0

0
1

文字

分享

0
0
1

提出「蝴蝶效應」──勞倫茲誕辰│科學史上的今天:05/23

張瑞棋_96
・2015/05/23 ・1159字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

勞倫茲系統軌跡(Lorenz System)

1961 年的一個冬日,麻省理工學院校園罩著一層薄霧,氣象學家勞倫茲(Edward Norton Lorenz, 1917-2008)在他的研究室看著窗外的天空。低低的雲層緩緩移動,他看到的卻是背後推動的氣流;在他眼中,它們化成一段段線條與數字,就像角落裡那臺電腦正在做的‧‧‧‧。

當然,這臺靠真空管運作、記憶容量有限的機器不可能模擬真實的大氣,但自小對天氣的變幻莫測感到著迷的勞倫茲還是期望能捕捉到變化的形態,為天氣預報更找出更科學的方法,而不是依賴預報員的經驗與直覺。

印表機不斷吐出他的程式運算出來的數字,每個數字都代表某個時間點的天氣,然後這個數值會再自動輸入程式,用來計算下一刻的天氣,如此一直遞迴下去。突然機器停了下來,一定又是電腦裏哪顆真空管燒壞了!勞倫茲無奈地修好電腦後,看著紙條上長長的數列,實在不想從頭再來,於是他從中間選了個數字當作初始值輸入電腦,讓程式去跑,然後下樓去喝杯咖啡放鬆一下。

一小時後他回來檢查紙條,赫然發現第二次跑出來的結果竟然與原來的數列截然不同!同樣的程式、同樣的輸入值,照說應該完全複製之前的結果啊?勞倫茲再三檢查後終於發現問題所在:紙條上印出來的數字──也就是他剛剛輸入的──只到小數點後三位,而電腦記憶體貯存的卻是到後六位。但何以不到千分之一的誤差竟會迅速造成南轅北轍的結果?這就像兩次瞄準角度只差0.5度,子彈卻一次向前飛、一次向後飛,簡直不可思議!

結果勞倫茲這個無心的發現開啟了一門全新的科學──混沌(Chaos)。這是一種衍生自簡單的規則,但對於初始條件極為敏感,以致差之毫釐卻失之千里的系統;表象看似不斷自我摹仿卻又永不重覆。除了天氣,洋流也是屬於混沌,還有生態、心跳、血管,就連人為的股市都是;事實上原子以上,宇宙以下的人類尺度充斥著混沌現象,難怪有人視之為繼相對論與量子力學之後的第三次革命。

勞倫茲鑽研兩年後所發表的先驅性論文至今仍是所有混沌理論論文中被引用次數最多的。而他在 1979 年的研討會上所用的譬喻:「一隻蝴蝶在巴西輕拍翅膀,會在德州引起龍捲風嗎?」,更是讓「蝴蝶效應」成為混沌的代名詞,滲入大眾文化歷久不衰,人人不管懂不懂都能琅琅上口。這也是勞倫茲始料未及的蝴蝶效應吧?

資料來源

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 703 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
【Gene思書齋】重溫經典的科普好書──讀《混沌:不測風雲的背後》
Gene Ng_96
・2016/08/07 ・3114字 ・閱讀時間約 6 分鐘 ・SR值 521 ・七年級

1993 年科幻經典電影《侏羅紀公園》(Jurassic Park)爆紅,炒熱了許多科學話題,例如基因工程、恐龍 DNA 的取得,還有暴龍的奔跑速度、以及恐龍是否為恆溫動物和有視覺行為等等。片中雖然只是簡單一提,卻已引起世人矚目的是,黑衣神經質數學家所解說的「蝴蝶效應」,說什麼一隻蝴蝶在北京拍動翅膀,可能在地球另一端的紐約掀起風暴。

這就是混沌理論的蝴蝶效應,指在一個動態系統中,初始條件下微小的變化能帶動整個系統的長期的巨大的連鎖反應。後來在 2004 年上映的一部科幻電影就是《蝴蝶效應》(The Butterfly Effect),影片裡原先看似無關緊要的小變化,到最後可能會導致起初無法預期的後果。

要知道混沌理論是啥咪碗糕嗎?《混沌:不測風雲的背後》Chaos: Making a New Science)是本必讀經典好書。《混沌》是天下文化的第一本科普書,也是台灣第一本科普暢銷書。這本好書開啟了科學人文系列科普的的濫觴,間接造就了科普書的黃金時代。

《混沌》的原文版在 1987 年出版,四年後臺灣出版了繁體中文版,今年再出第三版,轉眼就過了 25 年,我也從高中生歷經大學生、研究生、博士後到新進助理教授。雖然在這廿幾年來,混沌理論有了新發展,可是這本 25 年前出版的《混沌》,迄今仍是理解這門學問的誕生不可式缺的必讀讀物,是歷久不衰的經典。

雖然已經過了廿幾年了,我還忘不了當初在馬來西亞,一個高中生在書展中邂逅這本書的感動。在馬來西亞的一個小鎮,沒有像樣的書店,我們只有在中華商會辦的小書展中,才偶爾能找到新出版的好書。想當年,我們在馬來西亞吃頓飯,只要台幣十幾塊,一本台灣出版的新書,要我們至少廿幾頓飯的飯錢(想像一下要一個台灣高中生花一千多塊錢買本科普書吧)。

 

記得當年在峇株巴轄的中華商會的小書展,展出了天下文化科學人文的其他書籍,我幾乎放學有空就去逛。逛了幾次,存夠了錢想買本書,也只買得起一本,那就是《混沌》了。後來還是有空就去書展,天天翻其他書,可是翻來翻去,還是買不起其他書了。《混沌》是我第一本科普書,有陣子也是唯一一本吧。

一個高中生,怎麼可能懂得和混沌理論有關的高深數學?更何況我的數學還不太好,一個馬來西亞小鎮成績不太好的高中生,能有多少科學素養?

然而,《混沌》這本書,最神奇之處就在於,作者葛雷易克(James Gleick)的寫作功力實在太深厚了,《混沌》就是讓我看得津津有味。我很慶幸,第一本讀的科普書是《混沌》,讓我對科學的世界,嚮往得不得了,所以願意歷經艱辛投身科學事業。

過了十幾年,我終於到了美國深造,在唸博士班時,在狀況外就選修了門「族群生物的數學模式」課,一開始就被微分方程等嚇到了,撐到學期中,老師連混沌方程式都端上來了,當時才知道混沌理論在生態學上有廣泛的應用。簡單來說,許多生物族群在數量上的變動,有些條件些微的改變,會造成很巨大的不同結果,也是典型的非線性系統。

《混沌》這本好書,裡頭並沒有太多嚇人的數學方程式,在飛機上讀,不會像賓州大學經濟學教授因為在機上寫微積分,被乘客誤認為那些難以辨認的文字是恐怖活動暗號,被安檢人員約談而導致班機延誤。因為書中沒有多少奇怪的數學符號,不過倒是有很多碎形幾何的有趣圖案,如果那也能被誤認,那就乖乖上報宣傳一下《混沌》這本開啟科普書黃金時代的好書吧。

《混沌》主要要談的,其實是一群科學家的故事。

這群科學家,大多深居簡出,埋首在實驗室裡進行研究,意外發現了許多非線性系統的現象。在典範轉移前,他們的發現未必被科學社群認可,有些甚至被誤認為異端邪說。例如最早期在應用計算機時,非線性系統中初始條件微小的改變造成很不一樣的結果,大部分科學家都可能認為是程式有誤吧,只有少數敏銳的科學家鍥而不捨、排除萬難地對異例追根究底,才發現混沌的有趣世界,然後才產生了典範轉移,改變了我們對世界的認識。

天有不測風雲,難道預測天氣比把人送上月球難嗎?

過去科學家一直以為只要收集到了足夠多的數據,就能精準地預測,可是混沌理論讓我們瞭解到原來參數的微小差異,就有天翻地覆的結果。除了大氣科學,混沌理論也廣泛地應用在許多自然學科中,包括數學、生物學、資訊科學、經濟學、工程學、金融學、哲學、物理學、政治學、人口學、心理學和機器人學等等。

除了著名的蝴蝶效應,混沌理論中,另一個能讓門外漢著迷的是,《混沌》書中彩頁的曼德博集合。那是一門所謂的「碎形幾何」,其定義是:「一個粗糙或零碎的幾何形狀,可以分成數個部分,且每一部分都(至少近似地)是整體縮小後的形狀」,看起來很抽象吧?簡單來說,就是自然界中,有些東西有精巧的形狀,可是仔細瞧瞧,那些形狀是一直重複的,例如雪花。

640px-Mandel_zoom_00_mandelbrot_set
曼德博集合是碎形中的一個很有名的例子。圖/wikimedia commons.

「碎形幾何」革命性地讓我們對許多生物現象有了進一步的理解,例如蕨類植物的葉子,還有我們身體裡的血管、神經、氣管、腎小管等等的構造,都有其「碎形幾何」的道理在。

我的一項主要研究工作,是探討羽毛多樣性的遺傳基礎,羽毛也是個碎形構造,有羽軸加羽支,羽支和小羽支又重複相似結構,小羽毛和羽小鉤又再重複。血管、神經、氣管、腎小管、羽毛的碎形構造,讓有限的基因就能控制這些器官複雜的網路,計多基因也可以一再被用在構建不同器官上。

「碎形幾何」除了重複性,還有其他有趣現象,例如維度可以非正數,還可以有分數,例如 1.2618 等等,創造「碎形」一詞的數學家本華.曼德博(Benoît B. Mandelbrot, 1924-2010)在 1967 年的經典論文〈英國的海岸線有多長?〉現在還有人提出來讓學生思考討論。

混沌理論當然不只是有蝴蝶效應和碎形幾何,還有許許多多有趣的現象和模型。《混沌》把混沌理論的發展過程,用很平易近人的方式為大眾述說。據說有些非理工科系出身的朋友,對科學發展過程的認識就是來自這本《混沌》

如果你當年跟我一樣拜讀過《混沌》,現在是個好時機再拜讀一次,重溫多年前神遊探索科學新邊疆的熱情,如果你沒有讀過《混沌》,也還是歡迎來讀這本經典,體驗科學家探索未知世界的樂趣。

本文原刊登於故事「說書 Speaking Of Books」

Gene Ng_96
295 篇文章 ・ 24 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

100
1

文字

分享

0
100
1
電腦裡的生命遊戲,等你挑戰讓生命無限延續!
艾粒安鈉
・2016/03/23 ・2997字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

相信大家對蝴蝶效應butterfly effect)耳熟能詳,最簡單的譬喻大概是:台灣美濃的一隻蝴蝶輕拍一下翅膀,可能造成影響美國佛羅里達州的颶風。由於氣候系統是動態的,初始條件微不足道的變化,可能造成影響整個系統的巨大連鎖反應。可是這個蝴蝶變颶風的「實例」說得簡單,實際上卻很難想像和驗證啊!不打緊,只要我們打開電腦或平板,玩一玩生命遊戲Game of Life),就能在螢幕上看到蝴蝶效應了!

康威生命遊戲中的泛科學跑馬燈!
康威生命遊戲中的泛科學跑馬燈!

遊戲規則

生命遊戲是由英國數學家約翰.何頓.康威(John Horton Conway)發明,刊登在《科學人》雜誌的數學遊戲專欄。生命遊戲的名稱,來自遊戲模擬的就是真實世界當中的生物。首先假設一個方形的棋盤格,每一格都是一個細胞的空間;遊戲開始時,我們可以扮演「上帝」的角色,任意決定棋盤上哪些細胞是活的。之後細胞就遵循下列規則,與周圍相鄰的8個細胞互動:

  • 假如一個活細胞周圍有 2~3 個活細胞,這個活細胞就能繼續存活到下一世代。
  • 假如一個活細胞周圍 <2 個或 >3 個活細胞,這個活細胞就會因為「資源不足」或「過度擁擠」,在下一世代死亡。
  • 假如一個死細胞周圍恰好有 3 個活細胞,這個死細胞就會在下一世代復活,象徵「細胞繁殖」。

同一個世代的每個細胞同時依照以上三個規則運算後,就產生下一世代的細胞圖,如此周而復始。大家有沒有注意到了:生命遊戲開始之後,不需要玩家插手,就可以一直繼續玩下去了!所以這是一個零玩家遊戲,只要初始條件設定好,我們就可以泡杯咖啡,靜靜觀察這些細胞自我繁殖的過程。

生命遊戲的多變圖案

康威當初在設計生命遊戲時,經過許多實驗精心考慮規則,使細胞不會爆炸性繁殖,又能從相對簡單的初始條件,產生難以預測的結果。生命遊戲更具有「不可決定性」的特點:給定任意起始條件 A 和最終條件 B,判斷 A 的後續世代中是否會造成 B 的演算法是不存在的。因此上述的規則看似簡單,卻能衍生出非常複雜又引人入勝的圖案。一個穩定繁殖中的圖案,往往只要稍微改變幾個細胞,就會產生骨牌效應,把整個系統搞砸,或者產生出令人意想不到的結果!數學家與電腦科學家們往往會用現實生活中的物品,為他們發現的圖案命名。

首先最單調的就是靜物(still lifes),也就是世世代代都不動如山的圖案,最簡單的圖案有下面幾種,其中白色圓點代表活細胞,藍色空白處為死細胞:

game of life-still lifes

我們可以用上面的規則檢查看看,上面每個圖案中,是不是所有的細胞都會維持原本狀態呢?

稍微有趣一點的是振盪器(oscillators),顧名思義,就是在世代發展的過程中,會在幾個不同圖案之間循環。振盪器可以有不同週期,數學家已經發現了很多週期的振盪器,但卻還找不到週期為 19、23、34、38、41 的,這是個非常有趣而具有挑戰性的問題。

game of life-oscillators

太空船(spaceships)就更有意思了,這些圖案會隨著世代發展在棋盤格上移動或「飛行」。太空船中最有名的大概就是滑翔翼(glider,下圖左)了,只要路線上沒有東西阻礙,就會沿著對角線永無止境地滑翔。由於許多程式設計師喜歡玩生命遊戲,結構簡單的滑翔翼被許多駭客們當作標誌。各種太空船的速度不盡相同(下圖右),但就像現實生活中所有物體移動和資訊傳播都沒辦法超越光速,生命遊戲中也有「光速」(一樣用 c 表示):由於一個細胞每世代只能影響到相鄰的細胞,所以生命遊戲中的光速就是每世代一格,所有太空船都沒辦法超過這個速度。

Game_of_life_animated_glider     Animated_spaceships

康威曾經懷疑,生命遊戲中是否有圖案能夠永無止盡繁殖下去(穩定產生越來越多的活細胞),還懸賞了50英鎊給第一個發現可無限繁殖圖案的人。這樣的圖案很快就被美國數學家比爾.高斯帕(Bill Gosper)發現了,他設計了一種可以不斷產生滑翔翼的裝置,稱為滑翔翼機關槍(glider gun),之後數學家又發現更多可以不斷發射出太空船的構造,仿照高斯帕原本取的名字統稱為「槍」(guns)。另外一般的太空船,船過水無痕,但有些特殊的太空船會邊走邊「慶煙」,在軌跡上留下「廢氣」,被數學家暱稱為「蒸汽火車」(puffer train)。

Gosper's glider gun (來源)
Gosper’s glider gun。圖/wikipedia

除了以上的「生物」之外,還有可把其他生物吃掉的大胃王(eaters)、可以反射太空船的反射板(reflectors)、甚至可以邊走邊產生無數「二級結構」,這些二級結構又可以不斷產生「三級結構」,使活細胞數量成二次方生長的繁殖器(breeder)等等多采多姿的不同結構。數學家與電腦科學家利用這些結構的組合,可以在生命遊戲中製造相當於現實生活中的許多機械。

一台繁殖器(來源)
一台繁殖器。圖/wikipedia

生命遊戲的應用

讀到這邊,大家可能會出現一些疑惑:這種純粹欣賞的零玩家遊戲,除了當螢幕保護程式之外,有什麼具體用途嗎?首先由於生命遊戲規則簡單,卻能產生非常複雜的結果,因此不論是初學者或高階程式設計者都經常接觸它。假如記憶體和運算時間沒有限制,生命遊戲可以用來模擬所有的運算過程;換句話說生命遊戲本身就等於一台電腦。筆者也是在大學的基礎 MATLAB 程式設計課程中,首次認識生命遊戲的,最近重新讀到,頓時興致大發,就在生命遊戲中建立一個泛科學跑馬燈:

生命遊戲屬於一個更大範疇的模型──細胞自動機(cellular automaton),泛指所有規律格狀的系統,每格處於有限種類的狀態,而這些狀態是由上一世代的相鄰格子狀態來定義出來的。細胞自動機依照演化方式可粗略分成 4 大類,其中最複雜的第 4 類中,幾乎所有初始狀態都會演化成複雜、渾沌和接近隨機的狀態,生命遊戲也屬於第 4 類。由於以上的特性,細胞自動機可以模擬生物過程、物理粒子的交互作用,甚至地理學、經濟學和社會學;甚至有不少科學家提出了一個問題:整個宇宙是否也是個細胞自動機呢?

織錦芋螺(Conus textile)外殼顯示出如細胞自動機般的外觀
織錦芋螺(Conus textile)外殼顯示出如細胞自動機般的外觀。

1986 年法國藝術家奧利維爾.奧柏(Olivier Auber)更提出了「真人版」生命遊戲──Poietic Generator:在傳統生命遊戲中,每個細胞下一回合的命運,純粹由鄰近的細胞決定;而在 Poietic Generator 中,每位玩家一次可以更改點陣圖中其中一格的顏色,由不同玩家透過網路連線共同創作。在這個遊戲中,沒有所謂的輸贏,主要的目標在欣賞和參與大家的創作過程,共同創造出動態的藝術品。

X-00
Poietic Generator X-00

想玩玩看生命遊戲嗎?網路上有許多利用 JavaScript 寫成的模擬器,另外假如想要深入了解生命遊戲和更多規則各異的細胞自動機,筆者建議下載 Golly 這個免費模擬器,在電腦、iPad與Android多平台上都可以使用喔!

參考文獻

艾粒安鈉
7 篇文章 ・ 1 位粉絲
主修有機合成。對化學、天文、幾何學、地理、氣候、統計學、語言學、心理學、社會學、音樂和烹飪都有興趣。不願一生為學術研究爆肝,而熱愛為感興趣的學科認真寫科普文章,並用創意比喻和爛梗讓大家喜歡科學。多元性別,最高心跳210,海豚音到重低音一手包辦。

0

1
1

文字

分享

0
1
1
蝴蝶效應|科學史上的今天:12/29
張瑞棋_96
・2015/12/29 ・1154字 ・閱讀時間約 2 分鐘 ・SR值 553 ・八年級

1972年的今天,美國科學促進會 (AAAS) 舉辦的第139屆年會上,氣象學家勞倫茲博士 (Edward N. Lorenz, 1917-2008) 準備上台發表他的研究發現。其實他要報告的內容早在1963年就已經發表在一份氣象學期刊上了,但顯然數學家與物理學家們並不會讀這類冷門的期刊,所以並未引起注意。其實他的重大發現完全是個意外,他也差一點讓它溜掉了……。

兩組使用相同參數但起始點些微不同的勞倫茲系統所構成的相異軌跡。圖/Hellisp@wikimedia

那是1961年的一個冬日,麻省理工學院校園罩著一層薄霧,勞倫茲在他的研究室看著窗外的天空。低低的雲層緩緩移動,他看到的卻是背後推動的氣流;在他眼中,它們化成一段段線條與數字,就像角落裡那臺電腦正在做的……。

當然,這臺靠真空管運作、記憶容量有限的機器不可能模擬真實的大氣,但自小對天氣的變幻莫測感到著迷的勞倫茲還是期望能捕捉到變化的形態,為天氣預報更找出更科學的方法,而不是依賴預報員的經驗與直覺。

印表機不斷吐出他的程式運算出來的數字,每個數字都代表某個時間點的天氣,然後這個數值會再自動輸入程式,用來計算下一刻的天氣,如此一直遞迴下去。突然機器停了下來,一定又是電腦裏哪顆真空管燒壞了!勞倫茲無奈地修好電腦後,看著紙條上長長的數列,實在不想從頭再來,於是他從中間選了個數字當作初始值輸入電腦,讓程式去跑,然後下樓去喝杯咖啡放鬆一下。

一小時後他回來檢查紙條,赫然發現第二次跑出來的結果竟然與原來的數列截然不同!同樣的程式、同樣的輸入值,照說應該完全複製之前的結果啊?勞倫茲再三檢查後終於發現問題所在:紙條上印出來的數字──也就是他剛剛輸入的──只到小數點後三位,而電腦記憶體貯存的卻是到後六位。但何以不到千分之一的誤差竟會迅速造成南轅北轍的結果?這就像兩次瞄準角度只差0.5度,子彈卻一次向前飛、一次向後飛,簡直不可思議!

結果勞倫茲這個無心的發現開啟了一門全新的科學──混沌 (Chaos) 。這是一種衍生自簡單的規則,但對於初始條件極為敏感,以致差之毫釐卻失之千里的系統;表象看似不斷自我摹仿卻又永不重覆。

勞倫茲上了講台,幻燈片打出演講的題目:「一隻蝴蝶在巴西輕拍翅膀,會在德州引起龍捲風嗎?」這場極具啟發性的演講結束後,他1963年那篇論文被重新挖掘出來,成為所有混沌理論論文中被引用次數最多的。科學家陸續發現除了天氣,洋流也是混沌系統,還有生態、心跳、血管,就連人為的股市都是用混沌理論。事實上原子以上,宇宙以下的人類尺度充斥著混沌現象。而「蝴蝶效應」就此成為混沌的代名詞,滲入大眾文化歷久不衰,人人不管懂不懂都能琅琅上口。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 703 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。