1

0
0

文字

分享

1
0
0

比較完誰的天氣預報準,然後呢?

阿樹_96
・2016/03/28 ・4894字 ・閱讀時間約 10 分鐘 ・SR值 527 ・七年級

國小高年級科普文,素養閱讀就從今天就開始!!

文長,非常長,但希望藉此文能更簡單、更清楚的說明天氣預報的難處、如何去看天氣預報的不準確,才是對預報的應用更重要的。

我們先看一下3/21氣象局和日本氣象協會的一周預報:

cwb0325_1100
tenki_0321_1700

再看3/25的預報結果,日本氣象協會的預報(溫度部分日本有明顯修正,降雨方面是兩邊都有修正調整):

cwb_0321_1700

tenki0325_0500

這次中央氣象局預報比日本準了,但其實……

當不夠理解氣象預報時,比較是沒意義的

接著在心情不好、天氣不好又遇到報不準的時候,就會罵氣象局。

「為什麼氣象局總是報不準?」「不是說會下雨嗎?怎麼只下兩滴就沒了?」「我乾脆看日本的預報好了!」「氣象預報本來就該準不是嗎?不準怎麼不會檢討?」

無論今年一月、三月氣象局與日本氣象協會針對寒流與冷氣團預報結果的落差,或是三月時氣象局幾次對鋒面降雨時間判斷的誤差。從媒體打臉來打臉去的渲染,以及網路上的輿論,我特別注意到了兩個常見的氣象預報迷思:

  1. 對氣象預報原理誤解進而提出不合理的批判(多數是認為「準是應該的」)。
  2. 資訊不對稱,或許是對氣象預報知識的不足,使得報導或是許多民眾只能聚焦在媒體、網路、氣象局之間的口水戰。

其實,只要再深再細一點的探討分析,再加入一點氣象知識,即使不具備氣象專業背景,多少也能看出以下的盲點:

不準是什麼意思?

不準的定義是指前一天的預報還是一週的預報,就算拿前一天預報來說好了,一年 365 天中,有幾天有預報成功有幾天失準?然後一年幾天失以上準叫做預報很糟?還是就不管反正遇到幾次不準就是不準?這樣的話我倒覺得這比較像是「認知偏誤」。

氣象科學是門複雜的應用科學

在不理解數值如何產生的情況下,拿不同預報的結果來直接比較,沒有什麼科學意義,真的要認真比較的話,起碼要像上面說的要每一天、針對特定結果如溫度之類的做統計比較,但這實在對於預報本身沒什麼幫助,因為數值預報除了統計還得考量學理,而大氣科學是門不太容易研究的應用科學(結合物理、化學、流體等知識)。

百分之分準「甘有可能」?

如果你只能接受「只要告訴我,下雨或不下雨、冷還熱,不要說什麼 40% 降雨機率、最高最低溫……」的話,我想觀落陰比較快?不是啦,我指的是若只能接受百分之百準的預報,未免太強人所難了。

如果你願意繼續看下去,那我就來細說國高中不教、主流媒體少講、人們不常聽到的「關於天氣預報」!

沒有百分之百準的氣象預報

過去有好幾篇在不同平台的專業解說文章[註1],這些文章的共通點就是在說明氣象預報為什麼不準?不過我想,既然是會覺得氣象局的預報總是失準的人,或許也會認為,每當預報發生失準時,氣象預報人員總是會拿勞侖茲的「蝴蝶效應」來作為塘塞之詞。

但對於從觀測數據到預測未來而言,「差之毫釐,失之千里」或許是最氣象預報而言簡單而貼切的說法。或許子彈剛發射出去僅僅差不到1 mm的誤差,到了數百公尺外,就會放大到數十倍以上的誤差,對於所謂的一週預報來說,七天後的預報,不準其實是正常的。

舉個例子,2015 年國研院颱洪中心也發布了下方這張圖,說明模式預報的不確定性,同一颱風會有可能會導致截然不同的路徑結果。圖中三角形點是指 8/21 的颱風位置,編號 1 為 8/11 日的預測結果、2 為 8/12 的結果……以此類推,所以 10 天內的預測,每天都修正超多,代表著超級不確定性。

圖片來源:國研院颱洪中心臉書
圖/國研院颱洪中心臉書

「氣象存在著渾沌(Chaos)的特性」是一個必須要強力宣導的概念,因為在勞侖茲發現大氣渾沌特性之前,大家都認為我們靠著學理和統計,就可以很準確的預測天氣,只要電腦運算速度提升,人人都能成為氣象專家;只是實際上就連千分之一的誤差,都會讓計算結果截然不同。附帶一個複擺的實驗,它是很容易說明渾沌現象的實驗,即使初始值十分接近,但只要有一絲絲誤差就會讓結果差很遠,

 既然無法完全準,那幹嘛預測?幹嘛花錢買超級電腦?

那「為什麼只有百分之百準確度才有意義呢?」我們來看看103年國中會考的第一題:

會考

這題降雨機率,根據政府資料開放平台的數據,這題有 8 成 6 答對率,是整本答對人數最多的一題。基本上你看到降雨機率 30% 和 70% 時會做的防雨準備就該不一樣了,甚至取決於你要求做什麼事能接受的「風險」,譬如假如有30%會下雨,雖然機率不高但仍可能降雨,活動能辦是能辦,但沒必要不做雨備跟老天賭不是嗎?

接下來我們談這類的「降雨機率」或是「數值預報」是怎麼來的,它包括統計(就是過去相同數據和天氣模式下有沒有降雨的紀錄)、分析(利用更多數據去建構未來天氣變化可能性的模擬)、研判(專業人員從學理上來判斷)的綜合結果。

超級電腦的用途就是在統計與分析時,能處理更多數據的能力。超級電腦只能讓我們運算時能以更複雜、細微的模型去了解未來的不同可能性,讓我們的預測盡可能的「接近」真實結果,然而再怎麼樣都只是「接近值」,由於大氣的渾沌特性,要做到百分之百的預測是完全不可能的。 

但「盡可能的縮小誤差」、「盡可能的提供信賴度高」的預報,一直都是各氣象單位的目的,《祛除氣象預報的迷思》一文就在強調這點,速度快 100 倍的電腦並不會準 100 倍,而是讓我們會有更多可以互相佐證的數據。當然電腦快有好處,只是很難量化,也很難說清楚而已。

為什麼日本美國都會預測的比較準?因為錢多還是科技高嗎?

錢多是事實,台灣颱風論壇的賴重祐先生就撰文比較過台日的氣象預算差異,或許從預算除以國土面積會覺得台灣拿這樣的錢應該也要做出一樣或更好的水準,但我必須要說,可能我們需要預報的國土面積小,但大氣可不是像一堵牆一樣有邊界的,你跨出島外或是幾海浬外就一定不受島內天氣影響嗎?沒人敢說,在進行長期預報時,必須針對大範圍尺度的大氣運動進行計算分析,要算台灣未來一週的天氣也需要中國大陸、日本的資料,需要更大範圍的衛星雲圖,難度可不會因為你只要預報台灣就少很多,這時再來看預算和擁有衛星數量,還會覺得氣象局錢領多不做事我也沒辦法說什麼了…

所以氣象局報不準就可以裝死嗎?氣象法是要讓氣象預報變一言堂?

這也是我常看到的問題,報不準當然不能裝死,但就像我前面提到的,「如何定義什麼叫報不準」其實沒有具體的說法,而在天氣多變的情況下,你要氣象局「統計自己的預報失準率」,無疑是要斷死自己的後路,因為不準的原因可能有:

  • 某些季節如春季,氣候多變化本來就超難預測。
  • 特殊很少發生的極端氣候事件。
  • 預報員經驗不足。
  • 對於數據解讀太過保守(高估災害事件、低估一般事件)。
  • 其它人為失誤。

問題就在於要把上述原因整合統計資料,如果把原因歸納在前兩項,要怎麼說服立委諸公、一般大眾,在不懂的人看來你用前兩個當結論就是在黑箱啊!然後我們又能容許多少極限的失誤,以目前公務體系的規範下,要執行這樣的天氣預報成效統計,只會讓更多研究或預報人員花更多時間寫報告而不做自己該做的專業事情。

我的看法是,最好還是多加宣導某些天氣情況難以預測、逐時預報的好處,或是逐步引入國外加上「信賴度」表示的方式說明預報的結果誤差範圍。像是要告訴大家春季多變化就可以利用不同季節預報準確度的數據給民眾參考,這樣會比較有實質意義。以日本氣象廳而言,就經常能看到以下的情況,一週預報信賴度由 A~C 等級,即使是七天後的日子,如果是 A 等級的準確率,就可以把那個結果當成是前一天的預報也無妨,如果是 C 等級,那代表著就是還有一定的誤差存在。如果有這樣的資訊,或許就能告訴大家,其實要在這天考量天氣情況時要特別注意不確定性的風險,當然,要落實這樣的預報也要有一定程度的宣導才有效果。

圖片截自日本氣象廳官網
圖片截自日本氣象廳官網

至於氣象法,蠻常聽到有人靠邀說這個是只準州官放火的法令。但在104年有修正過放寬法令,讓民間單位(如天氣風險管理公司)也有適度預報的權限,只是需要「獲得許可」與「證照」,在台灣像是天氣風險與管理公司就有許多取得證照許可的預報人員,我想氣象法的用意並不是讓氣象預報變成一言堂,只是希望預報氣象這件事能夠回歸專業,並避免過度詮釋氣象預報資訊造成民眾恐慌,要是希望一言堂的話那也不會再修法調整了。當然氣象法還有一些執行上可能會出現的 bug,但這不在本文想討論的範圍,就暫時先跳過了。

至於國外的預報呢?氣象法當然管不到那個地方,只是你要是硬要把國外預報的結果拿來跟國內的比,還要比較準度,似乎有點立足點不公平。外國單位預報台灣的氣象是給他們自己看的,用的資料也不會比我們多,計算的模式也不同,是要怎麼比?

談完氣象預報的部分,再來談談媒體角色

從科學傳播的角度來看,氣象預報與民眾的距離就是一種典型的「資訊不對稱」,除了預報結果的資訊,也包括了背景知識的資訊。有些科學記者可以理解氣象預報的極限以及預報結果的不確定性,但也有許多是站在以為自己理解,卻是一知半解的角度看這件事,甚至我也有看到「既然是公務機關,報準,應該;不準,納稅義務人抱怨很正常。」言論,很正常不代表很合理,因為本來就沒有百分百準。媒體引用網路上的資訊與留言報導,看似在發揮監督政府的力量,但卻在背景知識不足的情況下對政府先提出質疑,其實除非從教育大眾的角度出發,否則還真難回答啊!

而另外也聽到一些聲音,認為官僚與機關文化導致預報員會過度保守而忽視科學結果,我覺得僅僅對了一半。為什麼?因為人家要對上級負責、對立院負責的情況下,實務經驗的確會佔很大比重,若要檢討這件事,我想就要先分清楚當預測失準時發生時,原因會有天然與人為因素,但實務上要怎麼分?既然非專業人士無法畫分,那是不是需要專家來協助?直接說誰打臉誰這樣真的恰當嗎?真的有盡到彌平民眾和政府資訊不對稱的落差嗎?從這個角度回來看氣象法,也不難理解至今為何無法完全開放氣象預報了,因為只選擇性的懂一部分,比完全不理解還可怕啊!

沒有說氣象局不用改進,改進是必要的,只是對於氣象預報的誤解,無知的一方也需要主動了解、擁有資訊的一方(氣象局)也該要有更積極的科普宣導。像是最簡單的「晴時多雲偶陣雨」,民眾會問到底是晴、多雲還是雨?但實際上應該是「大多時候應該是晴天,但因為水氣多有時會多雲,偶爾會突然下短暫的雨,會外出朋友還是要帶個雨具以防萬一!」這樣調整說法,不是稍微清楚一點了嗎?誰可以做?氣象局和播報氣象的媒體皆可!

結語:我自己怎麼利用氣象資訊的?

看不同的氣象預報結果,了解不同的分析來評估風險,原意是一件好事,只是拿這種東西的比較作為新聞,會有一種「沒事聊,只好聊天氣」的感覺。多半時間在早上出門前才會看氣象預報,接著再考量今天的衣著,可能看手機內建也可能看氣象局的資訊,原因是我認為越接近的時間,準確度會稍微提升;有時不確定也會看看窗外的天氣,某段時間真的很怕遇到突然的強降雨,就會去找雷達回波圖來看……雖然不是每個人都能解讀一般氣象預報以外更深入的資訊,但或許也可以試著重新思考看看,在沒有百分百完美,但多數時仍準確的預報資訊下,如何運用 & 使用氣象預報資訊,才是對自己最有幫助的?

 

想知道更多關於地球大小事,可來參觀作者的部落格:地球故事書

文章難易度
所有討論 1
阿樹_96
73 篇文章 ・ 19 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。

0

5
2

文字

分享

0
5
2
怪獸襲來!為什麼會有哥吉拉形狀的雲朵?:千變萬化的流體(三)
ntucase_96
・2021/12/11 ・2345字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(三):哥吉拉雲—流體的不穩定性

海岸邊的雲層上緣,出現一隻隻如同哥吉拉形狀的雲;原子彈投下後,劇烈爆炸引起的蕈狀雲;土星大氣層內形狀獨特的雲帶……等。這些看似毫無相關的現象,背後其實成因都可以歸納為:流體中的不穩定性。

2020 年在青森縣的海邊,有網友分享了一張雲朵彷彿在進行「哥吉拉大遊行」的照片(圖一左上);也有飛行員在雲層上分享過類似的照片(圖一右上);除此之外,天文學家在土星的大氣層也觀察到相似形狀的雲層(圖一下)。這些「哥吉拉」的行動力竟然如此之高,不只在地球上出現,連土星上都有。這是否暗示它們背後其實具有相同的形成機制呢?

圖一左上:海岸邊的哥吉拉雲,圖/大間觀光土產中心推特
圖一 右上:飛行員在雲層上看到的哥吉拉雲,圖/世界氣象組織(WMO)推特
圖一下:土星大氣層內的雲帶照片。圖/NASA

在<千變萬化的流體(一)>一文中,我們介紹了流體流動的狀態主要可以分成兩種:層流與紊流。層流狀態的流體十分穩定,它可以被視為一層一層獨立的流動來討論;相對的,紊流如同它的名字所表示,流體內部的流動較為混亂,不同層之間的流體會互相混合、影響。而決定是層流還是紊流的關鍵因素便是「不穩定性」[1]

在描述天氣系統為甚麼難以預測時,常常會提到「蝴蝶效應」這個小故事:位在大西洋的颶風,其成因可能只是在亞馬遜森林裡面一隻蝴蝶煽動了翅膀,這個初始的小擾動,隨著時間演變,最終形成尺度龐大的結構。不穩定性在流體中扮演的角色也十分相似。起初流體內部隨機的產生十分微小的擾動,若整個流體的不穩定性足夠大,微小的擾動便有機會繼續成長,直到對整個流體都造成影響。流體中具有各式各樣的不穩定性,在本篇文章中,我們將會介紹與哥吉拉雲還有蕈狀雲有關的兩種不穩定性:克耳文-亥姆霍茲不穩定性以及瑞利-泰勒不穩定性。

克耳文-亥姆霍茲不穩定性:哥吉拉雲

這個不穩定性得名於兩位對此現象進行研究的物理學家:發明絕對溫標的克耳文爵士,以及對聲學共振系統做出系統性研究的亥姆霍茲(在<香檳聲音哪裡來?>一文中,他曾經登場過)。這個不穩定性發生的條件是:兩層流體之間具有相對速度。

請搭配圖二,讓我們一起來理解這個不穩定性是如何產生哥吉拉雲的。假設有兩層流體,分別向左與向右運動。當它們彼此完美平行時,一切無事,如圖二(a)。但這個狀態其實並不穩定,任何的擾動,都可能會破壞這個完美狀態。例如,流體中形成了如圖二(b)的擾動,接下來流體的運動會如何變化呢?

對於淺藍流體來說,A 點的體積較原本略小,因此流動速度較大,如同澆花時,將水管捏住(管徑縮小),水可以噴得更遠。此外,流速較快也會使得 A 點的壓力減小;但對於紅色流體來說,A 點的壓力反而會增大。如此會導致流體內部的壓力分佈形成圖二(c)。兩種流體之間的壓力差,會進一步使擾動長大,如圖二(d)。最後,由於流體本身橫向的速度,使擾動在橫向上出現變形,如圖二(e)。如此一來,哥吉拉形狀是不是就出現了呢?

圖二:克耳文-亥姆霍茲不穩定性形成示意圖。圖/CASE 報科學

瑞利-泰勒不穩定性:核爆蘑菇雲

接下來,讓我們來看另一種在生活中沒那麼常見,但是看過就很難忘記的不穩定性現象:核爆產生的蘑菇雲。這種現象的成因,是來自於瑞利-泰勒不穩定性,它會發生於密度較大的流體壓在密度小的流體之上時。核彈爆發會在極短時間內釋放出極大熱量,將爆炸中心的空氣瞬間加溫。我們知道,氣體的溫度越高,密度越低,因此在爆炸中心,會瞬間形成大量的低密度空氣。

讓我們用簡單的模型來看看,這種不穩定性是如何造成蘑菇雲的。圖三(a)中有兩種流體,密度較高的在上,此時整個流體系統處於不穩定態,只要有一點擾動 ,如圖三(b) ,不穩定性就會使擾動擴大。由於密度差異,重力使得密度小的流體上升,密度大的下降,使不穩定度振幅逐漸增大。此外,由於壓力差與密度差的方向並不平行,會導致流體的邊界形成渦旋,如圖三(c)。以上這些效應疊加在一起後[2],流體邊界處便會逐漸形成如蘑菇狀的特徵,如圖三(d)。

圖三:瑞利-泰勒不穩定性示意圖。圖/CASE 報科學

以上兩種流體不穩定性,其實在我們生活中也存在,例如:點燃的線香。由於線香燃燒處的溫度上升,空氣密度下降,此時就滿足瑞利-泰勒不穩定性的條件;當熱空氣上升時,和兩側靜止的空氣有一相對速度,也滿足了克爾文-亥姆霍茲不穩定性條件。只是由於規模較小,發生速度較快,肉眼未必可以清楚的看到如前文中提到的明顯特徵。儘管如此,各位讀者在了解這些不穩定性之後,若是試著觀察看看生活中的各種流體,也許也能找到隱藏起來的「蕈狀雲」喔!

註解

[1] 更詳盡的說明可以參考 CASE<上下顛倒漂浮船>一文
[2] 實際上,形成蘑菇狀構造還與流體在三維條件下的非線性效應有關,數學模型較為複雜,此處只是簡單概述其成因。

參考資料

  1. Kelvin–Helmholtz instability
  2. Rayleigh–Taylor instability
  3. “Single mode hydrodynamic instabilities” draft from Hideaki Takabe.
ntucase_96
30 篇文章 ・ 918 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

2
0

文字

分享

0
2
0
換個位子,換腦袋!機率在不同行業代表什麼意思?——《塗鴉學數學》
臉譜出版_96
・2020/07/23 ・1978字 ・閱讀時間約 4 分鐘 ・SR值 494 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者/ 班‧歐林 (Ben Orlin);譯者/王年愷

若說人類「不擅長」機率,太過簡化又太讓人難堪了。

機率是現代數學裡一門相當精妙的分支,當中處處有悖論陷阱。即使是基本的問題,也可能讓冷靜無情的專家暈頭轉向。嘲諷別人機率算錯,就像是在笑他們怎麼那麼不會飛,或是怎麼那麼不會喝下一整個海洋的水,或是怎麼那麼不防火。

如果真要說句公道話,應該說人類處理機率的能力實在爛透了。康納曼和特沃斯基在心理學研究中發現,人類對於不確定的事件有頑固的錯誤想法。他們會一而再、再而三地高估可能性微乎其微的事件,並低估幾乎鐵定會發生的事件。

圖/臉譜出版提供

這沒什麼大不了的,不是嗎?老實說,我們什麼時候看過機率在真實世界裡冒出頭來呢?又不是一輩子都在想辦法抓住知識性的工具,讓我們也許能在每一個清醒時刻的種種不確定性混沌中稍稍有些安穩⋯⋯

好吧,為了以防萬一——本章是一個操作指南,說明各種不同的人類怎麼去思考不確定性。這個東西就算再難,也不表示我們不能拿它來玩一玩。

如果你是政治記者

圖/臉譜出版提供

哈囉!你是一位政治記者。你會報導即將到來的選舉。你會報導失敗的選戰。在罕見的特別日子裡,你甚至還會報導像是「政策」和「治理」的事。

另外,稍微不可能的事情發生時,你好像會感到困惑。情況並非一直如此。在某個遙遠的過去,你會把選舉視為無限可能的神奇時刻。你輕描淡寫最可能發生的結果來增加刺激感,讓每一場選戰看起來都像是比賽結束鈴聲響起時從中場丟球正中籃框定勝負的。

2004 年美國總統大選當天晚上,小布希在俄亥俄州領先 100,000 票,未開出的選票不到 100,000 張時,你卻說俄亥俄州的選舉結果「太接近,無法確定」。到了 2012 年的總統大選,機率模型預測歐巴馬獲勝的可能性是 90%,你卻說選戰是「兩邊都有可能贏」。

然後,2016 年又把你的世界完全顛倒過來了。川普贏了希拉蕊.柯林頓。第二天醒來時,你覺得你經歷了一次量子奇異點,選舉結果就像是一隻突然憑空冒出來的兔子一樣完全無法預料。但對機率學家席佛(Nate Silver)及看法相近的人來說,這個結果只不過有一點意外而已,發生的機率為三分之一—就像丟骰子丟出 5 或 6 一樣。

如果你是氣象預報員

圖/臉譜出版提供

哈囉!你是一位氣象預報員,是電視上的雲層先知。你的一舉一動都自信滿滿,每一次交談的結尾都是「現在把現場交還棚內主播」。

另外,你會故意把機率說得模稜兩可,讓觀眾不會對你生氣。當然,你會盡可能誠實。如果你說明天的降雨機率是 80%,你所說的完全正確:在這樣的日子當中,降雨的日子總共有 80%。

但是,當降雨比較不可能發生時,你會誇大這些數據。你害怕有人把雨傘留在家裡,天空卻下起雨來,他們跑到網路上罵你。因此,當你說明天降雨機率是 20% 時,這種日子實際上只有 10% 會降雨。你會增加機率,來減少觀眾的咒罵。

假如觀眾更了解機率是什麼,也許你就能夠說出真話。當觀眾聽到「10%」的時候,好像會理解成「不會發生」。假如他們真的理解真正的意思(「每十次會發生一次」),你就能放鬆講出心裡真正想說的數據。在這一天到來以前,你仍然只能兜售半真半假的數據。

現在把現場交還棚內主播。

如果你是千年鷹號太空船船長

圖/臉譜出版提供

哈囉!你是「千年鷹號」(Millennium Falcon)1 太空船船長。你是一位星際暴徒、壞蛋,也是心腸寬大的俠盜。你一生的伙伴是一隻身上只穿一條子彈帶的 8 英尺長太空狗。

另外,你完完全全否認有「可能性」這件事。你不是一個會冷靜反思和考慮戰略的人。你會走私違禁品,也會顛覆整個帝國。你是快速拔槍殺人的冒險之士,只要稍有遲疑便會喪命,多猶豫幾下的話還會更慘。

在散兵坑裡沒有機率專家,而且你一生都躲在散兵坑裡。對你來說,繁複的機率算式只是累贅,和某個一直說「我的天啊」及「請容我建議」的神經質金色機器人一樣是拖油瓶。

我會覺得,我們每一個人的心裡都有一點你的特質。在需要冷靜、細心評估的時候,機率是相當有用的東西,但有時候我們需要一種自信,是頑強的量化數據給不了的。在需要直覺和行動的時刻,被機率拴住的人可能會畏縮,不敢跳出非跳不可的一大步。在這種時候,我們必須忘掉數據,儘管去飛。

註解:

  1. 譯注:《星際大戰》中的宇宙飛船,用於走私業務,影史上最著名的太空船之一。

——本文摘自《塗鴉學數學:以三角形打造城市、用骰子來理解經濟危機、玩井字遊戲學策略思考,24堂建構邏輯思維、貫通幾何學、破解機率陷阱、弄懂統計奧妙的數學課》,2020 年 5 月,臉譜出版

臉譜出版_96
77 篇文章 ・ 253 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

2
1

文字

分享

0
2
1
天氣預報到底是不是在騙人?我整個就不爽了!從生活案例看條件機率——《跟著網紅老師玩科學》
時報出版_96
・2019/08/23 ・1984字 ・閱讀時間約 4 分鐘 ・SR值 438 ・四年級

許多人說,現在科學這麼發達,為什麼天氣預報總是不準呢?

這裡涉及一個數學問題,稱為「條件機率」。

什麼是條件機率呢?例如我們要確定 6 月 15 日是不是下雨,根據往年資料,下雨的機率有 40% ,不下雨的機率為 60% ,這就稱為「機率」。如果在前一天,天氣預報說 6月15 日下雨,這就稱為「條件」, 在這種條件下, 6 月 15 日真正下雨的機率就稱為「條件概率」。

圖/《跟著網紅老師玩科學》提供

你哭著對我說,天氣預報裡都是騙人的

天氣預報根據一定的氣象參數推測是否會下雨,由於天氣捉摸不定,即便預報下雨,也有可能是晴天。假設天氣預報的準確率為 90% ,即在預報下雨的情況下,有 90% 的機率下雨,有 10% 的機率不下雨;同樣,在預報不下雨的情況下,有 10% 的機率下雨,有 90% 的機率不下雨。

這樣一來, 6 月 15 日的預報和天氣就有四種可能:預報下雨且真的下雨,預報不下雨但是下雨,預報下雨但是不下雨,預報不下雨且真的不下雨。

我們把四種情況列在下面的表格中,並計算相應的機率。

下雨 不下雨
預報下雨 40% × 90% = 36% 60% × 10% = 6%
預報不下雨 40% × 10% = 4% 60% × 90% = 54%

計算方法就是兩個機率的乘積。例如下雨機率為 40% ,下雨時預報下雨的機率為 90% ,因此預報下雨且下雨這種情況出現的機率為 36% 。同理,我們可以計算出天氣預報下雨但是不下雨的機率為 6% ,二者之和為 42% ,這就是天氣預報下雨的機率。

在這 42% 的可能性中,真正下雨占 36% 的可能,比例為\( 36 \div 42=85.7 \)%,而不下雨的機率為 6% ,占 \( 6 \div 42=14.3 \) %。

也就是說,假設天氣預報的準確率為 90% ,預報下雨的條件下,真正下雨的機率只有 85.7% 。

我們會發現:

預報下雨時是否真的下雨,不光與預報的準確度有關,同時也與這個地區平時下雨的機率有關

圖/《跟著網紅老師玩科學》提供

檢查報告說我中獎了,我就真的生病了嗎?

與這個問題類似的是在醫院進行重大疾病檢查時,如果醫生發現異常,一般不會直接斷定生病了,而會建議到大醫院再檢查一次,雖然這兩次檢查可能完全相同。為什麼會這樣呢?

假設有一種重大疾病,患病人群占總人群的比例為\(\frac{1}{7000} \) 。也就是說, 隨機選取一個人,有\(\frac{1}{7000} \) 的機率患有這種疾病,有\(\frac{6999}{7000} \) 的機率沒有患這種疾病。

有一種先進的檢測方法,誤診率只有萬分之一,也就是說,患病的人有\(\frac{1}{10000} \) 的可能性被誤診為健康人,健康人也有\(\frac{1}{10000} \) 的可能性被誤診為患病。

我們要問:在一次檢查得到患病結果的前提下,這個人真正患病的機率有多大?

患病 健康
檢測患病 \(\frac{1}{7000} \times \frac{9999}{10000}\)\(= \frac{9999}{70000000}\)  \(\frac{6999}{7000} \times \frac{1}{10000}\)\(= \frac{6999}{70000000}\)
檢測健康 \(\frac{1}{7000} \times \frac{1}{10000}\)\(= \frac{1}{70000000}\)  \(\frac{6999}{7000} \times \frac{9999}{10000}\)\(= \frac{69983001}{70000000}\)

我們仿照剛才的計算方法,檢測出患病的總機率為:\(\frac{9999}{70000000}+\frac{6999}{70000000} \) \(=\frac{16998}{70000000}\)
患病且檢測出患病的機率為:\(\frac{9999}{70000000}\)

所以在檢測患病的條件下,真正患病的機率為:\( \frac{9999}{70000000} \div  \frac{16998}{70000000}\) \(=\frac{9999}{16998}\) \( \approx 58.8 \)%

顯而易見,即便是萬分之一誤診的情況,一次檢測也不能完全確定這個人是否患病。

圖/《跟著網紅老師玩科學》提供

那麼,兩次檢測都是患病的情況又如何呢?

大家要注意,在第一次檢測結果為患病的前提下,此人患病的機率已經不再是所有人群的 \(\frac{1}{7000}\) ,而變為自己的 58.8% ,健康的機率只有 41.2% 。

此處的機率就是條件機率,所以第二次檢測的表格變為:

患病 健康
檢測患病 58.8% × \(\frac{9999}{10000}\)= 58.794%  41.2% × \(\frac{1}{10000}\)= 0.004%
檢測健康  58.8% × \(\frac{1}{10000}\)= 0.006%  41.2% × \(\frac{9999}{10000}\)= 41.196%

兩次檢測都是患病的條件下,此人真正患病的機率為:\(\frac{58.794}{58.794+0.004}\)\(=99.99 \) % 基本確診了。

日常生活超有感──貝式定理

對這個問題進行詳細討論的人是英國數學家貝葉斯

圖/《跟著網紅老師玩科學》提供

貝葉斯指出:如果 A 和 B 是兩個相關的事件, A 有發生和不發生兩種可能, B 有 B1 、 B2 、……、 Bn 共 n 種可能。

那麼在 A 發生的前提下, Bi 發生的機率稱為:條件機率 \( P(B_i|A) \)

要計算這個機率,首先要計算在 Bi 發生的條件下 ,A 發生的機率,公式為:\( P(B_i)P(A|B_i) \)

然後,需要計算事件A發生的總機率

方法是用每種Bi情況發生的機率與相應情況下A發生的機率相乘,再將乘積相加。
\( P(B_1)P(A_1|B_1)+P(B_2)P(A_2|B_2)+\cdots+P(B_n)P(A_n|B_n) \)

最後,用上述兩個機率相除,完整的貝式定理公式就是:

\( P(B_i|A) \) \(=\frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+\cdots+P(B_n)P(A|B_n)} \)

貝式定理在社會學、統計學、醫學等領域,都發揮著巨大作用。

下次遇到天氣誤報、醫院誤診,不要完全怪氣象臺和醫院啦!有時候這是個數學問題。

——本文摘自《跟著網紅老師玩科學》,2019 年 4 月,時報出版

時報出版_96
156 篇文章 ・ 30 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。