0

0
0

文字

分享

0
0
0

小小RNA立大功 – mir17~92 扮演維持運動神經元之存活關鍵

活躍星系核_96
・2015/06/03 ・2211字 ・閱讀時間約 4 分鐘 ・SR值 602 ・九年級

作者:董盈岑 陳俊安

前陣子火紅的冰桶挑戰募款活動,應該讓大家對於「漸凍人」(Amyotrophic lateral sclerosis, 肌萎縮性脊髓側索硬化症)並不陌生。這個好發於成年人的運動神經元退化疾病,病人體內特定的運動神經元會逐漸退化凋亡,特別是控制四肢活動的運動神經元會最先受損。

但是因為其制病機制仍然不明,目前除了支持性療法外,尚無有效的治癒或延緩方法。最近,由中研院分生所陳俊安老師的研究團隊發表的論文提出一群稱為mir17~92 的微型核糖核酸(microRNA,miRNA),在運動神經元發育與退化時扮演重要角色。這項研究成果登上 2015年5月26日「細胞報告」(Cell Reports)國際專業期刊,並榮登為當期封面 [1 ]。此項結果將來亦可進一步應用在解開「漸凍人」以及相關運動神經元退化疾病之未知機制。

celrep_11_8_3c陳俊安老師的研究團隊進一步解釋,近年來的研究顯示,miRNA在神經發育的過程中,會扮演微調修飾後基因轉錄的角色。miRNA是由21~23的核苷酸分子所組成的短片段RNA,屬於非編碼RNA(non-coding RNA,ncRNA)的一種。

-----廣告,請繼續往下閱讀-----

人類完整轉錄體(transcriptome)裡至少含有超過一半以上的ncRNAs,他們不像大家熟知的信使RNA(mRNA)會被轉錄成有功能性的蛋白質,而是直接以RNA的形式去執行其任務。miRNA的作用機制,是藉由辨認與其序列相對應的標靶mRNA,並與之結合,進而抑制標靶mRNA轉錄成蛋白質。目前在人類已發現700 種以上的miRNA,而一種miRNA會有數十種以上的標靶mRNA,因此對基因調控的影響甚巨。然而 miRNA在胚胎神經系統發育的角色,仍處於混沌不明的狀況。

slider image_ES MN

在兩年前,陳俊安老師的研究就發現當小鼠失去產生miRNA酵素Dicer時,控制四肢的運動神經元在發育時期就會大量死亡。為了找出關鍵的miRNA,陳俊安老師與實驗室成員將發育中小鼠的運動神經元分離出來,以次世代RNA定序法與雜交染色法進行miRNA表現的分析,發現這群miRNA在控制四肢的運動神經元中表現量特別高;當他們進一步以遺傳學方法剔除小鼠的mir17~92現時,控制四肢的運動神經元便會大量死亡 [2 ]。也就是說mir17~92表現量的多寡,對於這群特定運動神經元的生存十分重要。但是為什麼mir17~92能特異性維持這些運動神經元的生存呢?

研究團隊進一步比較正常與失去mir17~92的小鼠運動神經元,發現mir17~92的標靶mRNA–PTEN可能會影響四肢運動神經元的生存。PTEN其實早已在癌症病理學中頗負盛名,因為它的存在可促進癌細胞的死亡; 而近年來的研究更發現,如果讓PTEN跑進癌細胞的細胞核中,則更加速癌細胞的凋亡。但是PTEN 對於神經細胞的影響,目前並不像癌細胞領域有清楚定論 [3 ]。

研究團隊利用幹細胞所衍生的運動神經元與動物實驗同步證實,在控制四肢的運動神經元中,高量的mir17~92會抑制PTEN蛋白質表現的數量,並同時影響其他酵素表現,而阻止PTEN進入細胞核中。如此PTEN不能啟動細胞凋零機制,這些神經細胞就可以快樂地活下去。此外,他們也用小鼠模式驗證,若在運動神經元失去mir17~92時,把PTEN降低回正常的的表現量,那些理應退化的運動神經元便可以活下來。這些證據更加支持mir17~92與PTEN 的調節作用,是影響四肢運動神經元生死存亡的關鍵。

-----廣告,請繼續往下閱讀-----

這個複雜的調控機制,其實是神經在發育時為了建立適當網路聯繫所採取的策略。為了確保運動神經元產生之後,能夠正確延伸並聯結到遠端肌肉(特別是遙遠的四肢),過量的運動神經元會先被製造出來。而後這些運動神經細胞經由先天與後天篩選,讓本身具高mir17~92 表現量的運動神經元存活下來後,如此便可往標的肌肉延伸過去;讓最先靠近肌肉的運動神經元接收到肌肉所分泌的生長因子,進而建立強韌之連結。

陳老師研究團隊進一步推測,既然mir17~92和PTEN對於控制四肢運動神經元的存活很重要,是否在漸凍人疾病中,控制四肢的運動神經元因為失去mir17~92的保護而開始退化 。因此他們將來的後續研究,便想進一步探討在「漸凍人」的模式老鼠發病前,運動神經元中的mir17~92是否減少,同時伴隨PTEN在細胞核內累積,造成這些運動神經元的死亡。由於最近有個已進入臨床第三階段試驗的新治療法,將修飾過的小RNA分子打入中樞神經系統中,來延緩另一個神經肌肉疾病–脊髓性肌肉萎縮症(SMA)的發病,頗具療效。未來或許也可將mir17~92的類似物,以同樣方式使其進入運動神經元中,提升其保護作用,延長運動神經元與漸凍人或脊髓性肌肉萎縮症病人的存活。

這些推論仍需許多實驗去透徹驗證,但這篇有趣的論文除了讓我們對神經發育機制有更進一步的了解,也提供了漸凍人制病機制另一層面的探討。這也顯示基礎研究的重要性,或許一開始只是對於生理現象的好奇,但其成果上的突破,亦能幫助臨床疾病應用的發展。

研究團隊成員包括兩位共同第一作者中研院分生所董盈岑博士與助理呂雅琳、學生彭冠智與顏雅萍、助理張綿以及交通大學洪瑞鴻助理教授。最後值得一提的是,陳俊安老師的母親- 蘇美玉女士,以其獨樹一幟的新嶺南派畫風描繪以小鼠為模式動物,研究運動神經元之發育與退化。陳老師母子聯手創作巧妙融合中華藝術之美于現代科學之中,讓這項研究榮登「細胞報告」(Cell Reports) 當期封面,成為杏壇佳話。

-----廣告,請繼續往下閱讀-----

slider image_4

參考文獻:

  1. Tung et al., Mir-1792 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN, Cell Reports (2015)
  1. A. Chen, H. Wichterle, Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Frontiers in neuroscience 6, 69 (2012)10.3389/fnins.2012.00069).
  2. S. Song, L. Salmena, P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nature reviews. Molecular cell biology 13, 283-296 (2012); published online EpubMay (10.1038/nrm3330).

相關連結:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 130 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
諾貝爾得獎「助攻王」 :秀麗隱桿線蟲
顯微觀點_96
・2025/02/25 ・2852字 ・閱讀時間約 5 分鐘

本文轉載自顯微觀點

圖/顯微觀點

科學界的重大盛事-諾貝爾獎,已在 10 月揭曉。今(2024)年生醫獎頒發給維克托.安布羅斯(Victor Ambros)和加里.魯夫昆(Gary Ruvkun),他們以「發現 microRNA 及其在轉錄後基因調控中的作用」獲肯定得到桂冠。而這項重大發現的背後,一種叫做「秀麗隱桿線蟲」(C. elegans)的小蟲子居功厥偉。

生醫獎背後大功臣

安布羅斯和魯夫昆對於基因如何受到調控,如何因活化時間不同而確保各類型細胞在正確時間點發育的問題很感興趣。因此他們研究因基因活化出現問題的兩種線蟲突變株:lin-4 和 lin-14,以瞭解當中的機制。

一開始,安布羅斯先發現 lin-4 基因似乎是 lin-14 基因的負調節因子,但 lin-14 的活性是怎麼被阻斷的,仍然是個謎。因此他系統性地找尋 lin-4 在基因體中的位置與基因序列,也因此意外發現 lin-4 基因只會產生一種異常短、不足以合成蛋白質的核醣核酸分子。

-----廣告,請繼續往下閱讀-----

同一時間,魯夫昆在麻州總醫院和哈佛醫學院新成立的實驗室研究 lin-14 基因的調控。魯夫昆發現 lin-4 抑制的並不是 lin-14 的產生,而是抑制 lin-14 基因產生蛋白質,且發生在基因表現過程的後期。實驗也顯示要抑制 lin-4,必須要有 lin-14 訊息核醣核酸(mRNA)中的一個片段。

安布羅斯和魯夫昆比較了各自的實驗成果,找到突破性的發現:lin-4 部分序列與 lin-14 訊息核醣核酸的關鍵片段中的序列互補。他們進一步實驗,顯示 lin-4 微型核醣核酸(microRNA)透過與 lin-14 訊息核醣核酸中的互補序列結合,來抑制 lin-14 轉譯,進而阻斷 lin-14 蛋白質的產生,也因此揭開 microRNA 介導的基因調控新原理。

這項結果被發表在 1993 年的《細胞》期刊的兩篇文章上。但一開始這樣的基因調控機制被認為是秀麗隱桿線蟲所特有,而不受重視。直到 2000 年,魯夫昆的研究團隊發現了另一種由 let-7基因編碼的 microRNA,科學界的態度才發生變化;因為 let-7 基因高度保存在整個動物界中。

接下來的幾年裡,數百種不同的 microRNA 被鑑定出來,微型核醣核酸的基因調控在多細胞生物中普遍存在;而基因調控若失常,則可能導致糖尿病、癌症或自體免疫疾病。

-----廣告,請繼續往下閱讀-----

這不是秀麗隱桿線蟲第一次「助攻得獎」。

(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。  安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。
(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。 安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。圖/諾貝爾生醫獎新聞稿

成為助攻王的關鍵

2002 年西德尼.布瑞納(Sydney Brenner)、約翰.蘇爾斯頓(John Sulston)和羅伯特.霍維茨(Robert Horvitz)便是從秀麗隱桿線蟲的研究「發現器官發育和計畫性細胞死亡的遺傳調控機理」,進而獲得該年諾貝爾生醫獎。值得一提的是,今年的兩位得主都曾是霍維茨實驗室的博士後研究員。

除此之外,2006 年諾貝爾生理醫學獎也頒給研究線蟲的美國科學家安德魯.法厄(Andrew Zachary Fire)和 克雷格.梅洛(Craig Cameron Mello),以表彰他們「發現 RNA 干擾—雙鏈 RNA 引發的沉默現象」。甚至馬丁.查菲(Martin Chalfie)也利用秀麗隱桿線蟲的觸感接受器神經元「發現並改造綠色螢光蛋白(GFP)」獲得 2008 年諾貝爾化學獎。

秀麗隱桿線蟲為何能成為諾貝爾的「助攻王」呢?布瑞納曾在他的論文中提到:「線蟲適合做基因研究,並且其神經系統可以被精準確定。」他在 1963 年提出以秀麗隱桿線蟲作為模式生物,並於 1974 年發表其在發育生物學和神經科學的成果。

-----廣告,請繼續往下閱讀-----

秀麗隱桿線蟲是第一種完成全基因組定序的多細胞生物。加上體積小、成蟲約長1公釐,以及透明且易於獲取的遺傳物質,使其成為絕佳的模式生物。

其在室溫下大約三天可以從卵生長為可受精的成蟲,在實驗室中以大腸桿菌為食,易於大量培養。並且解凍之後仍能存活,因此適合長時間儲存。加上每隻成蟲可產生約 300 隻後代,適合作遺傳學研究。

易於觀察也是秀麗隱桿線蟲作為絕佳模式生物的關鍵因素。由於細胞譜系固定,研究人員可以使用微分干涉顯微鏡(DIC)觀察每一個細胞的發展,甚至在在螢光蛋白出現之前,就有從受精卵到成體完整細胞譜系的描述。

在線蟲研究的多個工作步驟中,立體、複式或共軛焦顯微鏡都是常見的工具,以符合不同實驗要求。且隨著顯微技術的發展,秀麗隱桿線蟲在發育生物學中的應用和研究也更加多元。

-----廣告,請繼續往下閱讀-----

隨技術發展 研究面向更多元

在挑選合適的線蟲並準備進行遺傳或生化分析的「採蟲」階段,通常會使用末端黏有睫毛的木棍,在立體顯微鏡下關、挑選。然後使用倒立顯微鏡以顯微注射對線蟲性腺進行基因改造。

螢光蛋白(FP)是在線蟲中進行分子和細胞行為研究的核心工具,螢光顯微技術廣泛用於線蟲研究,例如 GFP 及其改進版本(如mScarlet和mCherry)常用於標記和追蹤蛋白質的動態過程。

螢光蛋白也可使用於研究線蟲的染色體外陣列表現或穩定整合到基因組中。現在則有許多研究者使用 CRISPR(基因編輯)技術,將螢光標記穩定地整合到基因組中,這樣可以精確追蹤特定蛋白在細胞內的表現位置和強度。

層光顯微術(Lightsheet microscopy)則可以在不壓縮樣本的情況下,提供更高的空間和時間解析度,特別適合長期追踪線蟲胚胎發育過程。

-----廣告,請繼續往下閱讀-----

除此之外,因為秀麗隱桿線蟲是截至 2019 年唯一一個完成連接體(connectome,神經元連接)測定的生物體,因此一直以來也常被作為神經科學研究的模式生物。

研究者可利用螢光蛋白(如 GCaMP)來追蹤鈣離子濃度的變化,當鈣離子濃度上升時會發出更強的螢光,再透過螢光強度來分析神經系統在睡眠、運動等各種行為時的活動模式。或是進一步利用轉盤式共軛焦顯微鏡、雙光子顯微鏡,抑或結合更強大的影像分析工具,對神經元活動成像並藉此解讀不同行為背後的神經迴路機制

作為模式生物,秀麗隱桿線蟲因為基因組簡單、細胞譜系固定且神經結構已知,為揭示基因調控、細胞發育、神經行為等生物學問題提供了清晰的研究途徑,在生物學研究中佔有重要地位。

儘管已是諾貝爾獎「助攻王」,相信隨著顯微和基因編輯技術的快速發展,秀麗隱桿線蟲仍能在探索人類疾病模型、藥物篩選及再生醫學等應用領域,引領研究新方向。

-----廣告,請繼續往下閱讀-----

參考資料

另感謝台灣科技媒體中心(SMC)舉辦諾貝爾獎解析記者會

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
為什麼被嚇到會整個僵住?果蠅研究發現是血清素幫了大忙
旻諭_96
・2020/01/11 ・1836字 ・閱讀時間約 3 分鐘 ・SR值 479 ・五年級

想像一下你跟爸媽坐在客廳沙發上,突然,一個閃電雷劈秒停電!這時候,你和你爸媽一定會有一樣的反應:整個人嚇傻在原地不動,然後才慢慢移動去找手電筒在哪裡。

當我們受到驚嚇的時候,為什麼會整個人暫時僵住、動彈不得?哥倫比亞大學祖克曼心智、腦與行為研究中心的理查·曼 (Richard Mann) 博士會說:「這可跟血清素脫離不了關係!(*´∀`)~♥」

血清素本人在此。圖/giphy

設計突發的環境刺激:突然關燈、突然地震

一般來說,我們比較常聽到大腦中的血清素濃度跟「調節心情和認知功能」有關:大腦中的血清素濃度低,跟憂鬱情緒、記憶力衰退有所關聯。不過今天我們不是要討論「大腦」中的血清素濃度,過去研究就有指出,由「運動神經元」釋放的血清素會影響果蠅和脊椎動物的運動速度。

-----廣告,請繼續往下閱讀-----

理查的研究團隊為了要更了解血清素如何影響動物的運動速度,做了一系列的實驗。研究團隊分別把果蠅分成兩組,分別是「關燈組」與「地震組」,讓果蠅經驗到「突然的黑暗」和「地震來了!」的環境刺激。

「地震組」與「關燈組」,讓果蠅經驗到「地震來了!」和「突然的黑暗」的環境刺激。圖/參考資料 1

至於要怎麼製造「果蠅等級」的地震?理查團隊找來了同為哥倫比亞大學祖克曼研究中心的 Tanya Tabachnik 團隊設計、組裝客製化的儀器。他們創造一個非常微小、果蠅 size 的小空間,這個小空間下面裝著特製震動馬達。如此一來,就能夠調整馬達的力道來製造想要的地震規模。

接下來,研究團隊用 FlyWalker 這個由該團隊實驗室開發的 app 來追蹤果蠅的腳步,藉此監控果蠅的移動速度。於此同時,研究團隊也操縱果蠅在腹側神經索 (ventral nerve cord) 負責釋放血清素的神經元的活性。

果蠅的腹側神經索,可以類比到脊椎動物的脊髓。

因為血清素,嚇到就僵住

研究團隊發現,當果蠅經驗到意料之外的環境改變,神經系統會快速釋放血清素,讓身體暫時不動,來應對可能的威脅,並在上個月底發表在《當代生物學》(Current Biology) 期刊。這種「僵住」的行為在很多動物身上都可以看到:從果蠅,到魚,到人類都會。

-----廣告,請繼續往下閱讀-----

研究團隊通訊作者理查·曼博士表示:「我們發現當果蠅遇到突發的環境改變而僵住的時候,血清素的功能就像緊急煞車一樣。這是因為血清素的釋放會導致動物兩腿關節變僵硬,進而使動物動彈不得。」

另外,研究團隊也發現,當研究人員激發會釋放血清素的神經元,會讓果蠅的移動速度慢下來;靜默相同的神經元會讓果蠅的移動速度變快。

當會釋放血清素的神經元被激發,血清素濃度升高,會讓果蠅的移動速度慢下來;反之則果蠅移動速度變快。圖/參考資料 1

在僵住之後?其實是為了下一步好好做準備

本文看到這裡,相信你會有跟我一樣的疑問,就是為什麼我們動物要有這樣的機制?嚇到會僵住有什麼好處嗎?

-----廣告,請繼續往下閱讀-----

研究的第一作者克萊爾·霍華德說:「我們覺得這是很重要的,這可以讓果蠅蒐集更多跟環境改變有關的訊息,然後決定下一步該怎麼做。」

有趣的是,儘管「突然的黑暗」和「地震來了!」都會讓果蠅嚇到僵住,但在僵住之後的運動速度卻有顯著的差異。克萊爾補充說:「受到突然黑暗的驚嚇之後,果蠅的移動速度變慢且謹慎;不過地震會讓果蠅在僵住之後反而移動得更快!」

細細思考一下,果蠅有這樣的反應差異也算合理:坐在客廳沙發上你和爸媽,在秒停電的傻住之時,也會因為看不到身旁的環境而緩慢移動。

雖然說這項研究成果可能還不能延伸解釋到人類身上,但或許將來有一天,遇到地震的你,除了逃命跟發地震文之外,還可以想起這篇研究!ʕ•̀ω•́ʔ✧

「僵住」的這段時間可以蒐集更多跟環境改變有關的訊息,然後決定下一步該怎麼做!圖/Gellinger @pixabay

-----廣告,請繼續往下閱讀-----

參考資料

  1. Howard, C. E., Chen, C. L., Tabachnik, T., Hormigo, R., Ramdya, P., & Mann, R. S. (2019). Serotonergic modulation of walking in Drosophila. Current Biology.
  2. Jenkins, T. A., Nguyen, J. C., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients8(1), 56.
  3. Why do we freeze when startled? New study in flies points to serotonin. ScienceDaily, 2019.11.27
-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
小小RNA立大功 – mir17~92 扮演維持運動神經元之存活關鍵
活躍星系核_96
・2015/06/03 ・2211字 ・閱讀時間約 4 分鐘 ・SR值 602 ・九年級

作者:董盈岑 陳俊安

前陣子火紅的冰桶挑戰募款活動,應該讓大家對於「漸凍人」(Amyotrophic lateral sclerosis, 肌萎縮性脊髓側索硬化症)並不陌生。這個好發於成年人的運動神經元退化疾病,病人體內特定的運動神經元會逐漸退化凋亡,特別是控制四肢活動的運動神經元會最先受損。

但是因為其制病機制仍然不明,目前除了支持性療法外,尚無有效的治癒或延緩方法。最近,由中研院分生所陳俊安老師的研究團隊發表的論文提出一群稱為mir17~92 的微型核糖核酸(microRNA,miRNA),在運動神經元發育與退化時扮演重要角色。這項研究成果登上 2015年5月26日「細胞報告」(Cell Reports)國際專業期刊,並榮登為當期封面 [1 ]。此項結果將來亦可進一步應用在解開「漸凍人」以及相關運動神經元退化疾病之未知機制。

celrep_11_8_3c陳俊安老師的研究團隊進一步解釋,近年來的研究顯示,miRNA在神經發育的過程中,會扮演微調修飾後基因轉錄的角色。miRNA是由21~23的核苷酸分子所組成的短片段RNA,屬於非編碼RNA(non-coding RNA,ncRNA)的一種。

-----廣告,請繼續往下閱讀-----

人類完整轉錄體(transcriptome)裡至少含有超過一半以上的ncRNAs,他們不像大家熟知的信使RNA(mRNA)會被轉錄成有功能性的蛋白質,而是直接以RNA的形式去執行其任務。miRNA的作用機制,是藉由辨認與其序列相對應的標靶mRNA,並與之結合,進而抑制標靶mRNA轉錄成蛋白質。目前在人類已發現700 種以上的miRNA,而一種miRNA會有數十種以上的標靶mRNA,因此對基因調控的影響甚巨。然而 miRNA在胚胎神經系統發育的角色,仍處於混沌不明的狀況。

slider image_ES MN

在兩年前,陳俊安老師的研究就發現當小鼠失去產生miRNA酵素Dicer時,控制四肢的運動神經元在發育時期就會大量死亡。為了找出關鍵的miRNA,陳俊安老師與實驗室成員將發育中小鼠的運動神經元分離出來,以次世代RNA定序法與雜交染色法進行miRNA表現的分析,發現這群miRNA在控制四肢的運動神經元中表現量特別高;當他們進一步以遺傳學方法剔除小鼠的mir17~92現時,控制四肢的運動神經元便會大量死亡 [2 ]。也就是說mir17~92表現量的多寡,對於這群特定運動神經元的生存十分重要。但是為什麼mir17~92能特異性維持這些運動神經元的生存呢?

研究團隊進一步比較正常與失去mir17~92的小鼠運動神經元,發現mir17~92的標靶mRNA–PTEN可能會影響四肢運動神經元的生存。PTEN其實早已在癌症病理學中頗負盛名,因為它的存在可促進癌細胞的死亡; 而近年來的研究更發現,如果讓PTEN跑進癌細胞的細胞核中,則更加速癌細胞的凋亡。但是PTEN 對於神經細胞的影響,目前並不像癌細胞領域有清楚定論 [3 ]。

研究團隊利用幹細胞所衍生的運動神經元與動物實驗同步證實,在控制四肢的運動神經元中,高量的mir17~92會抑制PTEN蛋白質表現的數量,並同時影響其他酵素表現,而阻止PTEN進入細胞核中。如此PTEN不能啟動細胞凋零機制,這些神經細胞就可以快樂地活下去。此外,他們也用小鼠模式驗證,若在運動神經元失去mir17~92時,把PTEN降低回正常的的表現量,那些理應退化的運動神經元便可以活下來。這些證據更加支持mir17~92與PTEN 的調節作用,是影響四肢運動神經元生死存亡的關鍵。

-----廣告,請繼續往下閱讀-----

這個複雜的調控機制,其實是神經在發育時為了建立適當網路聯繫所採取的策略。為了確保運動神經元產生之後,能夠正確延伸並聯結到遠端肌肉(特別是遙遠的四肢),過量的運動神經元會先被製造出來。而後這些運動神經細胞經由先天與後天篩選,讓本身具高mir17~92 表現量的運動神經元存活下來後,如此便可往標的肌肉延伸過去;讓最先靠近肌肉的運動神經元接收到肌肉所分泌的生長因子,進而建立強韌之連結。

陳老師研究團隊進一步推測,既然mir17~92和PTEN對於控制四肢運動神經元的存活很重要,是否在漸凍人疾病中,控制四肢的運動神經元因為失去mir17~92的保護而開始退化 。因此他們將來的後續研究,便想進一步探討在「漸凍人」的模式老鼠發病前,運動神經元中的mir17~92是否減少,同時伴隨PTEN在細胞核內累積,造成這些運動神經元的死亡。由於最近有個已進入臨床第三階段試驗的新治療法,將修飾過的小RNA分子打入中樞神經系統中,來延緩另一個神經肌肉疾病–脊髓性肌肉萎縮症(SMA)的發病,頗具療效。未來或許也可將mir17~92的類似物,以同樣方式使其進入運動神經元中,提升其保護作用,延長運動神經元與漸凍人或脊髓性肌肉萎縮症病人的存活。

這些推論仍需許多實驗去透徹驗證,但這篇有趣的論文除了讓我們對神經發育機制有更進一步的了解,也提供了漸凍人制病機制另一層面的探討。這也顯示基礎研究的重要性,或許一開始只是對於生理現象的好奇,但其成果上的突破,亦能幫助臨床疾病應用的發展。

研究團隊成員包括兩位共同第一作者中研院分生所董盈岑博士與助理呂雅琳、學生彭冠智與顏雅萍、助理張綿以及交通大學洪瑞鴻助理教授。最後值得一提的是,陳俊安老師的母親- 蘇美玉女士,以其獨樹一幟的新嶺南派畫風描繪以小鼠為模式動物,研究運動神經元之發育與退化。陳老師母子聯手創作巧妙融合中華藝術之美于現代科學之中,讓這項研究榮登「細胞報告」(Cell Reports) 當期封面,成為杏壇佳話。

-----廣告,請繼續往下閱讀-----

slider image_4

參考文獻:

  1. Tung et al., Mir-1792 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN, Cell Reports (2015)
  1. A. Chen, H. Wichterle, Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Frontiers in neuroscience 6, 69 (2012)10.3389/fnins.2012.00069).
  2. S. Song, L. Salmena, P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nature reviews. Molecular cell biology 13, 283-296 (2012); published online EpubMay (10.1038/nrm3330).

相關連結:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 130 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia