0

0
1

文字

分享

0
0
1

天然 ê 尚好?三分鐘搞懂食品加工到底是在加什麼! ──「PanSci TALK:我們為什麼需要食品加工?」

衛生福利部食品藥物管理署_96
・2017/09/20 ・6750字 ・閱讀時間約 14 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

撰文/李允誠 │ 自由寫手

  • 編按:標題採用教育部閩南語常用詞辭典「的」的音讀為「ê」,因此此處採用「ê」而非常用的「ㄟ」。

「多吃天然食物,不要吃加工過的食品」、「這幾種加工食品添加劑,對健康傷很大」,這樣的新聞標題你一定不陌生,但是,食品加工到底「加工」了什麼?如果真的如此萬分邪惡,為什麼人類還是離不開加工食品?食安系列講座第三場「PanSci TALK:我們為什麼需要食品加工?」,我們邀請到臺大食科所的丁俞文老師,與大家分享食品加工技術的功能與目的,以及一般民眾甚至媒體,對加工食品常有的誤解。

「回歸最基本的定義,只要你改變食材的原貌,就是食品加工。」丁俞文老師在分享一開始便簡明扼要地說明。

好比在家裡切洋蔥,就是一種基本的食品加工;只是這個動作放到食品工業中會較為複雜,使用如切丁機、切片機、粉碎機等機具,到了研究上甚至會使用「奈米濕磨機」,將食品磨製成奈米顆粒的大小。簡而言之,只要改變了食品的原本樣貌,就是食品加工,「它不是什麼可怕的步驟,而是人們為了某種目的,例如增加營養價值、保存或方便食用,而針對食材所做的改變。」丁俞文老師說明。

-----廣告,請繼續往下閱讀-----

「食品加工」這件事,可以從人類的祖先原始人說起。在食物盛產的季節要獲得食材很容易,然而一旦進入冬季,動物紛紛冬眠,原始人就會遇到缺少食材的情況,因此他們發明出日曬法,將食材進行乾燥,藉此保存更久的時間,這就是一種非常簡單、傳統的加工。隨著時代演進,人類又研發出醃漬、高溫、冷凍等加工方式,造就了現在市面上常見的加工食品。

丁俞文老師和大家分享加工食品的基本概念。圖 By PanSci

為什麼要加工,天然ㄟ食物不是尚好嗎?

食品加工的目的為何呢?丁俞文老師說,首先便是改善食品保存性。以鮮奶為例,一般鮮奶只能保存 13 天左右,且剛擠出來的鮮乳還需要經過層層殺菌步驟才適合食用;若是保久乳,經過超高溫殺菌處理,內部幾乎是無菌狀態,在常溫下可保存 6 個月;奶粉則與前兩者不同,在保留營養價值的前提下,去除了水分,因此能夠保存高達 18 個月。

第二個目的則是提高可食性。比如未加工過的稻子難以食用,在經過了不同程度的加工後,能夠得到糙米、玄米、胚芽米及白米,一般我們說的「白飯」是僅剩下胚乳部分的精白米,胚芽米則還保留胚乳及胚芽。「白米的營養價值雖然較低,但是軟硬度較適中,可食性高,對於咀嚼有困難、或是偏好這樣口感的人來說,白米就是比較好的選擇。因此,生產者也可能是為了讓消費者更願意購買這項食品,而進行加工。」

目的三,是增加營養價值。像黃豆經發酵後成為納豆,會增加維生素 K2 的含量,同時提高蛋白質的消化吸收率,「黃豆的發酵過程中,微生物就會先消化一部分的蛋白,讓人類食用後的整體吸收比率提高,營養素的可利用率也會增加。」丁俞文老師說道。

-----廣告,請繼續往下閱讀-----
稻子經過不同程度的加工後會得到白米、胚芽米、糙米。圖/Maksim@wikipedia, CC BY SA 3.0

「第四個目的是提高便利性。較容易腐敗的食物例如魚肉,難以在長途旅行中妥善保存,此時若將這類食材製成罐頭,能夠在有需求時方便使用,增加便利性。」丁俞文老師舉漢堡為例,漢堡將肉類、蔬菜等食材整合在一起,對於消費者來說,是一種能夠同時攝取多項營養素的選擇。

最後一項目的則是符合生理需求。「乳糖不耐症患者缺乏代謝乳糖的能力,但又需要獲得其中營養如鈣質、蛋白質時,就可以利用酵素作用將乳糖去除,讓這個原本不能喝牛奶的族群,在經過食品加工後,便能獲取所需的營養素。」

大家有沒有發現,食品加工在整個人類演化、提高生活品質的過程中,其實帶來的更多是正向影響。那麼,為何現在食品加工常常被講得像壞事,全都只是商人為了降低成本的陰謀呢?丁俞文老師說,造成此現象的原因或許是「食品添加物」。事實上,食品添加物是加工食品存在的必要條件,許多食材無法自然混和在一起,便需要利用添加物的方式去調配、結合。值得一提的是,食品添加物在臺灣屬於正面表列,根據「食品添加物使用範圍及限量暨規格標準」,目前合法的添加物可依功能性分為 17 種。

利用酵素作用將乳糖去除,乳糖不耐症患者也可以喝牛奶了。圖/Ukko-wc@wikipedia, CC 3.0

那麼,什麼是食品添加物?

依據食品衛生管理法第 3 條對「食品添加物」之定義,係指食品之製造、加工、調配、包裝、運送、貯存等過程中用以著色、調味、防腐、漂白、乳化、增加香味、安定品質、促進發酵、增加稠度、增加營養、防止氧化或其他用途而添加或接觸於食品之物質。

-----廣告,請繼續往下閱讀-----

丁俞文老師強調,食品添加物雖然有「添加」兩個字,但有時不見得是刻意添加進去的。她將添加物分成兩種,第一種屬於「添加型」,是人們刻意為了某種功能性而使用某些物質,如麵包的膨脹劑、零熱量飲料的代糖等;另一種則為「接觸型」,是某些無法被避免的成分在與食物接觸時附著混入。兩種添加物在食品檢驗時都會一併檢查,包括殘留農藥、汙染物質等。接著,她也介紹了幾種常見的食品添加物:

1.著色劑

合法著色劑有紅色、黃色、綠色及藍色幾種,功用在於讓食品的視覺感受變得可口,例如馬卡龍、冰淇淋等。丁俞文老師說明:「人們對某些食品會有既定印象,這些調色便是為了滿足一般消費者對食物視覺上的想像,讓他們更能接受與想要購買。」一個常見的例子是豆乾,大家對豆乾的印象是黃褐色,無添加的白色豆乾銷量反而較差,從而促使著色劑的使用。

2.抗氧化劑

抗氧化劑最主要的目的就是減緩或防止氧化變質,可以分為天然與人工兩種,天然抗氧化劑有維生素 E 與維生素 C,人工的則是 BHTBHA 等等,主要用於富含脂質的食品中,像是乳酪、奶油、馬鈴薯片等。而油脂氧化除了會產生「油耗味」外,更會影響食品的可食用性,因此利用抗氧化劑,在抗氧化的同時也能增加保存期限。

富含油脂的食品常會添加抗氧化劑,避免產生油耗味與影響保存期限。圖/PDPics@Pixabay, CC0 Creative Commons

3.防腐劑

有一個歷久不衰的都市傳說是這樣的:「防腐劑吃多了會變木乃伊。」

「現在許多食品業者都知道民眾不喜歡防腐劑,紛紛開始利用其他加工製程來取代。」但是以超商販售的飯糰為例,其中的金黃色葡萄球菌 ── 在沒有添加防腐劑的情況下 ── 約 60 小時就會超過可能中毒致病的量,倘若添加了 0.2% 的己二烯酸(防腐劑的一種),則可以維持住菌數的數量,不讓其成長。「防腐劑的目的主要在於抑制有害菌種的生長,避免食物中毒,是個重要的存在。」丁俞文老師說。

-----廣告,請繼續往下閱讀-----

4.乳化劑

它的功能非常簡單:混合油和水!大家都知道油水會分離,這時候便需要乳化劑的協助,形成穩定乳濁液,讓兩者平均分散在液體中;另外也能達到人們想要的口感,增加食用意願。添加乳化劑的經典實例是牛奶,乳化不完全的牛奶,油脂與水分就會分離。丁俞文老師也說明,現在有很多天然乳化劑像是卵磷脂、蛋白,都具備親油親水的兩親性。

新聞案例解剖!

食安新聞層出不窮,加工食品更是榜上的常客,但我們到底該如何判讀這些新聞、網路文章、傳言的正確性呢?這裡,丁俞文老師整理了幾個近期、或反覆受到討論的新聞案例,帶著大家一起分析,遇到這種資訊時能從哪裡下手檢驗。

案例一、舊石器時代飲食

舊石器時代飲食推崇減少穀物、豆類、奶製品與其他精緻加工食品。圖/截自網站

近幾年出現一種「舊石器時代飲食」,其主要論述是加工食品太不健康,應該要盡量吃得跟原始人一樣,如烤過的肉、煮過的蔬菜,盡量避免穀物、豆類及奶類與其他精緻加工食品。但是,「舊石器時代」是沒有穀物、豆類、奶類的,這樣的飲食聽來天然,對不方便咀嚼肉類的老年人而言卻缺少攝取澱粉與鈣質的管道,容易骨質疏鬆;同時,此飲食法由於攝取大量蛋白質,會有過多飽足感,造成食慾下降、整體熱量攝取不足;兒童、青少年也會有熱量、鈣質不足的問題;素食者方面更是幾乎沒有優質蛋白質的來源。

丁俞文老師指出,除了不同族群可能會有營養不均衡的問題外,若沒有現代保鮮設備像是冰箱等,食品中的微生物將難以抑制,得多加留心。

-----廣告,請繼續往下閱讀-----

案例二、泡麵與木乃伊

前面提到的都市傳說還有個變形版本:「泡麵吃多了會變木乃伊!」

「這樣的說法源於許多人都認為泡麵中添加了大量防腐劑,以達到長期保存的效果。」丁俞文老師說明,「不過食藥署早已解釋過,泡麵內是規定不能加防腐劑的。之所以能長期保存,是因為麵體利用蒸煮及油炸方式高溫殺菌,同時使泡麵脫水、減少其麵體水分含量,讓微生物便無法繁殖,達到延長保存期限的目的。泡麵不需要也不能添加防腐劑的。」

對於泡麵,她說自己更介意的其實是其他面向。「泡麵多用油炸的方式去除水分,加上內附調理包、調味品,可能會讓消費者食入過多的油脂、鹽分,而且沒什麼蔬菜,長期食用泡麵,會造成營養不均衡的問題。」

泡麵能夠長期保存是因為麵體經過蒸煮或油炸加工處理,並非添加防腐劑。圖 By PanSci

案例三、香腸為何要添加亞硝酸鹽?

這則絕對是年復一年 ── 尤其烤肉節中秋節又快要到了 ── 每年都會捲土重來的食安新聞,除了再次重申亞硝酸鹽本身並沒有被列為致癌物、是它和二級胺(不常出現在食品中)作用產生的硝酸胺才有之外,我們也來弄清楚,亞硝酸鹽到底為什麼要出現在香腸裡。

-----廣告,請繼續往下閱讀-----
source:Wikimedia

丁俞文老師分析,在香腸中亞硝酸鹽的目的主要有三種:

  1. 保色:能夠讓香腸保持鮮紅,在視覺上看起來較為可口
  2. 保持醃漬肉味:同樣是為了滿足消費者對食品的想像,丁俞文老師就曾在研討會中遇過業者表示一旦缺少醃漬味,消費者便會對該香腸製品產生質疑,降低購買意願(跟白色豆干同病相憐啊……)
  3. 抑菌:最重要的一點,能夠有效的抑制肉毒桿菌。肉毒桿菌喜好生長於無氧的環境如真空包裝的食品。其危害不在細菌本身,而是肉毒桿菌毒素,只要 70 微克毒素就可致死。添加亞硝酸鹽,可以避免肉製品的肉毒桿菌中毒問題

丁俞文老師強調,亞硝酸鹽在食品規範中都會嚴格控管添加量,只要消費者不過量食用這些醃漬食品,整體來說對於健康都是沒有大礙的。

案例四、市售柳橙果汁糖分標示與實際檢測不同

今年七月,消基會以「手持式糖度計」檢測市售果汁的糖度含量,卻發現糖分標示與實際測試糖度不同,超出誤差值 20%。若要瞭解此則新聞的背景,就得先了解何謂濃縮果汁。市售果汁多為濃縮還原果汁,廠商將原果汁經過加熱、冷凍或過濾,去除一定比例的水分後,得到濃縮果汁,如此一來果汁的體積變小、重量變輕,能方便儲存、運送,到了需要加工時,再將去除的水分加進去,便稱為「還原果汁」,此時為了讓每罐果汁有一樣的風味,可能會添加糖、水、酸進行調味。

圖 By 丁俞文老師簡報

回到該則新聞,新聞中所使用的手持糖度計,檢測的是「可溶性固形物含量」,包含可溶於水的物質,像是糖、酸、維生素等,甚至果肉的纖維也可能影響折射率。「由此可見,這個果汁的案例中,糖度並不等於糖分。」一般而言,此儀器可以檢測的是同一種溶液的相對甜度,例如拿來比較兩顆同一品種的葡萄,但不能比較一顆葡萄與一顆蘋果。

-----廣告,請繼續往下閱讀-----

案例五、焦糖色素可能致癌

2011 年,美國公眾利益科學研究中心(Center for Science in the Public Interest,CSPI)向美國食品藥物管理局(FDA)提出,可樂類飲品中所添加的「焦糖色素」在高壓、高溫下可產生致癌物質「4-甲基咪唑(4-methylimidazole,4-MEI)」,要求禁止使用;至 2012 年 3 月,CSPI 又再度聲稱,在動物實驗中發現焦糖色素的致癌物質令小鼠患上多種癌症,美國人恐面臨患癌風險。

丁俞文老師說明,焦糖可分為天然及人工兩種,天然焦糖就是把糖放在鍋內加熱,烤成黑褐色的焦糖;若要大量產生焦糖,無法費時地用鍋內加熱,此時就需要人工焦糖 ── 將砂糖、阿摩尼亞、亞硫酸鹽等原料,在高壓高溫下處理而成的焦糖色素。而焦糖色素又可分為四種:普通焦糖、亞硫酸鹽焦糖、銨鹽焦糖與亞硫酸 – 銨鹽焦糖。不同種類的焦糖有不同用途,第一類及第二類焦糖可用於各類食品,而第三類則適用於醬油、烏醋、咖啡,第四類適用於飲料(如可樂)、醬油、咖啡。

焦糖的致癌風險為何?主要被討論的是第三類及第四類焦糖色素,會產生可能導致老鼠罹癌的「甲基咪唑」。「但有一點要列入考量,這類實驗有時在研究計畫預算或時程的限制下,可能會為了加速成果的產生過量施打實驗物質,以便提早得知結果,再從短期推測長期的致癌劑量。雖然經過計算,但往往會與正常使用有所差別。」丁俞文老師解釋。而美國食品藥物管理局也指出,飲料(可樂)中的焦糖色素非常微量,須每日飲用達千瓶才可能攝取 4-MEI 達到致癌劑量,因此適量飲用並不會對人體造成危害。

焦糖色素可能致癌,但要每日飲用超過千瓶才會達到致癌劑量。圖/PxHere,CC0 Public Domain

一一解剖完這些新聞案例之後,為大家做個小結,在看到加工食品的食安新聞時,我們可以先問自己幾個問題:

  • 為什麼需要這個加工過程、這種添加物(別忘了添加物也是成本啊)?
  • 它能帶來什麼功能,是增添風味還是避免中毒?
  • 聽到某種添加物可能致癌時,嘗試思考是它本身被列為致癌物,還是它與別種物質的作用產物有致癌性?致癌情境是否容易觸發?
  • 若為致癌物,要吃多少才會到達危險劑量?

如此一來,就不會人云亦云、或者對什麼都感到恐慌了。

食品加工的未來:以製程改良取代添加物

分享後的問答時間,一位聽眾提問到:「經過老師講解,我們明白了食品添加物有存在的必要,那麼一般人能怎麼辨別其中好壞?哪些是比較好的加工食品,哪些是比較差的呢?」

丁俞文老師回答,這得先定義所謂「比較好的加工食品」為何。有些人認為好的食品是營養價值比較高,加工過程中營養價值流失少;有些人覺得越天然、越沒有添加就越好。

「以我們自己的『功能性加工食品實驗室』為例,主要探討功能性食品的實驗,會去試驗如何在不影響食品功能性的情況下去做加工。例如高溫可能使某些營養素降解,因此發展出常溫殺菌技術,保留營養素不被破壞,也更符合我們定義的高品質食品。所以這一題,最終還是要看消費者自身的偏好選擇。」丁俞文老師表示,這樣以食品加工製程的改良,減少或取代食品添加物,也是目前食品科技、食品科學領域努力的方向之一;而這對於廠商來說也是一大利多,若能在製程上改善進而減少添加物的使用,也就可以減少生產成本。

至於如何面對食品添加物、加工食品的食安資訊,丁俞文老師建議不妨參考這次分享中提到的方式,檢驗資訊中的關鍵字,甚至追根究柢地去翻找學術性文章、實驗數據,了解實際情形與風險,別再誤會食品添加物就一定是十惡不赦的壞東西啦。

活動現場照片。圖 By PanSci
文章難易度
衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1237 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。