Loading [MathJax]/extensions/tex2jax.js

2

8
2

文字

分享

2
8
2

【2021 年搞笑諾貝爾:醫學獎】呼吸不順免驚!實驗證實:愛愛可以治鼻塞

miss9_96
・2021/09/13 ・1646字 ・閱讀時間約 3 分鐘

鼻塞時,多數人會用鼻腔黏膜收縮噴劑(常見藥名:歐治鼻)來暢通呼吸,But 如果沒有藥呢?為了廣大的需求,德國科學家開始研究,「來一炮」能否也能緩解鼻塞? ( 噢噢噢~ ≧▽≦ ) [1]

高潮後請立刻填問卷,麻煩了~

科學家徵招了 18 對(皆為1男1女)、共 36 名願意獻身的夫妻,進行「性高潮,是否能舒緩鼻塞?」的實驗。平均年齡為 32.9 歲 (26-42),皆為鼻塞患者且未經手術治療。

科學家拿了問卷(十分制自我評量,0 分:用鼻子呼吸毫無阻礙、10 分:完全無法用鼻子呼吸)、便攜式鼻孔通氣測量儀(portable rhinometric device)給受試者回家。要求他們在平時、性行為且兩人同時達到高潮後當下(1分鐘內)、高潮後 30 分鐘、1 小時和 3 小時填寫問卷,並將測量儀插入鼻孔、量測通氣量和呼吸阻力 [註1]。而對照組是鼻腔黏膜收縮噴劑(0.1% xylometazoline),受試者也會在其他時間裡用藥、量測數據。時間點為:平時、使用噴劑後當下、用藥後 30 分鐘、1 小時和 3 小時。

經實驗證實:性交緩解鼻塞,療效長達 1 小時!

數據如圖 1。自評感受方面(實線),相較於日常鼻塞的痛苦,高潮後「立刻」就能感到鼻塞解除、非常暢通!而且改善的幅度上,性行為(淺藍色實線)和使用藥物(深藍色實線)相同、療效長達 1 小時;唯高潮後 3 小時,受試者再次感受鼻子塞住(所以應該再高潮一次)

而客觀數據上(虛線),鼻子的通氣功能在高潮後立刻、顯著的提升,從原始的 480 mL/秒、上揚到 694 mL/s(+214 mL/s),性行為的療效(淺藍色虛線)和藥物(深藍色虛線)相近。且性高潮改善鼻孔呼吸的時間,至少維持 1 小時。唯性行為的效果持續時間僅 1 小時,呼吸能力在高潮後 3 小時、將恢復到日常狀態,而鼻噴劑紓緩至少可維持 3 小時

-----廣告,請繼續往下閱讀-----

科學家從結果發現,性交的高潮可以顯著舒緩鼻塞、大幅提升鼻腔呼吸能力!並且在 1 小時內,療效和用藥相似;不論是主觀認知、或客觀數據都有相同的結論。而在療效維持方面,性交高潮在 3 小時後,會回到原始鼻塞的狀態,若使用藥物,暢通的時間較持久。

圖 1:性行為高潮、使用鼻噴劑後,自評和儀器量測鼻孔呼吸能力的變化。圖/參考文獻1

多次高潮能更久嗎?不同姿勢能更暢通嗎?

而他們也發現,性交高潮、提升鼻子呼吸功能的現象,只發生在鼻塞患者身上,若平常就沒有鼻塞困擾的人,性高潮不會改善吸氣的能力(圖 2)。

論文敘及,過往的文獻已發現,運動可以降低鼻腔阻力、改善鼻塞症狀,可能是透過改變交感、副交感神經的活躍度所致。當交感神經活躍,會收縮血管、降低鼻腔黏膜充血程度;而副交感神經活躍,會舒張血管並促進黏液分泌,可能加重鼻塞症狀。因此和運動類似的性交,可能也是透過影響神經來改善鼻塞症狀。有趣的是,運動改善鼻塞的效果,都不到 30 分鐘,但性交高潮卻能維持療效長達 1 小時!顯然性高潮和鼻黏膜的關係,比科學家想得更複雜!

團隊最後也談到了延伸實驗。他們對「不同體位」、「單次或多次高潮」等變因,對改善鼻塞的影響感到興趣,未來希望能持續深入研究。這群德國人在 COVID-19 疫情期間,完成觸動人心、拯救蒼生的研究,不僅刊登在《耳鼻喉期刊 / Ear, Nose & Throat Journal 》上,更榮獲 2021 年搞笑諾貝爾醫學獎(Ig Nobel Prizes)的肯定 [2]。期許他們有更深入的研究,也許在未來,鼻塞症狀的處方簽不再是歐治鼻,而是「來一炮」吧〜 ≧▽≦

-----廣告,請繼續往下閱讀-----
圖 2:鼻塞和非鼻塞患者,在性行為高潮後,自評鼻孔呼吸能力的變化。圖/ 參考文獻 1

註解

註 1:剃除無法使用的數據後,有 8 對、16 人的測量儀數據可使用;18 對、36 人的自評問卷數據可使用。

參考文獻

1. Olcay Cem Bulut, MD, Dare Oladokun, MBChB, Burkard M. Lippert, MD, Ralph Hohenberger, MD (2021) Can Sex Improve Nasal Function?—An Exploration of the Link Between Sex and Nasal Function. Ear, Nose & Throat Journal.

2. The 2021 Ig Nobel Prize Winners.

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
miss9_96
170 篇文章 ・ 1084 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
一直流鼻水不一定是過敏!眼鼻喉不癢,可能是「非過敏性鼻炎」
careonline_96
・2024/07/31 ・1751字 ・閱讀時間約 3 分鐘

這天辦公室裡出現了這樣的對話:

「哎呀,你怎麼一直流鼻水、擤鼻涕啊?」

「我也不知道,可能是過敏吧!」

「可是我聽說,如果一年到頭都鼻水流不停,可能跟過敏沒關係,屬於『非過敏性鼻炎』喔。」

一直流鼻涕,到底與過敏有沒有關係,今天我們就來了解「非過敏性鼻炎」與「過敏性鼻炎」。

首先,我們先來看看一個簡易的區分表格。

-----廣告,請繼續往下閱讀-----

看到這裡,你覺得自己的狀況比較符合哪一邊呢?

接下來,我們分別更深入地看看兩個狀況。

■ 非過敏性鼻炎

「非過敏性鼻炎」的症狀與過敏性鼻炎很類似,患者會鼻子塞塞的,容易流鼻水,擤鼻涕,喉嚨有卡一些黏液,會咳嗽。與「過敏性鼻炎」較為不同的是,多數患者並不覺得鼻子癢、眼睛癢、或喉嚨癢。

另外一個比較特別的是,「非過敏性鼻炎」的症狀在一年四季都可能出現,不像「過敏性鼻炎」較容易在特殊的季節出現症狀。還有,如果你發現自己小時候其實還好,但長大之後卻變得容易鼻塞、擤鼻涕,就比較可能是「非過敏性鼻炎」。

-----廣告,請繼續往下閱讀-----

那為什麼會出現「非過敏性鼻炎」呢?學者注意到非過敏性鼻炎患者的鼻腔內,其血管是擴張腫脹的,鼻黏膜看來紅腫並充斥著黏液。會造成鼻腔血管腫脹的原因包括了:

◇ 空氣中的刺激物

聞到煙味、強烈的氣味、香水味,都可能會刺激鼻腔的血管腫脹充血。

◇ 藥物

阿斯匹靈、非類固醇消炎藥、或部分治療高血壓的藥物,會導致非過敏性鼻炎的症狀

◇ 天氣變化

鼻腔內血管會因為空氣中的溫度或濕度變化而變得更腫脹,而導致了非過敏性鼻炎的症狀

-----廣告,請繼續往下閱讀-----

◇ 食物

吃的很辣,吃的很燙,或是喝酒,會比較容易讓鼻腔血管腫脹

找到引發自己「非過敏性鼻炎」的原因是很重要的,如果你常常發作「非過敏性鼻炎」的話,就要找找看是否是接觸到上述的幾種狀況,並試著避免這樣的情形,減少讓鼻腔黏膜血管變得腫脹,才不會常常鼻塞、流鼻水、擤鼻涕。

■ 過敏性鼻炎

「過敏性鼻炎」的症狀包括了鼻塞、流鼻水、擤鼻涕、和鼻子癢,甚至還會喉嚨癢、眼睛癢,頭痛,或睡眠障礙。

造成「過敏性鼻炎」的過敏原包括了:

-----廣告,請繼續往下閱讀-----
  • 花粉
  • 黴菌孢子
  • 寵物皮屑
  • 塵蟎
  • 灰塵

由於花粉是個常見的過敏原,因此,充滿花和種子的春天是「過敏性鼻炎」發作的常見季節。不過每個人所在區域不同,過敏的原因也不同,也有可能在其他季節出現鼻塞、流鼻水的症狀,但患者會發現「每年到這個時候,我就會開始出現症狀」。

我們可以用抽血檢查或皮膚測試確認過敏原。若確認為「過敏性鼻炎」,常會需要用抗組織胺藥物改善症狀。

無論是「過敏性鼻炎」或「非過敏性鼻炎」,最重要的都是找到容易誘發自己症狀的原因,並盡量調整生活狀況,配合使用醫師開立的藥物,就能減少因為鼻炎而影響生活品質。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

1

2
0

文字

分享

1
2
0
【2023 年搞笑諾貝爾化學與地質獎】舔石頭以外,猛獁象竟是海龜湯?
寒波_96
・2023/10/20 ・2211字 ・閱讀時間約 4 分鐘

搞笑諾貝爾獎每年都是新的開始,2023 年也不例外。今年「第 33 次第一屆搞笑諾貝爾獎」頒發十個獎項,「化學與地質獎」以看似獵奇的舔石頭博取不少眼球,不過得主揚.扎拉謝維奇( Jan Zalasiewicz)的文章中,其實還提到另一件知名的歷史公案。

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

文學史上用味覺帶出情節,最知名的案例之一是普魯斯特的小說《追憶似水年華》開頭,由瑪德蓮的味道切入,接著進入意識的海洋游泳。扎拉謝維奇的文章開頭,也從品嚐岩石的味道切入,自由切換不同的題材。

地質學家為什麼要舔石頭?《舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎》一文有精簡介紹。最主要的理由是,缺乏現代儀器之際,舌頭可謂方便的化學感應器,能提供有用的資訊。

-----廣告,請繼續往下閱讀-----

當然,即使有了現代儀器,舌頭還是很方便的工具。

處於意識流科學史中,扎拉謝維奇的文章從舌頭感應器,十分合理地切換到一場宴會。那場 1951 年的晚宴中,據說提供猛獁象肉製作的餐點。

這場晚宴由美國的「探險俱樂部(The Explorers Club)」舉行,主辦方宣稱當天有道菜,來自已經滅絕的動物大地懶(Megatherium)。但是幾天後有報紙披露,宴會中的奇珍異獸不是大地懶,而是來自阿留申群島,25 萬年久遠的猛獁象!

1951 年保存至今的晚餐。圖/取自 參考資料3

-----廣告,請繼續往下閱讀-----

奇妙的是,當天的餐點竟然有少量樣本被保留至今。當時沒有參加的豪威斯(Paul Griswold Howes)寫信要到一份樣本,一直保存到他去世為止。後來樣本輾轉來到耶魯大學的皮博迪自然史博物館(Yale Peabody Museum)。

那一餐到底是大地懶,還是猛獁象呢?2014 年,耶魯大學的研究生葛拉斯(Jessica Glass)等人成功由樣本中取得 DNA,結果在 2016 年發表。比對之下相當明顯,答案是綠蠵龜。

現今綠蠵龜是保育類動物,合法的狀況下沒有機會吃到。然而 1951 年那個時候,綠蠵龜尚未面臨滅團威脅,仍然是普遍的食材。

區區綠蠵龜製成的海龜湯,當然無法彰顯晚宴的尊絕不凡。不過俱樂部宣稱的大地懶,怎麼又會變成猛獁象?

-----廣告,請繼續往下閱讀-----

最可疑的是當天在場的俱樂部成員尼可斯(Herbert Bishop Nichols),他也是基督科學箴言報(The Christian Science Monitor)的科學編輯。可考的記錄中,他第一個對外提出相關描述,後來被視為吃猛獁象的證據。

海龜湯的幾位相關人猿。(A) 據說將食材從北極帶回的極區探險家 Father Bernard Rosecrans Hubbard。(B) 極區探險家 George Francis Kosco。(C) 晚宴主辦人 Wendell Phillips Dodge。(D) 保存樣本的 Paul Griswold Howes。圖/取自 參考資料3

如果真的是那道菜的材料,那麼狀況就是:俱樂部用綠蠵龜做菜,宣稱是大地懶,報紙以訛傳訛寫成猛獁象。

「吃猛獁象」之類的傳聞,雖然不是嚴謹的科學,卻因為有噱頭而容易引人注目。作為沒多少負面影響的玩笑,也沒有人想要特別澄清。使得這類事件的真相,往往不了了之。

-----廣告,請繼續往下閱讀-----

儘管沒有特別獲得搞笑諾貝爾獎關注,對於這道海龜湯的追根究底,倒是相當符合搞笑諾貝爾獎的精神。

海龜湯以後,扎拉謝維奇的文章意識又跳躍到另一種已經滅團的生物:貨幣蟲(Nummulites)。許多古生物,當初也是其他古生物的食物。儘管擁有堅硬的外殼保護,貨幣蟲這種生物依然有機會成為美食。

1912 年的時候,英國古生物學家庫克派崔克(Randolph Kirkpatrick)提出一個觀點:地球有一段時間存在非常大量的貨幣蟲,後來它們變成稱為「貨幣球(Nummulosphere)」的地層,是地殼岩石的源頭。

看起來很搞笑,可是庫克派崔克是認真的。所以他即使生在現代,應該也沒有獲得搞笑諾貝爾獎的機會。

-----廣告,請繼續往下閱讀-----

2023 年搞笑諾貝爾獎頒獎典禮影片(化學與地質獎從 10:18 開始):

延伸閱讀

參考資料

  1. The 33rd First Annual Ig Nobel Prizes
  2. Eating fossils
  3. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?
  4. Mammoth meat was never served at 1950s New York dinner, says researcher

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。