0

2
1

文字

分享

0
2
1

蝴蝶效應|科學史上的今天:12/29

張瑞棋_96
・2015/12/29 ・1154字 ・閱讀時間約 2 分鐘 ・SR值 553 ・八年級

1972年的今天,美國科學促進會 (AAAS) 舉辦的第139屆年會上,氣象學家勞倫茲博士 (Edward N. Lorenz, 1917-2008) 準備上台發表他的研究發現。其實他要報告的內容早在1963年就已經發表在一份氣象學期刊上了,但顯然數學家與物理學家們並不會讀這類冷門的期刊,所以並未引起注意。其實他的重大發現完全是個意外,他也差一點讓它溜掉了……。

兩組使用相同參數但起始點些微不同的勞倫茲系統所構成的相異軌跡。圖/Hellisp@wikimedia

那是1961年的一個冬日,麻省理工學院校園罩著一層薄霧,勞倫茲在他的研究室看著窗外的天空。低低的雲層緩緩移動,他看到的卻是背後推動的氣流;在他眼中,它們化成一段段線條與數字,就像角落裡那臺電腦正在做的……。

當然,這臺靠真空管運作、記憶容量有限的機器不可能模擬真實的大氣,但自小對天氣的變幻莫測感到著迷的勞倫茲還是期望能捕捉到變化的形態,為天氣預報更找出更科學的方法,而不是依賴預報員的經驗與直覺。

印表機不斷吐出他的程式運算出來的數字,每個數字都代表某個時間點的天氣,然後這個數值會再自動輸入程式,用來計算下一刻的天氣,如此一直遞迴下去。突然機器停了下來,一定又是電腦裏哪顆真空管燒壞了!勞倫茲無奈地修好電腦後,看著紙條上長長的數列,實在不想從頭再來,於是他從中間選了個數字當作初始值輸入電腦,讓程式去跑,然後下樓去喝杯咖啡放鬆一下。

-----廣告,請繼續往下閱讀-----

一小時後他回來檢查紙條,赫然發現第二次跑出來的結果竟然與原來的數列截然不同!同樣的程式、同樣的輸入值,照說應該完全複製之前的結果啊?勞倫茲再三檢查後終於發現問題所在:紙條上印出來的數字──也就是他剛剛輸入的──只到小數點後三位,而電腦記憶體貯存的卻是到後六位。但何以不到千分之一的誤差竟會迅速造成南轅北轍的結果?這就像兩次瞄準角度只差0.5度,子彈卻一次向前飛、一次向後飛,簡直不可思議!

結果勞倫茲這個無心的發現開啟了一門全新的科學──混沌 (Chaos) 。這是一種衍生自簡單的規則,但對於初始條件極為敏感,以致差之毫釐卻失之千里的系統;表象看似不斷自我摹仿卻又永不重覆。

勞倫茲上了講台,幻燈片打出演講的題目:「一隻蝴蝶在巴西輕拍翅膀,會在德州引起龍捲風嗎?」這場極具啟發性的演講結束後,他1963年那篇論文被重新挖掘出來,成為所有混沌理論論文中被引用次數最多的。科學家陸續發現除了天氣,洋流也是混沌系統,還有生態、心跳、血管,就連人為的股市都是用混沌理論。事實上原子以上,宇宙以下的人類尺度充斥著混沌現象。而「蝴蝶效應」就此成為混沌的代名詞,滲入大眾文化歷久不衰,人人不管懂不懂都能琅琅上口。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 964 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

5
5

文字

分享

1
5
5
萬物皆混沌?——族群演化、股市、氣候變遷背後的神秘公式
Castaly Fan (范欽淨)_96
・2023/12/01 ・4632字 ・閱讀時間約 9 分鐘

你知道有那麼一條公式——它不僅可以表述生態系中動物族群的數量變化、城市裡人口隨時間的變遷,還與金融市場的波動、甚至是氣候變遷有所關聯?更令人驚奇的是,這個式子並不是什麼複雜的偏微分方程,它只有短短一行、就連國小學生都能代入算出。

這個看似相當簡單的式子,能推演出極其複雜的圖像;而在看似錯綜複雜的圖像背後,卻又隱藏著某種未知的神秘規律。今天這篇文章,將帶領大家透過這個簡單的函數重新認識世界。

自然界潛藏的規律

且讓我們先從自然界談起。假設一片草原上有一群斑馬生活著,我們想要知道明年、後年、甚至數十年後的數量;我們知道,這一部分取決於斑馬的出生率,還有另一部分取決於環境的負載力——假設斑馬的族群總數超過了該草地所能負荷的程度,很可能在往後導致族群的縮減,因此,負載力有點類似於一個約束條件。有了以上的資訊,我們可以嘗試用數學來描述:

這邊,xn 代表的是「現存族群數量與最大可容納的族群數量」之比值,你可以想像成:假設這片草原此時此刻有 60 隻斑馬,而草原所能容納斑馬數量的最大值為 100 隻斑馬——一旦超過這個值,那麼便會面臨諸如饑荒等生態危機。因此,在此例子中,x0 = 60/100 = 0.6。而假設我們想知道明年的數量,也就是 x1,便可以帶進去推算。那麼,式子中的"r"又是什麼?你可以將它理解為「成長率」,但要注意的是,它的值一般是界定在 0 與 4 之間。

-----廣告,請繼續往下閱讀-----

如果單純只看 xn+1 = r xn,假設 r=2,今年有 60 隻斑馬、明年有 120 斑馬、後年便會是 240 隻,這樣只會無止盡地指數增長下去;因此,當我們設定了"(1 -  xn)"這個約束條件後,便可以解決這個問題——假如今年的 xn = 1,意味著該地斑馬數量已然達到環境可負荷的最大值,便會因為饑荒等因素滅絕,隔年得到的數量便將為零。這個看似簡單、卻又多少能給生態學家建構模型的公式,稱為「單峰映射」(logistic map),也是今天文章的主角。

這個式子不僅可套用在生態系,也可以套用在人口學:舉個例子,某城市今年有 60 萬人,該城市所能負載的最大人口為 100 萬人,而每年的成長率大概是 r = 1.5,那麼,套進公式會發現:明年的人口將為 36 萬、第三年人口將為 34.6 萬……,從而漸漸達到平衡點。如果一開始我們假定有 30 萬人,明年將會成長為 31 萬、後年成長為 32 萬,然後趨近於和前者相近的平衡點。最後,如果這個城市一開始就有 90 萬人,第二年便會因為環境負載力而銳減至 13.5 萬人,但後年、大後年之後將會隨著成長率升高而回升至約莫 33 萬人的平衡點。

而這些資訊並非憑空構思的,因為它們本身就含括在單峰映射的公式裡,用圖表呈現便一目了然,你會發現無論前幾年如何變化、最終都會回歸一個平衡點:

給定該地區成長率為 r = 1.5,假設一開始族群總數為 30 萬(左)、60 萬(中)、90 萬(右)人,無論哪一例子,後幾年所呈現的數量將會趨於一個穩定值、約在x = 0.33(33 萬人)左右。

而這個穩定值是取決於"r"的,也就是說,只要 r = 1.5,無論人口數目如何變化,最終的平衡點都不會有所差異。

-----廣告,請繼續往下閱讀-----

規律的瓦解、未知的開端

因此,我們何不來看看"r"會如何變化?這時,我們回到原本的假設:一個城市裡有 60 萬人口,如果改動不同的 r,演化曲線將會如何改變?

這裡呈示了 r=0 到 2.8 之間的圖表,可以看出在 r 超過 2.5 時,振盪發生,即使如此、依舊回歸平衡值。

當我們將 r 值逐步增加,一切看似並無異常;當 r=2.8 時,我們發現圖形出現了週期性的振盪,但最後依舊回歸平穩。順帶一提,我們可以藉由「分枝圖」(bifurcation diagram) 來觀察 x 的穩定值與 r 的關係,在 r=0 至 2.8 之間,x 穩定值有攀升趨勢;在 r=1.5 時,根據前述的例子,x 的穩定值落在 0.33 左右,從下圖也可以直接看出:

呈現 x 穩定值與 r 之間的分枝圖,r=0 與 r=2.8 之間,穩定值有攀升趨勢;在前述例子中,r=1.5 對應到的穩態相當於 x=0.33 上下。

我們繼續調大 r 值。正當一切看似正常發展時,詭異的事情發生了:

當 r 大於 3 時,週期性的振盪發生,且不再回歸平穩值。由左至右分別是 r=3.1、r=3.45、與 r=3.55 的圖表。

在此之前,一切族群的數量都是平穩的,但在 r 超過 3 左右,持續的振盪出現了,且自此「平衡點」不復存在;不僅如此,當 r 值不斷調升,顯示出來的圖像從原本 2 個值、4 個值、到更多值之間來回振盪。值得一提的是,這種「週期性振盪」的現象在生態圈與人口變化中是確實存在的,很有可能前一年數量減少、今年數量增加、明年數量又再減少。讓我們來看看對應的分枝圖:

-----廣告,請繼續往下閱讀-----
圖為 r=2.8 至 3.55 之間的分枝圖,可以發現數目振盪導致的「分岔」。

這對應於原本從 2 個值之間的擺盪、分岔成 4 個值之間的擺盪、再分岔成 8 個值之間的擺盪……如此往復。此外,如果你留意橫軸 r 之間的間隔,會發現:當 r 愈大時,分岔的速度也愈快!

現在讓我們繼續將 r 值調升,來看看會發生什麼事:

隨著 r 不斷提升,系統呈現隨機的跡象,在 r 超過 4 時系統發散。上圖分別演示了 r=3.56、r=3.58、r=3.65、r=3.8、r=4 與 r=4.01 的情景。

話不多說,我們直接來看看分枝圖:

在 r=3.55 至 r=4 之間的分枝圖,分岔不斷衍生、並進入隨機的模式。

令人毛骨悚然的結果出現了!前面我們觀察到,當r提升時,系統會出現週期性的振盪,對應於分枝圖中的「分岔」,且分岔的速率會不斷增快、再增快;而在 r 超過 3.5699 時,規律的振盪、分岔將不復存在,取而代之的是一團無法預測的隨機——這就是所謂的「混沌」(chaos)。

-----廣告,請繼續往下閱讀-----

混沌、股票市場、以及蝴蝶效應

現在讓我們看一下完整的分枝圖長什麼樣子:

單峰映射的分枝圖,從 r=1 至 r=4,可以看出系統在 r 超過一定值後進入混沌狀態。

換而言之,當系統的變量到一定程度時,將會變成隨機且無法預測的。以人口為例,一開始我們假設的情況很簡單,就是 60 萬人口與 r=1.5 的成長率;接著我們發現,無論人口基數如何,只要 r 維持原狀,數年、乃至於數十年後的平衡點都是相近的。然而,當r值提升後,平衡點的值便會浮動了,r=3 之後週期性的振盪便出現了、且分岔點不斷加速倍增;緊接著,我們赫然發現:

當 r 值大於 3.5699 時,系統將全然處於混沌狀態。

也就是說,即便給定初始條件,最後的人口演化將會是無法預測的。事實上,這種「混沌」、「隨機」的現象並不僅僅侷限於自然界的族群或者人口數量,它其實是隨處可見的。比如:家中水龍頭關不太緊時,水滴很自然地會落下,按理來說,鬆緊程度與水壓毫無變化的情況下,滴水的規律應該也是不變的;但如果你花一段時間觀察,會發現水滴可能一下子連續落下兩滴、一下子又只落下一滴——我們根本無法預測每一次的滴落模式。

-----廣告,請繼續往下閱讀-----

另一個例子就是金融市場:當我們投資了固定金額的股票後,市場的波動將導致金額的浮動,就算有再好的分析師與預測模型,我們也不可能精準預測明天的投資金額會變多少。順帶一提,在金融學中描述期權的模型是「布萊克-休斯模型」(Black-Scholes model),它便是從微觀粒子的「布朗運動」(Brownian motion) 所推導而來,其中粒子碰撞隨時間演化的隨機過程被稱為「維納過程」(Wiener process)。布萊克-休斯模型的假設之一,便是將隨時間演化的「股票價格」描述成維納過程,從而預測、消弭潛在的風險。事實上,休斯本身大學時就是主修物理學的。

而提到「混沌現象」,最經典的例子當然還是氣象學家愛德華.洛倫茲(Edward Lorenz)的那句名言:

「一隻海鷗拍動翅膀,將導致永久性的氣候變化。」

“One flap of a sea gull’s wings would be enough to alter the course of the weather forever.”

-----廣告,請繼續往下閱讀-----

爾後,這個現象被稱為「蝴蝶效應」(Butterfly effect),也就是說,縱然系統初始條件只有微不足道的變化,也會導致最後產生的結果大相徑庭;即使是一隻在巴西的蝴蝶拍動翅翼,周邊的氣流變化會連帶影響、擴散至大氣系統,甚至能致使一個月後的德州發生龍捲風。

這些非線性、隨機的現象在自然界無處不在,許多科學家也嘗試研究,締造了「混沌理論」(chaos theory) 的研究熱潮。一旦我們能從中梳理出一些規律,那麼,也許便能更精確地掌握「混沌」之中的資訊,這將有助於我們更精確地預測投資股票的風險、也有助於人們更準確地預測天氣的變化。

混沌背後的神秘常數

從描述族群、人口的簡單函數推演到「混沌狀態」的存在已經夠令人驚豔了,然而,不知你是否曾留意過分枝圖中、每一段分岔點之間的間隔?

如果你把我們最後得到的分岔圖放大來看,會發現在混沌狀態之前、分岔點出現的速率不斷增快;而如果你對每一個分岔點之間的間隔取比值,你會發現——每一次得到的值都會是同一個數字,這個數字大致為 4.669,它被稱為「費根鮑姆常數」(Feigenbaum constants)。

-----廣告,請繼續往下閱讀-----
對於分枝圖上的每個分岔間隔取比例,最終發現比例皆為同一個值:4.669。圖源:https://blogs.sw.siemens.com/simulating-the-real-world/2021/01/04/chaotic-fluid-dynamics-part-4-finding-feigenbaum/

更令人細思極恐的是,這個「常數」並非只存在於單峰映射,所有混沌理論中有這種分岔性質的圖像,它們之間的比例都是這個常數!而目前數學界尚未能明確理解這個常數的性質,唯一可以推測的是:

費根鮑姆常數(4.669…)與混沌理論有密不可分的聯繫;該常數的出現意味著混沌現象即將發生。

在前述單峰映射的例子中,費根鮑姆常數主宰了 r=3.5699 之前的分岔規律;在 r 超過 3.5699 後,系統便徹底進入混沌狀態了。

除此之外,你或許也發現了,每個分岔的形狀都超乎尋常地相似,後一個分岔根本上就是前一個分岔的縮小版。這種特徵令人聯想到數學上的「碎形」(fractal),也就是某些形狀放大後會是自己的本體、從而無窮延伸下去。最著名的例子就是複數平面上二次多項式迭代出來的「曼德博集合」(Mandelbrot set)。信不信由你——當我們將單峰映射的分枝圖與曼德博集合比照來看,會發現分岔點之間是有所對應關係的;也就是說,單峰映射可以視為曼德博集合的一部分!

單峰映射其實是曼德博集合的一部分。圖源:https://www.sci-pi.org.uk/mandel/mandel_vs_log.html

從簡單的單峰映射公式,我們推導出了自然界族群、人口的演化模式,進一步發現了「混沌」狀態的存在;而在看似極其複雜的混沌狀態中,似乎又發現了隱藏在隨機背後的神秘規律。

混沌理論在生活中是無所不在的,時至今日,仍有不少未知的特性等著人們發掘與驗證。從生物的競爭、人口的演化、股市的浮動、亂流的成因、到氣候的變遷……這些日常事物都被混沌現象主宰著,從而使我們無法精準預測到未來的走向。然而,費根鮑姆常數的發現與幾何碎形的聯繫卻也指出了隨機背後潛藏著某些規律,這也不禁令人讚嘆自然界的美麗與神秘。

所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

5
2

文字

分享

0
5
2
怪獸襲來!為什麼會有哥吉拉形狀的雲朵?:千變萬化的流體(三)
ntucase_96
・2021/12/11 ・2345字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(三):哥吉拉雲—流體的不穩定性

海岸邊的雲層上緣,出現一隻隻如同哥吉拉形狀的雲;原子彈投下後,劇烈爆炸引起的蕈狀雲;土星大氣層內形狀獨特的雲帶……等。這些看似毫無相關的現象,背後其實成因都可以歸納為:流體中的不穩定性。

2020 年在青森縣的海邊,有網友分享了一張雲朵彷彿在進行「哥吉拉大遊行」的照片(圖一左上);也有飛行員在雲層上分享過類似的照片(圖一右上);除此之外,天文學家在土星的大氣層也觀察到相似形狀的雲層(圖一下)。這些「哥吉拉」的行動力竟然如此之高,不只在地球上出現,連土星上都有。這是否暗示它們背後其實具有相同的形成機制呢?

圖一左上:海岸邊的哥吉拉雲,圖/大間觀光土產中心推特
圖一 右上:飛行員在雲層上看到的哥吉拉雲,圖/世界氣象組織(WMO)推特
圖一下:土星大氣層內的雲帶照片。圖/NASA

在<千變萬化的流體(一)>一文中,我們介紹了流體流動的狀態主要可以分成兩種:層流與紊流。層流狀態的流體十分穩定,它可以被視為一層一層獨立的流動來討論;相對的,紊流如同它的名字所表示,流體內部的流動較為混亂,不同層之間的流體會互相混合、影響。而決定是層流還是紊流的關鍵因素便是「不穩定性」[1]

在描述天氣系統為甚麼難以預測時,常常會提到「蝴蝶效應」這個小故事:位在大西洋的颶風,其成因可能只是在亞馬遜森林裡面一隻蝴蝶煽動了翅膀,這個初始的小擾動,隨著時間演變,最終形成尺度龐大的結構。不穩定性在流體中扮演的角色也十分相似。起初流體內部隨機的產生十分微小的擾動,若整個流體的不穩定性足夠大,微小的擾動便有機會繼續成長,直到對整個流體都造成影響。流體中具有各式各樣的不穩定性,在本篇文章中,我們將會介紹與哥吉拉雲還有蕈狀雲有關的兩種不穩定性:克耳文-亥姆霍茲不穩定性以及瑞利-泰勒不穩定性。

-----廣告,請繼續往下閱讀-----

克耳文-亥姆霍茲不穩定性:哥吉拉雲

這個不穩定性得名於兩位對此現象進行研究的物理學家:發明絕對溫標的克耳文爵士,以及對聲學共振系統做出系統性研究的亥姆霍茲(在<香檳聲音哪裡來?>一文中,他曾經登場過)。這個不穩定性發生的條件是:兩層流體之間具有相對速度。

請搭配圖二,讓我們一起來理解這個不穩定性是如何產生哥吉拉雲的。假設有兩層流體,分別向左與向右運動。當它們彼此完美平行時,一切無事,如圖二(a)。但這個狀態其實並不穩定,任何的擾動,都可能會破壞這個完美狀態。例如,流體中形成了如圖二(b)的擾動,接下來流體的運動會如何變化呢?

對於淺藍流體來說,A 點的體積較原本略小,因此流動速度較大,如同澆花時,將水管捏住(管徑縮小),水可以噴得更遠。此外,流速較快也會使得 A 點的壓力減小;但對於紅色流體來說,A 點的壓力反而會增大。如此會導致流體內部的壓力分佈形成圖二(c)。兩種流體之間的壓力差,會進一步使擾動長大,如圖二(d)。最後,由於流體本身橫向的速度,使擾動在橫向上出現變形,如圖二(e)。如此一來,哥吉拉形狀是不是就出現了呢?

圖二:克耳文-亥姆霍茲不穩定性形成示意圖。圖/CASE 報科學

瑞利-泰勒不穩定性:核爆蘑菇雲

接下來,讓我們來看另一種在生活中沒那麼常見,但是看過就很難忘記的不穩定性現象:核爆產生的蘑菇雲。這種現象的成因,是來自於瑞利-泰勒不穩定性,它會發生於密度較大的流體壓在密度小的流體之上時。核彈爆發會在極短時間內釋放出極大熱量,將爆炸中心的空氣瞬間加溫。我們知道,氣體的溫度越高,密度越低,因此在爆炸中心,會瞬間形成大量的低密度空氣。

-----廣告,請繼續往下閱讀-----

讓我們用簡單的模型來看看,這種不穩定性是如何造成蘑菇雲的。圖三(a)中有兩種流體,密度較高的在上,此時整個流體系統處於不穩定態,只要有一點擾動 ,如圖三(b) ,不穩定性就會使擾動擴大。由於密度差異,重力使得密度小的流體上升,密度大的下降,使不穩定度振幅逐漸增大。此外,由於壓力差與密度差的方向並不平行,會導致流體的邊界形成渦旋,如圖三(c)。以上這些效應疊加在一起後[2],流體邊界處便會逐漸形成如蘑菇狀的特徵,如圖三(d)。

圖三:瑞利-泰勒不穩定性示意圖。圖/CASE 報科學

以上兩種流體不穩定性,其實在我們生活中也存在,例如:點燃的線香。由於線香燃燒處的溫度上升,空氣密度下降,此時就滿足瑞利-泰勒不穩定性的條件;當熱空氣上升時,和兩側靜止的空氣有一相對速度,也滿足了克爾文-亥姆霍茲不穩定性條件。只是由於規模較小,發生速度較快,肉眼未必可以清楚的看到如前文中提到的明顯特徵。儘管如此,各位讀者在了解這些不穩定性之後,若是試著觀察看看生活中的各種流體,也許也能找到隱藏起來的「蕈狀雲」喔!

註解

[1] 更詳盡的說明可以參考 CASE<上下顛倒漂浮船>一文
[2] 實際上,形成蘑菇狀構造還與流體在三維條件下的非線性效應有關,數學模型較為複雜,此處只是簡單概述其成因。

參考資料

  1. Kelvin–Helmholtz instability
  2. Rayleigh–Taylor instability
  3. “Single mode hydrodynamic instabilities” draft from Hideaki Takabe.
ntucase_96
30 篇文章 ・ 1384 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。