天!所以,1582年10月5日到14日,這十天就因為這次改曆而消失了。

想體驗手算日出的感覺嗎?來試試日出方程式

 

如上圖所示,從外太空看地球側面,水平基準線 OH 為地球赤道,垂直線 OG 為太陽在春分或秋分照射地球時的日夜分界線,斜線 OB 為太陽其它日期照射地球的日夜分界線,日夜分界線的地方就是日出或日落的地方。

有了日出方程式,就可以計算出太陽在不同的赤緯,地球各地不同緯度的日出和日落精確時間:

-----廣告,請繼續往下閱讀-----

ω0 是日出(當數值為負數時)或日落(當數值為正值時)時,以度為單位的時角;
ψ 是在地球上觀測者的緯度;

δ 是太陽的赤緯;

日出的定義為太陽剛從地平線出現的一剎那,而非整個太陽離開地平線,而日落是以太陽完全沒入地平線,太陽盤面大小約0.5°。還有大氣折射影響,太陽在地平面會被抬升約 0.6°。

因此,需要再加 a = -0.85°(= 0.6°+0.5°/2) 修正

-----廣告,請繼續往下閱讀-----
想體驗手算日出的感覺嗎?不如就從春分這天開始吧!

或是找個地方靜靜地,享受春分帶來的美景

天體運動的成因有好幾個,包括地球繞著太陽做軌道運動、地球以地軸為中心自轉,還有因為地球的北極並非位於與軌道面垂直的位置。從這三點延伸得到的觀測結果,就是太陽在天空中的位置會在一年當中不斷改變。太陽每天會從地平線上不同的位置昇起落下,在天空中移動的軌跡也都不一樣。

一年之中,在春分秋分這兩天,太陽會從正東方昇起、於正西方落下;而在夏至冬至時,太陽在地平線上東昇西落的位置會分別最偏向北方和南方。

世界有許多古代遺址的岩石和建築物,是依據星辰和太陽的起落和位置所精心排列,像是青蔥蒼翠的索爾茲伯里平原 (Salisbury Plain) 上矗立的巨石陣、安納沙茲人 (Anasazi) 建於查科峽谷 (Chaco Canyon) 的卡薩林克納達神廟 (Casa Rinconada),還有懷俄明州大角山脈 (Bighorn Range) 山頂的大醫藥輪 (Great Medicine Wheel)。

圖片3
依照天文現象排列的古代遺址:(左) 巨石陣、(中) 卡薩林克納達神廟、(右) 大角山脈的醫藥輪。

有時候,現代都市的地標排列也會與時鐘般規律的天體運行呈現巧妙的呼應,或許是有意設計的,但多半都是出於偶然。看看曼哈頓島 (Island of Manhattan) 就知道了,這座島位於哈德遜河 (Hudson River) 的河口,對角線往南北方向偏斜;最早有人在此定居時,街道都是隨意開闢的,像大部分的古老城市一樣雜亂無章地發展。這些曲折小路看起來大同小異、難以辨別,讓整個城區儼然成為不斷擴大的迷宮,最後終於根據 1811 年委員會計劃 (Commissioners’ Plan of 1811) 將整座城市的發展方針制定為棋盤式的街道。

-----廣告,請繼續往下閱讀-----

當時對於棋盤式街道的規劃,是依照和島嶼海岸平行的方向,開闢出略偏南北方向的一條條大道;因此,和這些幹道交叉的橫向街道都略為偏往東西向,與正東西方向的偏斜角度大約為 25 到 30 度,結果正巧讓所有的橫向街道幾乎正對著夏至時日出日落的方向!這個現象在大約十年前由奈爾·德葛拉司·泰森 (Neil deGrasse Tyson) 提出而廣為人知,他將這個現象稱為「曼哈頓巨石陣」(Manhattanhenge)。

manhattan-solstice-13

 

圖片5
曼哈頓 (左) 和芝加哥 (右) 的棋盤式街道。街道的幾何排列方式決定了你有沒有機會看到角度剛好的日出或日落,讓你一睹城市中的巨石陣。

不過若想欣賞與天文現象排列一致的現代建築景觀,也不是非得大老遠跑到曼哈頓去,很多城鎮都市的街道都是以棋盤式排列。如果是以東西向和南北向規劃鋪設的街道系統,在每年三月和九月的春分秋分,都有機會目睹這種魔幻奇景。芝加哥市就是一例,當地的街道 (大致上) 是呈現矩形的棋盤狀排列,與羅盤方位一致,所以在三月的春分和九月的秋分時,就可以拍攝到「芝加哥巨石陣」的景象!

圖片6
芝加哥巨石陣的例子 [圖片來源:Ken Ilio’s Uncommon Photographers]。
無論你身在何處,都有機會將你居住的城市化為現代巨石陣,拍下太陽不斷變換推移的運動軌跡,就算是像加拿大安大略省 Vankleek Hill 這樣的小城鎮也不例外。這個小鎮大約位於渥太華 (Ottawa) 和蒙特婁 (Montreal) 的中間,人口只有 2000 人左右。這裡的棋盤式街道往羅盤方位偏斜,大致上平行於從安大略湖 (Lake Ontario) 流入聖羅倫斯灣 (Gulf of Saint Lawrence) 的河流。這樣的角度,就可以在夏至和冬至時正對著太陽了,像這張由 Gabriel Landriault 所拍攝的照片一樣。

圖片7
(左) 安大略省 Vankleek Hill 的棋盤式街道,與東西方向約有 20 度的偏斜。(右) 夏至時在 Vankleek Hill 街道上所見的光景 [攝影:Gabriel Landriault]。
這張 Vankleek Hill 的照片也顯示出值得注意的一點:Vankleek Hill 的街道只與正東西方向偏斜 20 度左右,而夏至時的太陽會更為偏向北方,所以此時並不是完全正對著街道的。但是在一年之中總會有一天是完全對準的

-----廣告,請繼續往下閱讀-----

這可以從我們的地平線日曆中推敲得知,因為太陽從地平線昇起落下、不斷移動,在夏至和冬至、春分和秋分時,可以預料太陽在地平線上昇起落下的固定位置,但若經過仔細的規劃、觀測還有模擬 (可以使用 Stellarium 一類的天文館模擬器),你就會發現自己居住的城市街道在什麼時候會正對著日出和日落的方向。

圖片8
透過 Adler Planetarium 產生春分時的模擬情形,使用的是 StarryNight 桌面天文台軟體。

不妨就趁著春分的今天,趕快看準時間走出戶外,到離你最近的東西向街道上,拿出手機拍下正對著日出或日落的獨特景象吧!

文章難易度
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
愚人節是曆法修改下的副產物?3分鐘搞懂羅馬曆、儒略曆到現行的格里曆──《我們如何丈量世界》
三采文化集團_96
・2018/05/01 ・2031字 ・閱讀時間約 4 分鐘 ・SR值 427 ・四年級

-----廣告,請繼續往下閱讀-----

我們所用的曆法其實經過非常多次的變革。圖/MaeM@pixabay

從一年十個月的羅馬曆到十二個月的儒略曆

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。他的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒並且從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

因為自己生日在那個月就多加一天,當羅馬執政官還真任性。圖/aaandrea@pixabay

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

現行的公曆:格里曆如何修正閏年

格里曆就是現在多數國家所採用的公曆,由義大利天文學家阿洛伊修斯.里利烏斯(Luigi Lilio)改良儒略曆而來,可惜他在說服梵蒂岡於採用此曆前便過世了。後來,修訂格里曆的重任就落在德國數學家克里斯托佛.克拉烏(Christopher Clavius)身上。

-----廣告,請繼續往下閱讀-----
德國數學家克里斯托佛.克拉烏(Christopher Clavius)協助修訂格里曆。via wikipedia

1582 年,教宗格里.高利十三世(Pope Gregory XIII)宣布改行此曆,因而得到「格里曆」之名。

格里曆的閏年規則與儒略曆不同,基本上也是四年一閏,但如果是千禧年,該年必該同時能被 4 100 整除(也就是要能被 400 整除),才行閏年,因此公元1700 年、1800 年、1900 年都不是閏年,公元2000 年才是。在這個設定下,格里曆每 400 年只有 97 個閏年,比較接近每 3,300 年才誤差 1 天的回歸年(也就是我們現在使用的太陽年)。

愚人節的由來

4 1 日之所以被定為愚人節,很可能跟格里曆有關。以前英國人在三月底開始新年節慶,慶祝活動至四月的第一天達到高峰然後結束。改行格里曆後,很多人因為不知道曆法改變了,仍然按照儒略曆的日期慶祝新年。在 1750 那個年代,資訊傳播得很慢,導致有些偏遠地區的居民在錯的日子慶祝新年,看在城巿親戚的眼裡自然十分可笑。

其他國家當然不乏慶賀春天到來的瘋狂節日,但英國人之所以在 4 1 日彼此作弄,的確是從改行格里曆後才開始的。所以,如果愚人節不是特定傳統,它的出現應該要「歸功」於格里曆。

-----廣告,請繼續往下閱讀-----
愚人節有可能跟曆法修改有關?圖/Alexas_Fotos@pixabay

 

本文摘自《我們如何丈量世界?從生活的單位看見科學的趣味》,三采文化出版。

三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

3
1

文字

分享

0
3
1
巨石陣用途新解:巨大音效系統?──《傷風敗俗文化史》
時報出版_96
・2018/03/07 ・3248字 ・閱讀時間約 6 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

史前存在的任何建物,其生辰八字我們都只能猜個大概。學者相當篤定巨石陣(Stonehenge)的動工是在西元前三千年到兩千兩百年之間。這一來一往差了八百年,美國歷史都可以跑三遍了。但這還算好的,因為我們對於巨石陣一開始為什麼要蓋,我們連個大概都說不出來。

巨石陣:神主牌、天文曆、音效系統?

在風行的理論中,有比較腳踏實地的(祖先的神主牌、巨型的天文曆),也有人天馬行空地說那是外星人的降落區。但我這兒有一種你應該沒聽過的版本,那就是巨石陣是一個巨型的音效系統。古代如果有所謂的大型場館,長得應該就是這副模樣。或者用英國人聽得懂的說法,這就是古人在廢棄的倉庫裡搭了一間DJ的混音室。

圖/bosmanerwin@wikimedia

索爾福德(Salford)、布里斯托(Bristol)與哈德斯菲爾德(Huddersfield)等大學的學者研究顯示巨石的陣型能產生人耳可輕易辨別的音效──想當然那些慢慢把石頭拖到定位放置的史前人類也有耳朵。布魯諾.法詹達博士(Dr. Bruno Fazenda)是位科學家,他長年投身於巨石陣的音場研究。對於研究的發現,他抱持著審慎的觀點。所以在我跟他連絡上之後,他第一件事就是要我別把事情想得太簡單了,巨石陣很可能不是為了單一的功能而生。

我們應該假設巨石陣在古人的心中,是一種有如瑞士刀的實用主義概念。這麼多巨石要多少人才拖得動?要供養這些人的資源,在五千年前肯定不是「小數目」。何況當時的人不論居住在地球上的哪個角落,恐怕都還沒有精通一門藝術叫做「不要被狼吃掉」。當時的人為了物盡其用,巨石陣很可能「身兼多職」,而且主要的用途還可能在建造的過程中幾度換過。

-----廣告,請繼續往下閱讀-----

不過巨石陣是史前某種「演唱會」場地的理論,還是可以解釋這些石碑的一項成分之謎。巨石陣用上的較小石塊,都是屬於青石(bluestone),也就是輝綠岩或粗粒玄武岩(spotted dolerite)。人類學家咸信這些青石是從約兩百英里(三百二十餘公里)外的地方拖來──不過也有一說是這些青石搭了冰河移動的便車。明明不遠處就有很多大石頭可用,立陣者為什麼要捨近求遠,大費周章地弄來這些特別的石頭?

圖/Andymoor1980@wikimedia

嗯,關於舊石器時代音樂家的經驗談,現代的聲學知識已經可以解開。倫敦皇家藝術學院(Royal College of Art in London)的學者發現普萊西利群丘(Preseli Hills)作為巨石陣可能的青石源頭,上頭的許多青石都有一個特色是敲擊後會產生「共鳴」。拿給專業的打擊樂手測試,這些青石甚至能當作高音鐵琴(glockenspiels)使用(高音鐵琴像是木琴,算是兄弟)。

巨石陣複製品:華府瑪莉丘博物館

要測試這理論有一個顯而易見的難題,那就是巨石陣是珍貴的文化資產,不可能讓人隨便拿根棍子去敲。現行法律甚至禁止在巨石陣中使用多種電器。所幸皇天不負苦心人,美國有一個一比一的巨石陣複製品,就在華府瑪麗丘(Maryhill, Washington)的一間博物館裡,是位百萬富翁要求設置的。

圖/donwhite84@pixabay

山姆.希爾(Sam Hill)──山姆是個活生生的人,不是老掉牙的「惡魔」委婉語──的職涯都在美國西北各地造橋舖路。不過真正披荊斬棘的不是他本人,是一大群勞工弟兄的功勞,他的身分是建設公司的老闆。總之,他賺到了錢,蓋起了屬於他自己的巨石陣。所以你看人有多「長進」,以前蓋個東西要耗費幾代人的韌性,現在只不過是有錢人的任性。

-----廣告,請繼續往下閱讀-----

不過我想替山姆講兩句話。他複製巨石陣的動機,並不只是想要把史前懶散的山頂洞人給比下去,他還沒那麼無聊。他的初衷是想替在一戰中戰死的數百萬青年立碑。在當時,主流的觀念下巨石陣是祭壇。而在希爾的心中,一戰也是個無形的祭壇,犧牲品就是那些莫須有死去的百千萬年輕人。全尺寸複製歷史上最知名的異教徒衣冠塚,真的恰好是致敬之舉。

希爾複製的巨石碑,其實也是美國第一次有人以建物來紀念一戰死難者。實際上,極少有證據指向原版的巨石陣是作為人類獻祭之用。在歷史的長河中,巨石陣所在的區域有不少人安葬,但看得出被處決或犧牲的人數甚少。經年累月,巨石陣見證了五花八門,甚至狗屁倒灶的各種事件,但我們可以確信這裡辛辛苦苦蓋起來,興建者心心念念想的絕不是一個午門或刑場的概念。

儘管如此,瑪麗丘巨石碑向死難者致意的心意仍舊非常溫暖,而山姆本人也很合情合理地在這裡埋骨安息。我對他充滿了感激,因為有他才有這座複製品,而有這巨石陣的複製品,我才有機會測試巨石陣作為遠古的環場音效設備,到底稱不稱職。

圖/MaartenB@pixabay

建造石器時代迪斯可的科學

瑪麗丘的巨石陣是水泥做的,不是青石或任何一種自然的岩石。但蓋的人很用心地讓複製品呈現出逼近本尊的質感。索爾福德大學法詹達(Fazenda)博士的團隊選擇在華府進行他們驚世的聲學實驗,就是因為華盛頓「贗品」與英格蘭「真貨」間的音質差距小到可以忽視不計。

-----廣告,請繼續往下閱讀-----

法詹達團隊的研究發現瑪麗丘石陣的回聲程度正符合人類預期中良好的講堂設計。該研究發現石陣會導致聲學活動的增加,不論是演說或「念經」都會產生顯著不同的效果。當然你會說任何一處場地或房間夠大、夠圓,多少能產生一些回響,但巨石陣的設計恐怕不是這麼單純。

巨石之間穿插的兩圈石頭雖小,對整體音效的挹注卻很大,讓音波在其中進行折射跟散射。根據索爾福德大學的報告,這意味著「空間內所有音波會各自以不同的方向前進,而不會走得整整齊齊。」

這樣的設計其實會抑制一去一回的回音,同時促進聲音在音場內回響。這代表身處在石陣中的任何一點,都不會有聲音的死角,不會有任何聽眾聽不清楚的情形發生。但我對在石器時代的「國家音樂廳」沒有興趣。我看到媒體報導法詹達博士的研究,記者下的標題長這樣:

「巨石陣是遠古的銳舞(rave)派對地點」

──發現頻道新聞〈Discovery News〉,二○一三年

「巨石陣:一個超屌的銳舞場地」

──國家廣播公司新聞〈NBC News〉,二○○九年

上色的石頭補完了石陣的原始配置,也就是石陣在被歲月跟遊客聯手摧殘之前的模樣。我們很幸運,瑪麗丘複製的是完整版的石陣。圖/塔薇亞.莫拉(Tavia Morra)繪製。

法詹達博士二○一二年在索爾福德大學發表《巨石陣的聲學原理》(Acoustics of Stonehenge)可以說是旁徵博引,但也乾得可以:一大堆數學算式,「銳舞」或像「一個超屌」的用法一次都沒有出現過。

-----廣告,請繼續往下閱讀-----

就在這個時候,我誤打誤撞看到了魯伯特.提爾(Rupert Till)博士受訪的資料。提爾博士是位音樂專長的人類學家,也參與了法詹達博士在瑪麗丘碑址的測試工作。

提爾博士描繪的光景就鮮活多了。他把類似巨石陣民族的音樂風格比喻成森巴樂曲,快步調、有大型樂團助陣,而且參與者可能多達數百人。提爾博士親自跳下來把數千年前的場面比喻成銳舞派對,收錄在二○一二年《獨立流行音樂研究學會學報》(Journal of the Independent Association for the Study of Popular Music)的報導中。他說巨石陣的音場效果是間接證據,當時應該有「一大群人聚在一起演奏『重拍、旋律簡單、有著反覆強烈節奏的音樂』來進入恍惚或出神的狀態」提爾博士接著說:

類似的活動可以在電子舞曲音樂文化中的「銳舞」活動中看見……許多目擊者都形容那樣的場面對參與者而言,具有儀式性或宗教性的意義。

 

本文摘自為《傷風敗俗文化史:十五個改寫人類文明的墮落惡習》。

 

 

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
1

文字

分享

0
0
1
【特輯】關於春分,除了晝夜等長外這些事你知道嗎?
PanSci_96
・2019/03/20 ・4322字 ・閱讀時間約 9 分鐘 ・SR值 494 ・六年級

-----廣告,請繼續往下閱讀-----

source:Google Doodle

關於春分,我們大多都能直接地說出這天晝夜等長;但除此之外,你知道春分曾經因為曆法的關係而歪的很嚴重嗎?這一天除了感受日夜長度差不多,還有哪些美景可以欣賞呢?讓我們一起來看看關於春分的二三事吧!

閏年太多的儒略曆讓春分的時間跑掉了

在公元前60年,儒略曆法通行前的羅馬曆油畫。source:Wikipedia

公元 46 年,羅馬共和時期的執政官凱薩宣布廢除羅馬曆,改採用儒略曆。

羅馬曆把 1 年分為 10 個月,以 March(三月)為第一個月。在英文中,September(九月)、October(十月)、November(十一月)、December(十二月)的拉丁字源分別是 789 10;後來人們在儒略曆中加入 January(一月)和February(二月)這兩個月分,前述的四個月分才往後順延,成為現在的九月、十月、十一月和十二月。不過羅馬人仍將 March 當作每年的第一個月,February 則為最後一個月。

實行儒略曆後,凱薩的將領馬克.安東尼(Mark Antony)馬上建議將第七個月改名為凱薩的名字Julius(因為凱薩是這個月出生的);凱撒也從二月抽走 1 天,加到自己的月分中,讓七月變成 31 天。後來,奧古斯都(Augustus Caesar)認為以自己名字命名的八月 只有 30 天太少,於是又從二月抽了1 天到八月,導致現在二月只有28 天。

-----廣告,請繼續往下閱讀-----

儒略曆比羅馬曆完善,但仍有缺點,問題在於閏年太多了。地球圍繞太陽一周耗時 365 5 小時 48 分鐘 45 秒,儒略曆考量到這點,每 4 年在二月補上 1 天,但這方法延續到十六世紀時已經補過頭了,導致當時的儒略曆與分至點(春分、夏至、秋分、冬至)已有 24 天的差距。

春分歪掉,復活節也跟著歪掉啦

而這還會有什麼問題呢?

每年差一點點,對於人們生活週期可能還沒有太大的影響,但是對於宗教節慶就有不可輕忽的改變了。由於復活節的時間,是從春分的時間推算而來的。曆法上的年,與太陽、地球真實關係的回歸年有所偏移,就代表每年春分的時間位在曆法上的日期,也不斷地偏移。春分的時間偏移,復活節的時間也就跟著偏移,這對教廷來說是件大事。

source:Petr Kratochvil

於是,在1582年,教皇格列哥里十三世宣布改曆。他做了兩件事情:第一件事,改變置閏的規則。為了讓每年春分時間一致,必須讓曆法的年逼近回歸年。原來年份只要是4的倍數就要置閏,但這樣閏太多了,使得曆法平均一年(365.25天)超過回歸年(365.2422天)太多,因此需要砍掉幾個閏年來修正這個餘額。這時採取的辦法是這樣的:以後年份如果是100的倍數但不是400的倍數,就不是閏年了。也就是說,西元1700、1800、1900年都不再是閏年,但2000年仍然是閏年。

-----廣告,請繼續往下閱讀-----

以上的作法,將「4年1閏」變為「400年97閏」。簡單計算一下,1/4=0.25,儒略曆平均一年365.25天;97/400=0.2425,格列哥里曆平均一年365.2425天,與回歸年的誤差縮減到每年0.0003天,到三千多年左右才會誤差一天。這套格列哥里曆,就一直沿用成為現代的「公曆」了。

一年時間 置閏
努瑪曆 平年355天

閏年377或378天

外加一個月
儒略曆

(西元前46年凱撒改曆)

平年365天

閏年366天

[平均一年365.25天]

年份為4的倍數置閏
格列哥里曆

(西元1582年格列哥里改曆)

平年365天

閏年366天

[平均一年365.2425天]

原則上年份為4的倍數置閏;例外:年份為100的倍數但不為400的倍數則不置閏(1700、1800、1900不置閏,2000置閏)

格列哥里改曆,還做了第二件事情,目的是要讓春分回到3月21日,才能維繫復活節原定的時間。因此,他做了一個立即的修正,等於是大刀砍下去,把之前偏差掉的全部改了回來。還記得嗎?我們剛才估算的結果,儒略曆經過一千多年,整整多出了10天左右。這時候,教皇格列哥里十三世作法很直接,直接在1582年砍掉10天!所以,1582年10月5日到14日,這十天就因為這次改曆而消失了。

想體驗手算日出的感覺嗎?來試試日出方程式

 

如上圖所示,從外太空看地球側面,水平基準線 OH 為地球赤道,垂直線 OG 為太陽在春分或秋分照射地球時的日夜分界線,斜線 OB 為太陽其它日期照射地球的日夜分界線,日夜分界線的地方就是日出或日落的地方。

有了日出方程式,就可以計算出太陽在不同的赤緯,地球各地不同緯度的日出和日落精確時間:

-----廣告,請繼續往下閱讀-----

ω0 是日出(當數值為負數時)或日落(當數值為正值時)時,以度為單位的時角;
ψ 是在地球上觀測者的緯度;

δ 是太陽的赤緯;

日出的定義為太陽剛從地平線出現的一剎那,而非整個太陽離開地平線,而日落是以太陽完全沒入地平線,太陽盤面大小約0.5°。還有大氣折射影響,太陽在地平面會被抬升約 0.6°。

因此,需要再加 a = -0.85°(= 0.6°+0.5°/2) 修正

-----廣告,請繼續往下閱讀-----
想體驗手算日出的感覺嗎?不如就從春分這天開始吧!

或是找個地方靜靜地,享受春分帶來的美景

天體運動的成因有好幾個,包括地球繞著太陽做軌道運動、地球以地軸為中心自轉,還有因為地球的北極並非位於與軌道面垂直的位置。從這三點延伸得到的觀測結果,就是太陽在天空中的位置會在一年當中不斷改變。太陽每天會從地平線上不同的位置昇起落下,在天空中移動的軌跡也都不一樣。

一年之中,在春分秋分這兩天,太陽會從正東方昇起、於正西方落下;而在夏至冬至時,太陽在地平線上東昇西落的位置會分別最偏向北方和南方。

世界有許多古代遺址的岩石和建築物,是依據星辰和太陽的起落和位置所精心排列,像是青蔥蒼翠的索爾茲伯里平原 (Salisbury Plain) 上矗立的巨石陣、安納沙茲人 (Anasazi) 建於查科峽谷 (Chaco Canyon) 的卡薩林克納達神廟 (Casa Rinconada),還有懷俄明州大角山脈 (Bighorn Range) 山頂的大醫藥輪 (Great Medicine Wheel)。

圖片3
依照天文現象排列的古代遺址:(左) 巨石陣、(中) 卡薩林克納達神廟、(右) 大角山脈的醫藥輪。

有時候,現代都市的地標排列也會與時鐘般規律的天體運行呈現巧妙的呼應,或許是有意設計的,但多半都是出於偶然。看看曼哈頓島 (Island of Manhattan) 就知道了,這座島位於哈德遜河 (Hudson River) 的河口,對角線往南北方向偏斜;最早有人在此定居時,街道都是隨意開闢的,像大部分的古老城市一樣雜亂無章地發展。這些曲折小路看起來大同小異、難以辨別,讓整個城區儼然成為不斷擴大的迷宮,最後終於根據 1811 年委員會計劃 (Commissioners’ Plan of 1811) 將整座城市的發展方針制定為棋盤式的街道。

-----廣告,請繼續往下閱讀-----

當時對於棋盤式街道的規劃,是依照和島嶼海岸平行的方向,開闢出略偏南北方向的一條條大道;因此,和這些幹道交叉的橫向街道都略為偏往東西向,與正東西方向的偏斜角度大約為 25 到 30 度,結果正巧讓所有的橫向街道幾乎正對著夏至時日出日落的方向!這個現象在大約十年前由奈爾·德葛拉司·泰森 (Neil deGrasse Tyson) 提出而廣為人知,他將這個現象稱為「曼哈頓巨石陣」(Manhattanhenge)。

manhattan-solstice-13

 

圖片5
曼哈頓 (左) 和芝加哥 (右) 的棋盤式街道。街道的幾何排列方式決定了你有沒有機會看到角度剛好的日出或日落,讓你一睹城市中的巨石陣。

不過若想欣賞與天文現象排列一致的現代建築景觀,也不是非得大老遠跑到曼哈頓去,很多城鎮都市的街道都是以棋盤式排列。如果是以東西向和南北向規劃鋪設的街道系統,在每年三月和九月的春分秋分,都有機會目睹這種魔幻奇景。芝加哥市就是一例,當地的街道 (大致上) 是呈現矩形的棋盤狀排列,與羅盤方位一致,所以在三月的春分和九月的秋分時,就可以拍攝到「芝加哥巨石陣」的景象!

圖片6
芝加哥巨石陣的例子 [圖片來源:Ken Ilio’s Uncommon Photographers]。
無論你身在何處,都有機會將你居住的城市化為現代巨石陣,拍下太陽不斷變換推移的運動軌跡,就算是像加拿大安大略省 Vankleek Hill 這樣的小城鎮也不例外。這個小鎮大約位於渥太華 (Ottawa) 和蒙特婁 (Montreal) 的中間,人口只有 2000 人左右。這裡的棋盤式街道往羅盤方位偏斜,大致上平行於從安大略湖 (Lake Ontario) 流入聖羅倫斯灣 (Gulf of Saint Lawrence) 的河流。這樣的角度,就可以在夏至和冬至時正對著太陽了,像這張由 Gabriel Landriault 所拍攝的照片一樣。

圖片7
(左) 安大略省 Vankleek Hill 的棋盤式街道,與東西方向約有 20 度的偏斜。(右) 夏至時在 Vankleek Hill 街道上所見的光景 [攝影:Gabriel Landriault]。
這張 Vankleek Hill 的照片也顯示出值得注意的一點:Vankleek Hill 的街道只與正東西方向偏斜 20 度左右,而夏至時的太陽會更為偏向北方,所以此時並不是完全正對著街道的。但是在一年之中總會有一天是完全對準的

-----廣告,請繼續往下閱讀-----

這可以從我們的地平線日曆中推敲得知,因為太陽從地平線昇起落下、不斷移動,在夏至和冬至、春分和秋分時,可以預料太陽在地平線上昇起落下的固定位置,但若經過仔細的規劃、觀測還有模擬 (可以使用 Stellarium 一類的天文館模擬器),你就會發現自己居住的城市街道在什麼時候會正對著日出和日落的方向。

圖片8
透過 Adler Planetarium 產生春分時的模擬情形,使用的是 StarryNight 桌面天文台軟體。

不妨就趁著春分的今天,趕快看準時間走出戶外,到離你最近的東西向街道上,拿出手機拍下正對著日出或日落的獨特景象吧!

文章難易度
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。