0

0
0

文字

分享

0
0
0

「甲醛」–建材中都會看到的小小身影

行政院環境保護署毒物及化學物質局_96
・2017/11/06 ・2226字 ・閱讀時間約 4 分鐘 ・SR值 585 ・九年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達│自由寫手

“最近某知名指甲油品牌驗出甲醛超標 82 倍,「甲醛」是什麼?想必很多人馬上聯想到嶄新的裝潢、家具、汽車等等散發出的刺鼻味,以及新聞偶有報導衣物、化妝品、黑心食品等等含有過量甲醛…” — 指甲油、家具、衣服,無所不在的甲醛對人有什麼危害呢?

甲醛是一種在日常生活中被應用廣泛的物質,因此,它除了是毒性化學物質管理法〉中管制的第二類(慢毒性)及第三類(急毒性)化學物質,更還有許多不同主管機關分別管理不同層面的釋放標準。如衛生福利部〈食品安全衛生管理法〉規定金屬罐或紙類食品容器由不得溶出甲醛,〈環境用藥管理法〉亦規定環境用藥中不得含有甲醛;而內政部營建署則限制建築合板中的甲醛含量需低於 1.5 ppm;經濟部〈紡織品安全規範〉規定直接與皮膚接觸的紡織物游離甲醛需低於 75 ppm。

究竟為什麼會有這麼多法規都將甲醛列入「黑名單」?又為什麼我們的食衣住行好像無法完全脫離這個化學物質呢?

-----廣告,請繼續往下閱讀-----

回顧:活潑的最小醛類

首先,不免俗地再次介紹甲醛的結構:一個碳原子與一個氧原子以雙鍵鍵結,並接上兩個氫原子,是醛類中最小的。如果還記得高中化學的內容,我們大概還依稀記得氧和碳相比是比較愛電子的(無論是電子親和力或者電負度都較高),加上雙鍵的鍵長比單鍵短,中心碳原子又沒有接上其他碳原子來分攤氧原子的拉力,所以電荷分布很不均勻。這個情形讓甲醛的「極性」變得相當高,即使在室溫下仍是氣體、也可與水混溶(而若調成 35-40% 水溶液,就是所謂的福馬林囉),反應性也很活躍,較有名的反應是與苯酚的聚合反應,可形成具有耐熱耐水性的合成塑料。

甲醛是最小的醛類。圖/ Benjah-bmm27 @ Wikimedia, CC0

塑膠誕生的重要建材

自 1859 年被俄羅斯化學家 A. M. Butlerov 意外合成,1868 年被德國化學家 A. W. Hoffmann 建立穩定的合成方法後,甲醛被廣泛用做合成化學的「建材(building block)」。

1907 年,來自比利時的化學家 L. Baekeland 利用苯酚和甲醛的縮合反應,發明了酚醛樹脂(就是俗稱的電木),這是史上第一種合成塑膠,也從此改寫了塑膠材料的歷史 ── 自此以後人們衍生出各式各樣的應用,從各類器具的塑膠外殼、建材及零件黏著劑,到化妝品、食品的防腐劑,甚至醫療或養殖產業的殺菌除藻,甲醛相關製品充滿了生活。甲醛是如此重要的化工原料,就算是在被國際癌症研究總署 IARC 認列為確認會致癌的第一級致癌物的2012年,仍有超過四千萬噸的年產量,而且每年持續成長

酚醛樹脂有各式各樣的用途。圖/ Chemical Heritage Foundation @ Flickr, CC by 2.0

如何避免中毒與過敏?

甲醛具致癌性、刺激性,還是常見的過敏原(延伸閱讀:《指甲油、家具、衣服,無所不在的甲醛對人有什麼危害呢?》),但其實日常環境中暴露到的甲醛濃度都不高,且常常與其他物質一起出現。像是油漆的的溶劑除了使用甲醛,還會有甲苯等揮發性物質,也因此暴露的毒性劑量時常因此被忽略,如甲醛油漆事件總是每隔一陣子就會再次出現。

-----廣告,請繼續往下閱讀-----

關於「過敏」,樹脂能在布織品表面產生交聯聚合反應,使其不容易產生皺摺,因此常在成衣生產中被用來處理織品,但若成品殘留過多甲醛,便可能造成過敏。因此經濟部標準檢驗局針對一般我們會接觸到的紡織品限制游離甲醛的濃度需低於 75 ppm 以下,使用於嬰幼兒的紡織品則須低於 20 ppm 以下;如 2013 年臺中發生的國中小制服甲醛超標,去年也有日本品牌因嬰幼兒服裝甲醛殘留超標而回收商品。

不過,大家也不需太過恐慌,前面提到甲醛是反應性很高的氣體,在環境中的半衰期大約只有一小時,濃度基本上沒辦法累積,因此針對室內油漆之溶劑揮發,以及建材中樹脂老化緩緩分解出的甲醛,原則上保持良好的通風換氣就可以改善許多,其他污染源如吸菸、有機物燃燒,則儘量減少或是使燃燒產物排出室外;衣物的部分也可以在買回來後先下水洗過再穿,以避免不必要的甲醛暴露喔。

刨花板(上圖)和密度板等常用建材皆須用膠黏合,有些會使用甲醛相關的樹脂。圖/ Wiher @ Wikimedia, CC by SA-3.0

參考資料:

  1. BBC新聞-塑膠簡史
  2. 國際癌症研究總署-IARC Monograph
  3. Merchant Research & Consulting, Ltd.-World Formaldehyde Production to Exceed 52 Mln Tonnes in 2017
  4. 世界衛生組織-室內空氣品質指導手冊:甲醛
  5. 國家環境毒物中心-甲醛
  6. 列管毒性化學物質及其運作管理事項
  7. 紡織品安全規範

 

-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
3

文字

分享

0
0
3
日曬雨淋2000年 古羅馬人的秘密建材
顯微觀點_96
・2026/01/28 ・3508字 ・閱讀時間約 7 分鐘

本文轉載自顯微觀點

火山灰掩蓋的龐貝古城中,科學家再度發掘價值非凡的考古地點:一座翻修重建中的民宅,其珍貴之處在於工地現場的工具與建材原料完好封存於西元79年,維蘇威火山爆發的時刻。現代科學家得以利用顯微鏡、能量散射X光譜(Energy-dispersive X-ray spectroscopy, EDS)、立體X光等科技深入分析原料成分,探究古羅馬建築工藝細節。

古羅馬建築物能夠長久矗立,建材韌性是不可或缺的關鍵。散布於帝國領土、綿長堅固的引水道(aqueduct)就是文明遞嬗中備受讚嘆的例子。其中數座引水道經歷修繕,迄今持續運作,西元前19年建立的少女水道(Acqua Vergine)今天依然為羅馬城內的噴泉供應來自20公里外的活水。

現代混凝土(concrete)具備抗壓、廉價、靈活等優點的同時,也有容易龜裂與腐蝕、難以修復等問題。現代高樓大廈需要以混凝土包裹鋼筋,才能達到維持近百年的高強度。尚未掌握鋼筋強化技術的古羅馬建築師,卻能以混凝土建造出核心架構長存超過2000年的大型公共建設,這種差異是材料科學家無法忽視的。

-----廣告,請繼續往下閱讀-----
View Of Great Theatre In Ruins Of Ancient Roman City Pompeii, Campania Region, Naples, Italy
龐貝古城中的大劇院遺跡。Source: Adobe Stock

偽裝成雜質的秘方:石灰塊

近數十年間,材料科學界普遍認為古羅馬混凝土(Roman concrete)原料中的火山灰(pozzolan)是其堅強韌性來源,因為加入水與熟石灰後,火山灰中豐富的二氧化矽(SiO2)與氧化鋁(Al₂O₃)可以形成水合矽鋁酸鈣(C-A-S-H. Hydrated Calcium Aluminosilicate)或水合矽酸鈣(C-S-H. Hydrated Calcium Silicate)膠體,提升羅馬混凝土的強度與耐腐蝕性。

但是,水合矽酸鈣並非羅馬混凝土所特有,今日最常見的混凝土原料「波特蘭水泥(Portland Cement)」就飽含矽酸鹽,與水混合後也能形成強化結構的C-S-H膠體。且現代混凝土也能展現水泥帶來的微弱自癒能力,但波特蘭水泥建成的現代建築,預估壽命大多不到百年,遠不如以穩固穹頂籠罩信徒千年的羅馬萬神殿。

2023年,麻省理工大學(MIT)材料科學家馬西奇(Admir Masic)研究團隊發表對古羅馬建材的成份分析,指出羅馬混凝土中特殊的「石灰塊(lime clasts)」提供了材料自癒能力,可能是古羅馬公共建築屹立不搖的關鍵。

石灰塊在顯微鏡下看來是數毫米大小的白色石塊,過往被材料科學家認為是羅馬混凝土品質控管不嚴的產物,但是馬西奇團隊的目光停留在這些未曾被科學界細究的「雜質」上。

-----廣告,請繼續往下閱讀-----
Eds分析 Sa
以能量散射X光譜檢驗普里維儂的牆壁砂漿,會發現富含鈣質(紅色)的大塊石灰顆粒,周遭則有鈣、硫(黃)形成的環狀自癒痕跡。Source: Source: Linda M. Seymour et al. ,Hot mixing: Mechanistic insights into the durability of ancient Roman concrete.Sci. Adv.9,eadd1602(2023). CC by 4.0

馬西奇團隊指出,在古羅馬學者維特魯威(Vitruvius)和老普林尼(Pliny the Elder)的記載中,當時對混凝土原料之一的石灰石(limestone, CaCo. 碳酸鈣)純化標準相當嚴格,成品必須要呈現純白粉狀。因此他們認為,混凝土中普遍存在的石灰塊不是古羅馬建材商品管鬆散所致,而是刻意加入的材料。

馬西奇團隊前往義大利中部普里維諾(Privernum)的古羅馬遺跡進行採樣,遺跡牆壁使用的砂漿(motar, 水泥混合水與砂礫等材料,比混凝土少了碎石等骨材,其他成分相近)中散佈著比水泥基質顆粒更大的亮白石灰塊。

科學分析 確認熱混合法

透過以能量散射X光譜(EDS)、X光散射、共軛焦拉曼光譜、掃描式電子顯微鏡分析這些構成牆壁近2000年的砂漿,研究團隊發現其中的石灰塊主要以鈣質構成,而且是來自生石灰(CaO, quicklime),現代建築工法已不再將這種材料加入混凝土中。

馬西奇論及,基於史料與現代技術,多數人相信古羅馬建築工使用熟石灰(Ca(OH)2, slacked lime. 氫氧化鈣,來自生石灰加水)混合火山灰、水以及其他骨材形成混凝土,類似現代工法。但透過精密儀器分析樣本成份,他推論古羅馬帝國曾採用熱混合(hot mixing)技術,以生石灰取代/混入熟石灰,與其他材料、水混合製成混凝土。

-----廣告,請繼續往下閱讀-----

在熱混合過程中,生石灰不會全數與水反應產生熟石灰與熱能,部分會形成不均勻分布的細小石灰塊。而這些石灰塊在混凝土乾燥的同時,會經歷表層的水化、擴張,最終碳酸化成為較為穩定的碳酸鈣外層。而石灰塊內層則保持著生石灰(CaO)的狀態與活性。

水流引發雙重自癒機制

石灰塊 Sciadv
石灰塊在古羅馬混凝土中的自癒運作機制。Source: Linda M. Seymour et al. ,Hot mixing: Mechanistic insights into the durability of ancient Roman concrete.Sci. Adv.9,eadd1602(2023). CC by 4.0

構成建築物的羅馬混凝土若受到強大拉力,產生裂隙,諸多石灰塊的穩定外層很可能隨之裂開,並暴露出飽含生石灰(CaO)的核心。在自然降雨之下,經過石灰塊核心的水流會獲得鈣離子,並使鈣離子與周遭的基質反應,在裂縫中形成碳酸鈣,使裂縫在延伸擴大之前就被填補。

裂縫中飽含鈣離子的水流,也能在混凝土中的火山灰顆粒旁引發火山灰反應(pozzolanic reaction),生成穩固的水化矽鋁酸鈣或水化矽酸鈣,對裂縫產生「癒合」效果,讓整體結構更加強韌。馬西奇稱這種定型後發生的火山灰反應為「後期火山灰反應(post-pozzolanic reaction)」,與製作混凝土的反應作出區別。

馬西奇團隊更採用實驗觀察熱混合技術對古羅馬混凝土和現代混凝土強韌度的影響。他們將不同工法製成的混凝土柱從中分裂,造成5公厘的裂縫,再讓水流持續流經裂縫30天。

-----廣告,請繼續往下閱讀-----

未使用生石灰進行熱混合的混凝土柱,僅出現一般水泥具有的小幅自癒能力,稍稍縮小裂縫。而具有石灰塊的古羅馬混凝土柱,則持續癒合,在水流第20天左右完成自我修復,水流幾乎完全無法通過。

多方驗證 重譯權威史料

古羅馬混凝土驚人的自癒能力引發熱議,並非所有材料科學專家都認同以生石灰為核心的熱混合理論。

更啟人疑竇的是,熱混合法並不符合維特魯威記錄的熟石灰建築工法。他在公元前30年左右著作的《建築十書》(De architectura)是唯一流傳後世的古歐洲建築著作,從文藝復興以來,就缺少足以挑戰其權威的建築史料,遑論馬西奇團隊基於成分分析的理論。

馬西奇團隊為了奠定更強的論證基礎,在2024年前往龐貝古城尋找證據。他們在民宅工地遺跡發現的建材原料,正包含熱混合工法的原料:生石灰與火山灰的乾燥混合物。這些原料與建築工具一起堆放在尚未完成的牆體旁邊,被公元79年噴發的火山灰封存至今。

-----廣告,請繼續往下閱讀-----

馬西奇團隊透過偏振光顯微鏡、電子顯微鏡等分析方法比對乾燥材料堆、未完成的牆體、已完成的牆體,確認了這些預拌的熱混合材料與牆體的混凝土、砂漿成分相符,支持他們的假說:古羅馬帝國龐貝城在公元前79年以熱混合工法製作混凝土。

這項材料科學考古發現不僅補充了古代建築史料的缺漏,也創立了新的建築材料理論,為未來的建築材料提供自癒功能的靈感。或許在數年之內,具備自癒能力、壽命長達上百年的大型建築就會動工。而人們也能期待更加環保、安全、需要遠見的都市規劃。

萬神殿穹頂 Wiki
羅馬萬神殿(Pantheum)穹頂,古羅馬人單純以混凝土建構出如此宏偉結構,並歷久不衰,是現代人依然讚嘆的建築奇蹟。Source: WikiMedia CC BY-SA 4.0

馬西奇團隊透過多樣方法及跨領域探索,穿越時空檢驗了古羅馬熱混合法工藝的假說。他們在遺跡搜索考古證據,以科學分析技術交替分析樣本,更研讀古羅馬史料,發現維特魯威與老普林尼雖然以 ’macerata’ 敘述以水消化生石灰,製作出熟石灰的過程。但維特魯威提及建築結構用的石灰消化過程,會轉而採用 ’extincta’ 一詞。

儘管在文獻中的古代拉丁文 macerata 和 extincta 都被用來指稱「生石灰加水消化為熟石灰」,並未在考古學界與材料學界引起太多注意。但馬西奇團隊懷疑,這種字眼的轉換可能暗示了古羅馬建築結構中的石灰並非來自「先製成熟石灰,再混入水與其他原料」,而是「生石灰直接混入水與其他原料」的熱混合工法。

-----廣告,請繼續往下閱讀-----

就如馬西奇團隊最新論文提及的,即使是古代文獻,也無法盡錄古羅馬從共和時期到帝國時期的建築文化變遷。透過顯微鏡與X光譜等現代科技,搭配古遺跡的妥善保存與發掘,我們今日依然有機會理解千年前的人類,如何利用更有限的科技,達成宏偉巧妙的文明成就。

參考資料

  • Linda M. Seymour et al. ,Hot mixing: Mechanistic insights into the durability of ancient Roman concrete.Sci. Adv.9,eadd1602(2023).DOI:10.1126/sciadv.add1602
  • Vaserman, E., Weaver, J.C., Hayhow, C. et al. An unfinished Pompeian construction site reveals ancient Roman building technology. Nat Commun 16, 10847 (2025). https://doi.org/10.1038/s41467-025-66634-7
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
46 篇文章 ・ 11 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
毒藥的歷史:死亡、救贖與科學的交匯點——《毒藥的滋味》
PanSci_96
・2024/09/03 ・2429字 ・閱讀時間約 5 分鐘

奪命計劃的冷酷藝術

在犯罪史上,謀殺是特別令人髮指的罪行;而在各種殺人手法之中,只有寥寥幾種會像毒藥那樣,令人有如此奇特的病態迷戀。與一時腦熱的衝動謀殺相比,毒殺所涉及的事前規劃與冷酷的算計,完全符合法律術語中的「惡意預謀」(malice aforethought)定義。毒殺需要預先籌畫並了解受害者的習慣,也必須考慮如何下毒。有些毒藥只要幾分鐘就能奪人性命,其他則可以長期慢性下毒,逐漸在體內積累,最終導致受害者必然的死亡。

這本書沒有要列出下毒者及受害者的清單,而是要探討毒物的性質,以及它們如何在分子、細胞和生理層面影響人體。每種毒藥都有獨特的致死機制,受害者所經歷的各種症狀往往都是線索,有助於抽絲剝繭找出他們被下了什麼毒。在少數情況下,這些知識有助於給予適當的治療,讓受害者能完全康復。但在大多數情況下,就算知道是什麼毒物對於治療也沒有幫助,因為根本沒有解藥。

毒殺因冷酷計劃與預謀惡意而特別令人髮指。 圖/envato

雖然毒物(poison)和毒素(toxin)這兩個詞經常互換使用,但嚴格來說它們並不相同。「毒物」是任何會對身體造成傷害的化學物質,可以是天然的,也可以是人造的,而「毒素」通常是指生物所製造的致命化學物質。不過如果你是被下毒的一方,那麼兩者的差異就只是學術討論了。

毒物的兩面性:從致命陷阱到救命藥

toxikon 這個字源自古希臘文,意思是「箭頭浸泡的毒物」,指的是塗抹在箭頭上以導致敵人死亡的植物萃取物。當 toxikon 這個字與希臘文的「研究」logia 相結合,就成為我們現在的「毒理學」或「毒素研究」(toxicology)這個詞。毒物一詞源自拉丁語的 potio,意思是「喝」,之後慢慢演變成古法語中的 puison 或 poison。「毒物」這個字在一二○○年首次出現在英語中,意思是「致命的藥水或物質」。

-----廣告,請繼續往下閱讀-----

從生物體中獲得的毒物通常是許多化學物質的混合物。例如,致命的茄科植物(也稱為顛茄)的粗萃物相當危險,從這些萃取物中也可以純化出化學物質阿托品(atropine)。同樣的,毛地黃花(foxglove)的植物本身也有毒,還能從中萃取出單一的化學物質毛地黃(digoxin)。

有一些歷史悠久的毒藥是混合幾種不同的毒物製作而成,例如「托法娜仙液」(Aqua tofana)就是混合了鉛、砷和顛茄的毒藥。

在瓶子裡人畜無害的化學物質最後怎麼會變成屍體裡發現的毒?無論是哪一種毒藥,在死亡發生之前都會有三個不同階段:下毒、行動和效果。

下毒有四種途徑:消化、呼吸、吸收或注射。也就是說,它們可能是被吃掉或喝掉,透過腸道進入體內;吸入肺部;直接透過皮膚吸收;或是透過注射到肌肉或血液中進入體內。兇手選擇何種方式讓毒物進入受害者體內,取決於毒物的性質。儘管有毒氣體已被用於殺戮,但這涉及一定程度的技術難度,因此並不實用,而且這種手法通常難以針對特定個人。

-----廣告,請繼續往下閱讀-----

透過眼睛和嘴巴的皮膚或黏膜吸收可能非常有效:兇手不必與受害者有任何接觸,甚至在中毒當下還能留在附近。光是將毒藥塗抹在受害者即將接觸的物品上就足以導致死亡。混合在食物或飲料中為大多數毒物提供了一條簡單的途徑,特別適用於固體結晶毒物,因為它們可以簡單灑在飯菜上或溶解在飲料中就好。

不過有一些毒物必須注射到體內才能發揮作用,有時候這是因為毒藥是一種蛋白質,如果加入食物攝取,就很容易被腸胃分解。此外,兇手一定要離受害者夠近才能注射毒物。

毒藥可透過皮膚、食物、或注射進入體內,兇手無需直接接觸即可致命。 圖/envato

毒藥如何摧毀人體機制?

現在我們來看毒物的核心:它們如何破壞身體的內部運作?

毒物確切的作用方式五花八門,而它們的效果則揭曉了許多人類生理學的奧秘。許多毒物會攻擊神經系統,破壞控制身體正常功能且高度複雜的電子訊號:如果阻斷的是心臟各部分之間的交流,可以視為毒物使心臟停止跳動並導致死亡;如果破壞控制呼吸的橫隔膜肌肉調節,同樣也會使呼吸停止,導致窒息而亡。

-----廣告,請繼續往下閱讀-----

也有些毒物會偽裝,隱藏真實身分後進入身體細胞,這些毒物的外型與細胞的重要成分極為相似,但不完全相同,因此可以進入細胞的新陳代謝過程,但無法執行正確的生化功能。毒物會假冒體內的細胞分子,使得細胞的化學作用緩慢停止,最終死亡。當死亡的細胞夠多,整個身體就會跟著死去。

如果不同的毒物以不同的方式發揮作用,不難想像受害者所經歷的症狀也會不同。以大多數消化型的毒物而言,無論作用方式為何,人體的第一反應通常是嘔吐和腹瀉,試圖藉此從體內清除毒物;影響心臟神經和電流訊號的毒物則會導致心悸,最終導致心跳停止;影響細胞化學性質的毒物通常會引起噁心、頭痛和嗜睡的症狀。毒物的作用及可怕後果的故事在本書中比比皆是。

雖然大多數人認為毒物是致命的藥物,但科學家也已經使用與毒物完全相同的化學物質來梳理細胞和器官內部的分子和細胞機制,利用這些資訊開發能夠治療和治癒多種疾病的新藥。舉例來說,科學家透過研究毛地黃植物中的毒物如何影響身體,成功研發出了治療充血性心臟衰竭的藥物。

現代外科手術時使用的常規藥物,同樣也是透過了解顛茄如何影響人體運作後問世,這種藥物除了能預防術後併發症,甚至還能治療在化學戰中受害的士兵。由此可知,化學物質的本質沒有好壞之分,它只是一種化學物質。造成差異的是使用這種化學物質的意圖:是要保護生命,或是奪去生命。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1267 篇文章 ・ 2647 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。