Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

葡萄酒的酸甜苦辣從哪來?——葡萄酒的感官之旅(2)

活躍星系核_96
・2017/08/28 ・3432字 ・閱讀時間約 7 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

文/Terry Lin | 專業釀酒師,用科學,讓葡萄酒更淺顯易懂;讓葡萄酒回歸本質;讓品評更值得回味。加州戴維斯分校葡萄酒釀造學碩士、波爾多右岸釀酒實務經驗。

不想只是略懂略懂葡萄酒?一起來從感官科學(sensory science)的角度切入葡萄酒品評吧! 由此報名:「美酒中的科學:品味葡萄酒的第一課

從小被騙到大的味覺地圖

葡萄酒除了所含有的各種氣味讓人著迷之外,入口後的味道也是品質的重要指標。人類的味覺只有 5 種:酸、甜、苦、鹹、鮮(又稱做甘),而這 5 種味覺都是在我們的口腔中透過味覺神經受器所感受到的(註釋 1)。小時候一定有在課本讀過,我們舌頭的不同區位專司不同味覺的辨識,月考時試題還會考舌側前端負責鹹味、舌側後端負責酸味(當時就差這題滿分…飲恨!),但後來發現這樣的論述是錯誤的。

月考時試題還會考舌側前端負責鹹味、舌側後端負責酸味,但後來發現這樣的論述是錯誤的。圖/BY 作者提供

人類舌頭表面若仔細看,會發現有一顆顆叫做乳突的顆粒狀結構,而每個乳突裡都集結了為數不等的 5 種不同的味覺受器,每個乳突都能辨識酸、甜、苦、鹹、鮮(註釋 2)。儘管乳突的分佈可能密度不一,乳突間的敏感度也因味覺受器多寡而有差異,但現今的論點比較像舌頭不同區域的敏感度有所不同,而不是不同區域專司不同的味道。(所以老師是不是要幫我加分……)。

人類舌頭表面若仔細看,會發現有一顆顆叫做乳突的顆粒狀結構,而每個乳突裡都集結了為數不等的 5 種不同的味覺受器,每個乳突都能辨識酸、甜、苦、鹹、鮮。圖/BY 作者提供

中文常用「酸甜苦辣」講述味道,但辣其實是觸覺和溫度的感受(又稱溫覺),因此訓練吃辣訓練的不是味覺,而是口腔皮層以及舌頭上刺痛感(觸覺)和灼熱感(溫覺)的耐受度!而喝酒時感受到的辣其實是因為酒精使口中黏膜的水分析出所產生的刺痛。此外,另一種喝酒常感受到的觸覺,則是喝紅酒時的澀味[註3]。

-----廣告,請繼續往下閱讀-----

那麼葡萄酒的酸甜苦辣從哪來?

一般而言,葡萄酒中有酸、甜、苦以及鮮 4 種真味覺,以及另外其實是觸覺的酒精辛辣觸感、來自氣泡酒中二氧化碳於口中的刺激感,以及來自葡萄酒中單寧質的澀,以下分類進行解說:

酸度

葡萄酒中的酸主要源自葡萄本身的酒石酸(tartaric acid)和蘋果酸(malic acid),另外還有蘋果酸在乳酸發酵後轉化成的乳酸。圖/BY 作者提供

葡萄酒中的酸主要源自葡萄本身的酒石酸(tartaric acid)和蘋果酸(malic acid),另外還有蘋果酸在乳酸發酵後轉化成的乳酸(lactic acid)以及被醋酸菌或是不良乳酸菌污染所生成的醋酸(acetic acid)。醋酸由於具有刺鼻的氣味,在葡萄酒圈是個不良指標,如果是剛開瓶的酒就明顯感受到這刺鼻的氣味,通常表示酒在橡木桶或瓶中儲放又或是釀造酒製程中接觸到過多的氧氣,醋酸菌或是不良乳酸菌將酒精氧化成醋酸所造成。

葡萄酒的酸度是酒體的重要元素,在白酒中尤其重要。酒的酸度過高不是件容易入口的事,但若酒中完全沒有酸,酒體似乎也顯得太過單薄。在各種有機酸中,酒石酸會隨葡萄品種而異,因此有些品種好比 Barbera 天生就是比較酸,一般用於混釀(blending)時提升紅酒的酸度。蘋果酸的含量也會隨品種而異,但由於可以透過乳酸發酵轉化成乳酸,常常被釀酒師當作調整酸度的切入點 。

此外,不同的生長氣候也會對酸度造成影響,越寒冷的地方水果越不容易成熟,酸度就比較高;反之,越熱帶的地方水果越成熟越甜,水果的酸度就變低了。不說可能不知道,葡萄其實是自然界中酸度相當高的水果之一,高含量的酒石酸(重量百分比 0.7% 以上)為葡萄非常獨特的特徵,於分子考古學上,常利用器皿上檢驗出酒石酸來推斷該遺跡有葡萄酒釀造文化的依據(註釋 4)。

-----廣告,請繼續往下閱讀-----

甜度

釀酒葡萄的採收糖度多落在糖度 24-26 度之間(240 g/L – 260 g/L),而這麼多的糖大多是被酵母菌經過酒精發酵轉化成酒精,僅留下少部分殘留於酒中。不甜的酒其實也可能有殘糖,只是我們味覺感受不到因此覺得不甜,這種乾型酒(dry wine)業界殘糖大概是 10g/L 以下。近年普遍流行半乾型酒(off-dry wine),其殘糖在 20g/L 以下,喝起來微微感受得到甜味但又不至於覺得是甜酒,適口性提高許多,許多入門款的紅白酒都會刻意作成這樣的風格。

其實不含殘糖有眾多的好處,其中最重要的是微生物菌叢的穩定性。葡萄裡的葡萄糖和果糖是最簡單的能量來源,有不少的微生物可以在單純的糖水溶液中生長,而這也包含了眾多的腐敗雜菌。於古希臘、羅馬時代,環境衛生及隔氧技術尚未發達前,發酵至全乾有助於葡萄酒的保存,因此乾型葡萄酒深植這文化歷史中,也奠定了葡萄酒的主流風格。

另一個發酵至全乾的好處則是更能表現酒優異的品質,避免糖的遮蔽效應(當然,前提是酒的本質要夠好) 。 糖可以有效的降低酸跟苦的感受,但同時也可能遮蔽了許多微細氣味的表現。葡萄酒的品評是鑑賞眾多氣、味的組合,當然不希望有搗亂份子來干擾我們的享受。

苦與澀

葡萄酒在陳放的過程中多酚類會發生緩慢的氧化聚合。圖/BY 作者提供

這兩種感受其實都來自葡萄酒中的多酚類,也就是業界所謂的丹寧(tannin)。澀是一種觸覺,當酒中的多酚類與唾液蛋白結合時,會降低唾液的潤滑作用,使口腔內有如同喝完濃茶的乾乾澀澀的收斂感;而多酚類中,兒茶素(catechin)的延伸物發現會與人體的苦覺受器結合產生程度不等的苦味(註釋 5)。

-----廣告,請繼續往下閱讀-----

澀也是影響酒體的重要因素。然而不同於先前提及的酸,葡萄酒在陳放的過程中多酚類會發生緩慢的氧化聚合,所形成的巨分子可能因為結構上與唾液蛋白較難發生鍵結或是親和力降低,因此陳放過的葡萄酒丹寧「軟化」變「順」了,而這氧化聚合的反應也正是紅酒抗氧化活性的來源,多酚類含量越高的葡萄酒,抗氧化活性越高。

谷氨酸是構成蛋白質的組成胺基酸之一。圖/BY 作者提供

葡萄酒隨著時間陳放除了丹寧軟化,風味上也會逐漸產生一股猶如肉汁的鮮味,在歐美人士的味蕾,常常被當做好酒的品質標的。葡萄酒裡頭有肉汁的味道?乍聽之下可能覺得很不可思議,但卻是有科學證據的。味精能讓菜餚變得鮮甜,正是因為味精(谷氨酸鈉)溶於水後的谷氨酸離子是鮮味受器的受質之故。

谷氨酸是構成蛋白質的組成胺基酸之一,葡萄皮裡頭的游離胺基酸、經過葡萄自身酵素水解的果肉蛋白或是發酵終期自體水解的酵母菌,都是提供谷氨酸以及鮮味的來源(註釋 6),只是剛好因為葡萄酒裡頭蛋白質含量本來就很低,外加酵母菌自體水解在自然的情況下需要長時間的陳放,很剛好只有在老酒中才會出現,因此物以稀為貴。

來自氣泡的清爽感

酵母菌進行酒精發酵將單糖轉換成酒精的同時,另一個產物便是二氧化碳。一般的葡萄酒由於酒精發酵是在半開放的醱酵槽中進行,所生成的二氧化碳會隨著時間緩慢地揮發飄散到環境中,不會殘留在裝瓶的葡萄酒中;相反地,氣泡酒則是透過加壓的密閉環境,像是直接在玻璃瓶內進行二次發酵或是使用加壓的發酵槽進行,讓二氧化碳得以溶入酒裡頭,直到開瓶的時候瓶內壓力下降至環境大氣壓力,二氧化碳再次從酒裡頭釋出,變成我們所看到一粒粒向上冒出的氣泡。於口中,這些氣泡所帶來的刺激是觸覺,連同酒裡的酸構成氣泡酒獨有的刺激清爽感。

-----廣告,請繼續往下閱讀-----

葡萄酒之所以迷人之處,在於歷史、在於風土、更多在於那一瓢飲中所帶來的種種味覺(甚或觸覺)體驗。啜一口細細品味一瓶酒所帶來的酸、甜、苦、鮮之後,回頭細想微生物學之父  路易.巴斯德曾說的:

” A bottle of wine contains more philosophy than all the books in the world.“,(一瓶酒蘊含的哲理勝過世界上所有的書。)

一瓶葡萄酒裡所有的哲理能用開闊的心態來面對人生裡的各式難題,生活,真能變得可愛許多。

圖/BY Pixhere

______貼心提醒:未滿18歲請勿飲酒.酒後不開車.開車不喝酒______

覺得意猶未盡、還想知道更多?來報名「美酒中的科學:品味葡萄酒的第一課」吧!

-----廣告,請繼續往下閱讀-----

註釋

  1. Brandbury J. 2004, Taste Perception: Craking the Code. Plos Biol 2(3) 0295-0297.
  2. Barretto, R.P.J., Gillis-Smith S., Chandrashekar J., Yarmolinsky D.A., Schnitzer M.J., Ryba N.J.P., Zuker C.S. 2015, The Neural Representation of Taste Quality at the Periphery. Nature 517, 373-376.
  3. Lawless, H.T., Heymann, H., 2010, Sensory Evaluation of Food Principles and Practices (Chapter 2).
  4. McGovern P.E. 2009, Uncorking the Past – The Quest for Wine, Beer and Other Alcoholic Beverages.
  5. Yamazaki T., Narukawa M., Mochizuki M., Misaka T., Watababe T. 2013, Activation of the hTAS2R14 Human Bitter-Taste Receptor by (-)-Epigallocatechin Gallate and (-)-Epicatechin Gallate. Biosci. Biotechnol. Biochem. 77(9) 1981-1983.
  6. Klosse P. 2012, Umami in Wine. Res. Hosp. Manage. 2(1/2) 25-28.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
采采蠅與寄生蟲,以及空氣中的油膩愛情
寒波_96
・2023/04/04 ・4059字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

非洲的采采蠅(tsetse fly)以吸血維生,但是它們也時常是錐蟲的宿主,如果吸食人血,便有機會將錐蟲傳染給人類,引發昏睡病,在非洲導致不少問題。

昆蟲常以費洛蒙作為溝通媒介,采采蠅也不例外。2023 年發表的新研究,找到幾款采采蠅使用的費洛蒙,能促進情慾交流;而且又發現感染錐蟲會改變費洛蒙組成,求偶時還會降低身價。

在非洲體驗大自然,務必注意采采蠅!圖/TripSavvy / Nez Riaz 

昆蟲的氣味語言

舌蠅屬(Glossina)旗下有多個物種統稱「采采蠅」,這項研究著重的是 Glossina morsitans,為求簡便,本文之後直接稱之為「采采蠅」。要注意還有不一樣的其他款采采蠅,本文後面會登場一種。

費洛蒙是生物排放到體外,用於溝通的訊號分子,可謂是昆蟲的化學語言。一如人類的花言巧語或暴言各有巧妙,各種昆蟲使用不同費洛蒙,能達到不同效果。

-----廣告,請繼續往下閱讀-----

從前對采采蠅的費洛蒙也不是一無所知,以前知道有一種化學分子 15,19,23-trimethylheptatriacontane,也叫作 morsilure,被采采蠅當作費洛蒙。此分子是主鏈為 37 個碳鍊長,總共有 40 碳的脂肪酸衍生物,而且含量非常多,5 天大的女生超過 4 mg。

有些費洛蒙輕盈,可以揮發;也有的飄不起來,要直接接觸。40 碳的分子體重太胖,只能直接碰觸,可以說是一種接觸式的油膩情慾。

傳宗接代,迅速而持久

新研究的目標是探討:采采蠅是否存在揮發性費洛蒙,又如何作用。比較效果之前,要先了解采采蠅情慾交流的正常狀況。

把沒有性經驗的一男一女擺在一起,20 組幾乎都迅速合體,在 15 秒內開始啪啪啪(請自行腦補音效);而且平均 do 愛 58.5 分鐘之久,持久力一級棒。

-----廣告,請繼續往下閱讀-----
讓一女一男共處一室,紀錄它們的交配過程。所有沒有性經驗的采采蠅,都在幾分鐘內合體,延續超過 55 分鐘。圖/參考資料1

拿來對照的對象,是常被當作實驗動物的黃果蠅(Drosophila melanogaster)。黃果蠅和采采蠅雖然都叫蠅,但是親戚關係比人和猩猩之差還要遠,不是最合適的比較對象,不過是最方便取得的材料。

黃果蠅平均要等 22 分鐘才男女合體,維持 20 分鐘左右,明顯不如采采蠅對性的渴望。然而,采采蠅的實驗,假如一方換成交配過的女生,原本興致高昂的男生竟然會完全不想 do 愛,判若兩蠅。

總之,采采蠅情慾交流的正常狀態是,由男生向女生求偶,女生很快接受。過程中吸引男生辨識的「女蠅味」是哪些費洛蒙呢?

空氣中充滿愛情的味道

采采蠅的費洛蒙是脂肪酸衍伸物,和果蠅、螞蟻一樣,能用有機溶劑己烷(hexane)分離。

-----廣告,請繼續往下閱讀-----

可是一開始實驗,把接觸采采蠅 10 分鐘的己烷塗在棒棒上,結果不論是有或沒有性經驗的男女,4 類原味樣品對男生都毫無吸引力。

做過實驗都知道,沒反應不能寫論文 💔。所以又把搜集費洛蒙的時間延長到 24 小時,這下就對惹 ❤️!

觀察得知,沒有性經驗的處女原味,能吸引 60% 男生;有性經驗的女生則是 27%;男蠅味對男生依然缺乏吸引力。

把采采蠅身上萃取的氣味,塗在棒棒上,觀察是否會吸引采采蠅。圖/參考資料1

「女蠅味」具體是什麼呢?用氣相層析質譜儀(Gas Chromatography Mass Spectrometry,簡稱 GC-MS)分離可得到 6 種化學物質。

-----廣告,請繼續往下閱讀-----

3 種是脂肪酸:16 碳的棕櫚酸、棕櫚油酸,以及 18 碳的油酸。3 種是脂肪酸加上甲基酯(methyl ester)的衍生物:methyl palmitoleate(MPO)、methyl oleate(MO)、methyl palmitate(MP)。

就算是做這一行的,大部分也會覺得那一串名詞彷彿火星文,反正就是好幾種結構略有不同的油。但是以訊號分子來說,重點不是有多油膩,而是這些分子會啟動哪些神經反應,又影響哪些行為。

費洛蒙有時候化學結構只差一點點,意義完全不同,就像人類講話,「我日常生性活潑,想要多交朋友」和「我日常性生活潑,想要多交朋友」意思就很不一樣。

采采蠅身體外,存在感最明顯的 6 種分子,包括 3 種脂肪酸以及 3 種脂肪酸衍生物。圖/參考資料1

饞她身子的味道,油膩的情慾語言

女蠅味 6 種成分逐一測試,女生們完全不為所動。至於男生,3 款脂肪酸都缺乏吸引力,不過 3 款衍生物都有吸引力,尤其是塗抹 MPO 的棒棒,能吸引 87% 男生,效果最強(有人覺得奇怪,比前述實驗 60% 更高嗎?應該是因為濃度更高,效果更強)。

-----廣告,請繼續往下閱讀-----

費洛蒙有具體的收訊器,訊號應該是透過觸角(antenna)上的感覺受器傳達,因為如果把觸角切除,男生也不會起反應。

為了進一步認識費洛蒙的效果,研究者又將費洛蒙塗在近親物種 Glossina fuscipes 身上。正常時這次的主角 Glossina morsitans 采采蠅男生,對異種女生不會有性趣;但是近親女 MPO 上身後,有 60% 男生會撲上來。

可見單單 MPO 這種化學分子,便對男生有強烈的誘惑力。可是這只是單方面的喜歡,近親女依然對異種男生毫無感覺,會把他們馬上踢開。

感受情慾的神經元

不一樣的費洛蒙,會激發不同感覺神經元,就像把某個開關打開。采采蠅的觸角上有許多微小的感覺零件(sensilla),各自配備不同的受器神經元。被激發的 sensilla 上存在兩款神經元 A 與 B,對不同物質起反應。

-----廣告,請繼續往下閱讀-----

MPO 會刺激 B 神經元,而且分隔一段距離,透過氣流傳送便有效果。由此判斷 MPO 是揮發性作用的費洛蒙。

但是同樣的距離,MO 與 MP 都不起反應。不過縮短到距離 1mm 後,MP 就能刺激 B 神經元,MO 則能同時刺激 A 與 B。這兩款費洛蒙僅管結構類似 MPO,卻要近到快直接接觸才有作用。顯然這種事不能看結構鍵盤辦案,要實測才知道。

測試費洛蒙是否可以透過氣流飄送,只有 MPO 能在比較遠的距離起作用。圖/參考資料1

奇妙的是,這些費洛蒙對近親物種 Glossina fuscipes 的神經元,幾乎都不起作用。因此上述費洛蒙與受器的組合,僅限於 Glossina morsitans 這款采采蠅,和其他物種未必有共通語言,近親即使收到也理解不能。

寄生錐蟲降低身價,采采蠅也是受害者

不少采采蠅體內存在錐蟲,吸血時成為傳播媒介。檢驗發現,錐蟲對采采蠅的影響也非常明顯,會大幅影響求偶選擇。

-----廣告,請繼續往下閱讀-----

采采蠅的求偶是男生提出要求,女生決定是否接受。觀察得知,有或沒有感染的兩男,如果和處女共處一室,女生接受兩者的機率差異不多。但是有或沒有感染的兩女,給男生選擇,男生 100% 挑選沒有感染的女生。

這麼看來,有錐蟲寄生的女生,在男生眼中是比較差的對象,但是不知道男生如何分辨。費洛蒙方面,被寄生的采采蠅又會多出 21 種揮發性小分子,也許有所影響,可惜這些氣味的具體作用仍不清楚。

采采蠅感染錐蟲與否,費洛蒙們明顯有別。圖為氣相層析在不同時間點,陸續分離出的分子,感染錐蟲的采采蠅多出許多種分子。圖/參考資料1

上述結果都是實驗室中的測試。采采蠅在野外活動時,或許大部份候選蠅都是感染錐蟲的不理想對象。野生的采采蠅實際上如何擇偶,也許是另一番光景。不過應該能推測,它們也不喜歡錐蟲。

食慾與情慾的開關一同打開,吃飯,順便do愛?

野生的采采蠅,要自己尋找對象。最容易碰到異性的場合是采采蠅餐廳,也就是被吸血的動物周圍。實際觀察到,采采蠅常常在獵物附近順便情慾交流。

動物散發的氣味分子,就像餐廳飄出的香味,吸引采采蠅前來覓食。有趣的是,獵物排放的 4-methylphenol、1-octen-3-ol 兩種揮發性物質,和采采蠅的揮發性費洛蒙 MPO 使用同一套神經受器。

或許采采蠅去吃飯,開啟食慾的同時,也一同釋放情慾的開關。交配和吃飯是兩回事,如果能一次滿足,也很棒。

如果對氣味在各種生物的角色有興趣,可以閱讀科普書你聞到了嗎?:從人類、動植物到機器,看嗅覺與氣味如何影響生物的愛恨、生死與演化》。

延伸閱讀

參考資料

  1. Ebrahim, S. A., Dweck, H. K., Weiss, B. L., & Carlson, J. R. (2023). A volatile sex attractant of tsetse flies. Science, 379(6633), eade1877.
  2. Chemical notes of tsetse fly mating

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1094 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

2
0

文字

分享

1
2
0
【公視《神廚賽恩師》】 豐富人生的新「鮮」味,有關「鮮」的大小事!
公視《神廚賽恩師》_96
・2023/02/24 ・1114字 ・閱讀時間約 2 分鐘

我們做菜為了提升食物的「鮮味」,經常會加入味精,但很多人都說味精對人體不好要少吃,但其實味精是一種叫「麩胺酸」的天然物質,許多食材裡面都有。科學界也指出,味精沒有傳言中那麼有害,只要巧妙的運用它們,我們也能做出味道鮮美、層次豐富的健康料理喔!

新「鮮」故事-鮮味的古往今來

人類從什麼時候開始使用「鮮」這個味覺的呢?「鮮」被列入味覺的行列裡,可說是近代的事,這就要從1908年日本的一碗味噌湯說起! 味噌湯在日本可說是再平常不過的料理,但當時在大學擔任化學教授的池田菊苗先生,某天下班在喝太太煮的味增湯時,發現湯裡有種從未喝過驚為天人的味道,深遂而幽遠的「鮮」美滋味,一問之下才知道,原來太太在湯裡加了昆布,研究精神爆發的池田先生,就一口氣買了大量的昆布,用大型蒸發皿去煮,最後得到有機體結晶,而這種結晶物質就是會產生鮮味的「麩胺酸」,用這種方法他也發明了「味精」。 由於鮮味是獨立的味道,沒辦法用「酸甜苦鹹」四種基本味道調出來的,因此,才會被認定是人類的第五種味覺。

「鮮」給人最直接的感覺就是「甜」跟「香」,這和食材中所含的物質有密不可分的關係,鮮味物質主要有「麩胺酸」、「肌苷酸」跟「鳥苷酸」三種化學物質。常見的食材如:昆布、蕃茄、玉米、蘿蔔、干貝、雞肉、牛肉、排骨、柴魚、蝦子、金針菇、海苔……等等。而「鮮」不只存在天然食材中,其實有很多發酵食物也有豐富的鮮味,世界各地常見的鮮味發酵食品,在歐洲有「帕瑪森起司」,東南亞有「魚露」,到了東亞有則有「醬油」、「豆腐乳」、「味噌」。這些在味精發明前就有了,古人真的很早就會運用鮮味了呢!

圖片 / 公共電視提供

全新第三季《神廚賽恩師

公共電視科普節目《神廚賽恩師》 ,結合科學、廚藝與食育教育,引領大眾用有趣的方式、從 Science-科學角度讓大眾了解傳統廚藝「伙房 36 法」中的科學知識。第三季節目於 2023 年 2 月 3 日起,每週五晚上 6 點在公視主頻首播,公視 3 台每週五晚上 7 點首播,重播時段為公視主頻每週六早上九點三十分與公視 3 台週日晚上六點播出。

▸《神廚賽恩師》第三季將於 2/3(五)起,18:00 在公視主頻首播

-----廣告,請繼續往下閱讀-----

其他播出資訊

▍ 公視頻道每週五晚間 18:00、公視三台每週五晚間 19:00 (首播)

▍ 公視頻道每週六早上 09:30、公視三台每週日晚間 18:00 (重播)

▍ 並將於公視+ 影音平台完整上架 敬請期待

-----廣告,請繼續往下閱讀-----

▍ 烹調中蘊含科學原理,一起發現料理中樂趣

-----廣告,請繼續往下閱讀-----
所有討論 1
公視《神廚賽恩師》_96
8 篇文章 ・ 3 位粉絲
公共電視科普節目《神廚賽恩師》 ,結合科學、廚藝與食育教育,引領大眾用有趣的方式、從Science-科學角度讓大眾了解傳統廚藝「伙房36法」中的科學知識。第三季節目於2023年2月3日起,每週五晚上6點在公視主頻首播,公視3台每週五晚上7點首播,重播時段為公視主頻每週六早上九點三十分與公視3台週日晚上六點播出。