0

2
1

文字

分享

0
2
1

蝴蝶效應|科學史上的今天:12/29

張瑞棋_96
・2015/12/29 ・1154字 ・閱讀時間約 2 分鐘 ・SR值 553 ・八年級

1972年的今天,美國科學促進會 (AAAS) 舉辦的第139屆年會上,氣象學家勞倫茲博士 (Edward N. Lorenz, 1917-2008) 準備上台發表他的研究發現。其實他要報告的內容早在1963年就已經發表在一份氣象學期刊上了,但顯然數學家與物理學家們並不會讀這類冷門的期刊,所以並未引起注意。其實他的重大發現完全是個意外,他也差一點讓它溜掉了……。

兩組使用相同參數但起始點些微不同的勞倫茲系統所構成的相異軌跡。圖/Hellisp@wikimedia

那是1961年的一個冬日,麻省理工學院校園罩著一層薄霧,勞倫茲在他的研究室看著窗外的天空。低低的雲層緩緩移動,他看到的卻是背後推動的氣流;在他眼中,它們化成一段段線條與數字,就像角落裡那臺電腦正在做的……。

當然,這臺靠真空管運作、記憶容量有限的機器不可能模擬真實的大氣,但自小對天氣的變幻莫測感到著迷的勞倫茲還是期望能捕捉到變化的形態,為天氣預報更找出更科學的方法,而不是依賴預報員的經驗與直覺。

印表機不斷吐出他的程式運算出來的數字,每個數字都代表某個時間點的天氣,然後這個數值會再自動輸入程式,用來計算下一刻的天氣,如此一直遞迴下去。突然機器停了下來,一定又是電腦裏哪顆真空管燒壞了!勞倫茲無奈地修好電腦後,看著紙條上長長的數列,實在不想從頭再來,於是他從中間選了個數字當作初始值輸入電腦,讓程式去跑,然後下樓去喝杯咖啡放鬆一下。

-----廣告,請繼續往下閱讀-----

一小時後他回來檢查紙條,赫然發現第二次跑出來的結果竟然與原來的數列截然不同!同樣的程式、同樣的輸入值,照說應該完全複製之前的結果啊?勞倫茲再三檢查後終於發現問題所在:紙條上印出來的數字──也就是他剛剛輸入的──只到小數點後三位,而電腦記憶體貯存的卻是到後六位。但何以不到千分之一的誤差竟會迅速造成南轅北轍的結果?這就像兩次瞄準角度只差0.5度,子彈卻一次向前飛、一次向後飛,簡直不可思議!

結果勞倫茲這個無心的發現開啟了一門全新的科學──混沌 (Chaos) 。這是一種衍生自簡單的規則,但對於初始條件極為敏感,以致差之毫釐卻失之千里的系統;表象看似不斷自我摹仿卻又永不重覆。

勞倫茲上了講台,幻燈片打出演講的題目:「一隻蝴蝶在巴西輕拍翅膀,會在德州引起龍捲風嗎?」這場極具啟發性的演講結束後,他1963年那篇論文被重新挖掘出來,成為所有混沌理論論文中被引用次數最多的。科學家陸續發現除了天氣,洋流也是混沌系統,還有生態、心跳、血管,就連人為的股市都是用混沌理論。事實上原子以上,宇宙以下的人類尺度充斥著混沌現象。而「蝴蝶效應」就此成為混沌的代名詞,滲入大眾文化歷久不衰,人人不管懂不懂都能琅琅上口。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

5
5

文字

分享

1
5
5
萬物皆混沌?——族群演化、股市、氣候變遷背後的神秘公式
Castaly Fan (范欽淨)_96
・2023/12/01 ・4632字 ・閱讀時間約 9 分鐘

你知道有那麼一條公式——它不僅可以表述生態系中動物族群的數量變化、城市裡人口隨時間的變遷,還與金融市場的波動、甚至是氣候變遷有所關聯?更令人驚奇的是,這個式子並不是什麼複雜的偏微分方程,它只有短短一行、就連國小學生都能代入算出。

這個看似相當簡單的式子,能推演出極其複雜的圖像;而在看似錯綜複雜的圖像背後,卻又隱藏著某種未知的神秘規律。今天這篇文章,將帶領大家透過這個簡單的函數重新認識世界。

自然界潛藏的規律

且讓我們先從自然界談起。假設一片草原上有一群斑馬生活著,我們想要知道明年、後年、甚至數十年後的數量;我們知道,這一部分取決於斑馬的出生率,還有另一部分取決於環境的負載力——假設斑馬的族群總數超過了該草地所能負荷的程度,很可能在往後導致族群的縮減,因此,負載力有點類似於一個約束條件。有了以上的資訊,我們可以嘗試用數學來描述:

這邊,xn 代表的是「現存族群數量與最大可容納的族群數量」之比值,你可以想像成:假設這片草原此時此刻有 60 隻斑馬,而草原所能容納斑馬數量的最大值為 100 隻斑馬——一旦超過這個值,那麼便會面臨諸如饑荒等生態危機。因此,在此例子中,x0 = 60/100 = 0.6。而假設我們想知道明年的數量,也就是 x1,便可以帶進去推算。那麼,式子中的"r"又是什麼?你可以將它理解為「成長率」,但要注意的是,它的值一般是界定在 0 與 4 之間。

-----廣告,請繼續往下閱讀-----

如果單純只看 xn+1 = r xn,假設 r=2,今年有 60 隻斑馬、明年有 120 斑馬、後年便會是 240 隻,這樣只會無止盡地指數增長下去;因此,當我們設定了"(1 -  xn)"這個約束條件後,便可以解決這個問題——假如今年的 xn = 1,意味著該地斑馬數量已然達到環境可負荷的最大值,便會因為饑荒等因素滅絕,隔年得到的數量便將為零。這個看似簡單、卻又多少能給生態學家建構模型的公式,稱為「單峰映射」(logistic map),也是今天文章的主角。

這個式子不僅可套用在生態系,也可以套用在人口學:舉個例子,某城市今年有 60 萬人,該城市所能負載的最大人口為 100 萬人,而每年的成長率大概是 r = 1.5,那麼,套進公式會發現:明年的人口將為 36 萬、第三年人口將為 34.6 萬……,從而漸漸達到平衡點。如果一開始我們假定有 30 萬人,明年將會成長為 31 萬、後年成長為 32 萬,然後趨近於和前者相近的平衡點。最後,如果這個城市一開始就有 90 萬人,第二年便會因為環境負載力而銳減至 13.5 萬人,但後年、大後年之後將會隨著成長率升高而回升至約莫 33 萬人的平衡點。

而這些資訊並非憑空構思的,因為它們本身就含括在單峰映射的公式裡,用圖表呈現便一目了然,你會發現無論前幾年如何變化、最終都會回歸一個平衡點:

給定該地區成長率為 r = 1.5,假設一開始族群總數為 30 萬(左)、60 萬(中)、90 萬(右)人,無論哪一例子,後幾年所呈現的數量將會趨於一個穩定值、約在x = 0.33(33 萬人)左右。

而這個穩定值是取決於"r"的,也就是說,只要 r = 1.5,無論人口數目如何變化,最終的平衡點都不會有所差異。

-----廣告,請繼續往下閱讀-----

規律的瓦解、未知的開端

因此,我們何不來看看"r"會如何變化?這時,我們回到原本的假設:一個城市裡有 60 萬人口,如果改動不同的 r,演化曲線將會如何改變?

這裡呈示了 r=0 到 2.8 之間的圖表,可以看出在 r 超過 2.5 時,振盪發生,即使如此、依舊回歸平衡值。

當我們將 r 值逐步增加,一切看似並無異常;當 r=2.8 時,我們發現圖形出現了週期性的振盪,但最後依舊回歸平穩。順帶一提,我們可以藉由「分枝圖」(bifurcation diagram) 來觀察 x 的穩定值與 r 的關係,在 r=0 至 2.8 之間,x 穩定值有攀升趨勢;在 r=1.5 時,根據前述的例子,x 的穩定值落在 0.33 左右,從下圖也可以直接看出:

呈現 x 穩定值與 r 之間的分枝圖,r=0 與 r=2.8 之間,穩定值有攀升趨勢;在前述例子中,r=1.5 對應到的穩態相當於 x=0.33 上下。

我們繼續調大 r 值。正當一切看似正常發展時,詭異的事情發生了:

當 r 大於 3 時,週期性的振盪發生,且不再回歸平穩值。由左至右分別是 r=3.1、r=3.45、與 r=3.55 的圖表。

在此之前,一切族群的數量都是平穩的,但在 r 超過 3 左右,持續的振盪出現了,且自此「平衡點」不復存在;不僅如此,當 r 值不斷調升,顯示出來的圖像從原本 2 個值、4 個值、到更多值之間來回振盪。值得一提的是,這種「週期性振盪」的現象在生態圈與人口變化中是確實存在的,很有可能前一年數量減少、今年數量增加、明年數量又再減少。讓我們來看看對應的分枝圖:

-----廣告,請繼續往下閱讀-----
圖為 r=2.8 至 3.55 之間的分枝圖,可以發現數目振盪導致的「分岔」。

這對應於原本從 2 個值之間的擺盪、分岔成 4 個值之間的擺盪、再分岔成 8 個值之間的擺盪……如此往復。此外,如果你留意橫軸 r 之間的間隔,會發現:當 r 愈大時,分岔的速度也愈快!

現在讓我們繼續將 r 值調升,來看看會發生什麼事:

隨著 r 不斷提升,系統呈現隨機的跡象,在 r 超過 4 時系統發散。上圖分別演示了 r=3.56、r=3.58、r=3.65、r=3.8、r=4 與 r=4.01 的情景。

話不多說,我們直接來看看分枝圖:

在 r=3.55 至 r=4 之間的分枝圖,分岔不斷衍生、並進入隨機的模式。

令人毛骨悚然的結果出現了!前面我們觀察到,當r提升時,系統會出現週期性的振盪,對應於分枝圖中的「分岔」,且分岔的速率會不斷增快、再增快;而在 r 超過 3.5699 時,規律的振盪、分岔將不復存在,取而代之的是一團無法預測的隨機——這就是所謂的「混沌」(chaos)。

-----廣告,請繼續往下閱讀-----

混沌、股票市場、以及蝴蝶效應

現在讓我們看一下完整的分枝圖長什麼樣子:

單峰映射的分枝圖,從 r=1 至 r=4,可以看出系統在 r 超過一定值後進入混沌狀態。

換而言之,當系統的變量到一定程度時,將會變成隨機且無法預測的。以人口為例,一開始我們假設的情況很簡單,就是 60 萬人口與 r=1.5 的成長率;接著我們發現,無論人口基數如何,只要 r 維持原狀,數年、乃至於數十年後的平衡點都是相近的。然而,當r值提升後,平衡點的值便會浮動了,r=3 之後週期性的振盪便出現了、且分岔點不斷加速倍增;緊接著,我們赫然發現:

當 r 值大於 3.5699 時,系統將全然處於混沌狀態。

也就是說,即便給定初始條件,最後的人口演化將會是無法預測的。事實上,這種「混沌」、「隨機」的現象並不僅僅侷限於自然界的族群或者人口數量,它其實是隨處可見的。比如:家中水龍頭關不太緊時,水滴很自然地會落下,按理來說,鬆緊程度與水壓毫無變化的情況下,滴水的規律應該也是不變的;但如果你花一段時間觀察,會發現水滴可能一下子連續落下兩滴、一下子又只落下一滴——我們根本無法預測每一次的滴落模式。

-----廣告,請繼續往下閱讀-----

另一個例子就是金融市場:當我們投資了固定金額的股票後,市場的波動將導致金額的浮動,就算有再好的分析師與預測模型,我們也不可能精準預測明天的投資金額會變多少。順帶一提,在金融學中描述期權的模型是「布萊克-休斯模型」(Black-Scholes model),它便是從微觀粒子的「布朗運動」(Brownian motion) 所推導而來,其中粒子碰撞隨時間演化的隨機過程被稱為「維納過程」(Wiener process)。布萊克-休斯模型的假設之一,便是將隨時間演化的「股票價格」描述成維納過程,從而預測、消弭潛在的風險。事實上,休斯本身大學時就是主修物理學的。

而提到「混沌現象」,最經典的例子當然還是氣象學家愛德華.洛倫茲(Edward Lorenz)的那句名言:

「一隻海鷗拍動翅膀,將導致永久性的氣候變化。」

“One flap of a sea gull’s wings would be enough to alter the course of the weather forever.”

-----廣告,請繼續往下閱讀-----

爾後,這個現象被稱為「蝴蝶效應」(Butterfly effect),也就是說,縱然系統初始條件只有微不足道的變化,也會導致最後產生的結果大相徑庭;即使是一隻在巴西的蝴蝶拍動翅翼,周邊的氣流變化會連帶影響、擴散至大氣系統,甚至能致使一個月後的德州發生龍捲風。

這些非線性、隨機的現象在自然界無處不在,許多科學家也嘗試研究,締造了「混沌理論」(chaos theory) 的研究熱潮。一旦我們能從中梳理出一些規律,那麼,也許便能更精確地掌握「混沌」之中的資訊,這將有助於我們更精確地預測投資股票的風險、也有助於人們更準確地預測天氣的變化。

混沌背後的神秘常數

從描述族群、人口的簡單函數推演到「混沌狀態」的存在已經夠令人驚豔了,然而,不知你是否曾留意過分枝圖中、每一段分岔點之間的間隔?

如果你把我們最後得到的分岔圖放大來看,會發現在混沌狀態之前、分岔點出現的速率不斷增快;而如果你對每一個分岔點之間的間隔取比值,你會發現——每一次得到的值都會是同一個數字,這個數字大致為 4.669,它被稱為「費根鮑姆常數」(Feigenbaum constants)。

-----廣告,請繼續往下閱讀-----
對於分枝圖上的每個分岔間隔取比例,最終發現比例皆為同一個值:4.669。圖源:https://blogs.sw.siemens.com/simulating-the-real-world/2021/01/04/chaotic-fluid-dynamics-part-4-finding-feigenbaum/

更令人細思極恐的是,這個「常數」並非只存在於單峰映射,所有混沌理論中有這種分岔性質的圖像,它們之間的比例都是這個常數!而目前數學界尚未能明確理解這個常數的性質,唯一可以推測的是:

費根鮑姆常數(4.669…)與混沌理論有密不可分的聯繫;該常數的出現意味著混沌現象即將發生。

在前述單峰映射的例子中,費根鮑姆常數主宰了 r=3.5699 之前的分岔規律;在 r 超過 3.5699 後,系統便徹底進入混沌狀態了。

除此之外,你或許也發現了,每個分岔的形狀都超乎尋常地相似,後一個分岔根本上就是前一個分岔的縮小版。這種特徵令人聯想到數學上的「碎形」(fractal),也就是某些形狀放大後會是自己的本體、從而無窮延伸下去。最著名的例子就是複數平面上二次多項式迭代出來的「曼德博集合」(Mandelbrot set)。信不信由你——當我們將單峰映射的分枝圖與曼德博集合比照來看,會發現分岔點之間是有所對應關係的;也就是說,單峰映射可以視為曼德博集合的一部分!

單峰映射其實是曼德博集合的一部分。圖源:https://www.sci-pi.org.uk/mandel/mandel_vs_log.html

從簡單的單峰映射公式,我們推導出了自然界族群、人口的演化模式,進一步發現了「混沌」狀態的存在;而在看似極其複雜的混沌狀態中,似乎又發現了隱藏在隨機背後的神秘規律。

混沌理論在生活中是無所不在的,時至今日,仍有不少未知的特性等著人們發掘與驗證。從生物的競爭、人口的演化、股市的浮動、亂流的成因、到氣候的變遷……這些日常事物都被混沌現象主宰著,從而使我們無法精準預測到未來的走向。然而,費根鮑姆常數的發現與幾何碎形的聯繫卻也指出了隨機背後潛藏著某些規律,這也不禁令人讚嘆自然界的美麗與神秘。

-----廣告,請繼續往下閱讀-----
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

2
1

文字

分享

0
2
1
蝴蝶效應|科學史上的今天:12/29
張瑞棋_96
・2015/12/29 ・1154字 ・閱讀時間約 2 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

1972年的今天,美國科學促進會 (AAAS) 舉辦的第139屆年會上,氣象學家勞倫茲博士 (Edward N. Lorenz, 1917-2008) 準備上台發表他的研究發現。其實他要報告的內容早在1963年就已經發表在一份氣象學期刊上了,但顯然數學家與物理學家們並不會讀這類冷門的期刊,所以並未引起注意。其實他的重大發現完全是個意外,他也差一點讓它溜掉了……。

兩組使用相同參數但起始點些微不同的勞倫茲系統所構成的相異軌跡。圖/Hellisp@wikimedia

那是1961年的一個冬日,麻省理工學院校園罩著一層薄霧,勞倫茲在他的研究室看著窗外的天空。低低的雲層緩緩移動,他看到的卻是背後推動的氣流;在他眼中,它們化成一段段線條與數字,就像角落裡那臺電腦正在做的……。

當然,這臺靠真空管運作、記憶容量有限的機器不可能模擬真實的大氣,但自小對天氣的變幻莫測感到著迷的勞倫茲還是期望能捕捉到變化的形態,為天氣預報更找出更科學的方法,而不是依賴預報員的經驗與直覺。

-----廣告,請繼續往下閱讀-----

印表機不斷吐出他的程式運算出來的數字,每個數字都代表某個時間點的天氣,然後這個數值會再自動輸入程式,用來計算下一刻的天氣,如此一直遞迴下去。突然機器停了下來,一定又是電腦裏哪顆真空管燒壞了!勞倫茲無奈地修好電腦後,看著紙條上長長的數列,實在不想從頭再來,於是他從中間選了個數字當作初始值輸入電腦,讓程式去跑,然後下樓去喝杯咖啡放鬆一下。

一小時後他回來檢查紙條,赫然發現第二次跑出來的結果竟然與原來的數列截然不同!同樣的程式、同樣的輸入值,照說應該完全複製之前的結果啊?勞倫茲再三檢查後終於發現問題所在:紙條上印出來的數字──也就是他剛剛輸入的──只到小數點後三位,而電腦記憶體貯存的卻是到後六位。但何以不到千分之一的誤差竟會迅速造成南轅北轍的結果?這就像兩次瞄準角度只差0.5度,子彈卻一次向前飛、一次向後飛,簡直不可思議!

結果勞倫茲這個無心的發現開啟了一門全新的科學──混沌 (Chaos) 。這是一種衍生自簡單的規則,但對於初始條件極為敏感,以致差之毫釐卻失之千里的系統;表象看似不斷自我摹仿卻又永不重覆。

勞倫茲上了講台,幻燈片打出演講的題目:「一隻蝴蝶在巴西輕拍翅膀,會在德州引起龍捲風嗎?」這場極具啟發性的演講結束後,他1963年那篇論文被重新挖掘出來,成為所有混沌理論論文中被引用次數最多的。科學家陸續發現除了天氣,洋流也是混沌系統,還有生態、心跳、血管,就連人為的股市都是用混沌理論。事實上原子以上,宇宙以下的人類尺度充斥著混沌現象。而「蝴蝶效應」就此成為混沌的代名詞,滲入大眾文化歷久不衰,人人不管懂不懂都能琅琅上口。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。