Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

Facebook上大家都在看,所以你就這麼相信了?

哇賽心理學_96
・2017/08/08 ・1638字 ・閱讀時間約 3 分鐘 ・SR值 483 ・五年級

  • 作者 / Wen-Jing Lin
    前職能治療師。現為認知神經科學博士。 興趣是閱讀科學文獻。 認為散播知識是科學家回饋社會的方法之一。
分享新聞前請先仔細想想。圖/wikimedia commons.

從去年(2016)的美國總統大選之後,美國社會開始強烈關注「假新聞」這項議題。不過台灣的大家似乎更早就遭受假新聞的荼毒,算是走在世界潮流的前沿吧?(該覺得驕傲嗎這……)不過,大家在什麼情況下會去執行「事實查核」(fact checking)呢?應該是在對新聞內容感到有所懷疑的時候吧。但是啊,研究發現,當我們知道有其他人也在讀這些可疑的新聞時,進行事實查核的可能性就會降低。

別人也在看?有夥伴我們就不在乎真假

這個研究發表在《美國國家科學院院刊》,研究者以一系列八個實驗來告訴大家一件事——人們一旦覺察到其他讀者的存在,進行事實查核的意願便會降低。不過只要提醒人們回想自己的責任與義務,便有機會抵消這個負面效果!

主要的實驗流程是這樣的:實驗參與者必須登入某新聞網站並在上面閱讀三十多個新聞標題,但這些標題有真有假,參與者的工作便是決定哪些標題是真的哪些標題是假的。每答對一題得一分,但若答錯一題也會被扣一分,最終的分數會被換算成金錢,發放給參與者。選項有三個,除了「真」和「假」之外,還有「事實查核」這第三個選項。如果參與者在某一題選了「事實查核」這個選項,那他就可以在實驗結束時得知這一題的正確答案。

假新聞充斥的現在,大家在什麼情況下才願意執行「事實查證」呢?圖/Pixabay

參與者被分成兩組,其中一組人在登入新聞網站後,會見到自己的名字顯示在網頁角落,在此將這組稱之為「單獨」組。另一組人在登入後,除了自己的名字外,還會看到另外 102 個其他在線使用者的名字,稱之為「群體」組。就這樣,這個操弄很簡單吧?但是這樣竟然對參與者選擇〔事實查核〕的意願產生了影響。不管在哪個實驗中,「群體」組的參與者選擇「事實查核」的比例都比「單獨」組還要低。而且不管選擇「事實查核」可以加分或會被扣分,結果都是一樣的。

-----廣告,請繼續往下閱讀-----

只要小小提醒,我們便會提高警覺

圖 / Official White House Photo by Lawrence Jackson

接下來的實驗更神奇了。研究者把原本的「新聞網站」改成「Facebook」,也就是讓參與者在Facebook的介面上讀這些新聞標題並判斷真偽。結果當介面換成 Facebook 這種社交網站之後,「單獨」組選擇「事實查核」的比例竟然降得跟「群體」組一樣低。是不是因為 Facebook 這種社交網站,不管怎樣都會給人「總是會有誰也在看吧」的感覺呢?

中間還有好幾個實驗,這邊先略過不談,不過我想提一下最後一個實驗。因為研究者發現,一般而言警覺性(vigilance)比較高的人,似乎比較不容易因為身處群體中就疏於事實查核。

是以在最後一個實驗中,研究者想知道人們的警覺,是不是造成「群體」組事實查核比例較低的原因之一,於是便要求參與者在開始讀新聞之前,先回想自己過去和現在的職責、義務與責任(duties, obligations, and responsibilities)。這麼一做,果然讓「群體」組選擇「事實查核」的比例增加到跟「單獨」組一樣高!

社群網站上看新聞的時候要特別提高警覺喔!圖/Pixabay

所以囉,大家以後記得提醒自己,在社群網站上看新聞的時候要特別提高警覺,想清楚、再決定要不要按讚分享喔!

-----廣告,請繼續往下閱讀-----

參考文獻

  • Jun, Y., Meng, R., & Johar, G. V. (2017). Perceived social presence reduces fact-checking. Proceedings of the National Academy of Sciences114(23), 5976–5981.

本文轉載自哇賽心理學《等等,你確定這不是假新聞嗎?》

-----廣告,請繼續往下閱讀-----
文章難易度
哇賽心理學_96
45 篇文章 ・ 11 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

17
4

文字

分享

0
17
4
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
0

文字

分享

1
3
0
誰在傳送假訊息?提升全民媒體素養,讓謠言止於智者!
研之有物│中央研究院_96
・2023/06/09 ・4698字 ・閱讀時間約 9 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|莊崇暉、田偲妤
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

不要再轉傳假訊息了!


「我家親戚群組又在 LINE 傳假訊息了!」這是常在年輕族群中聽到的抱怨,彷彿隨意散播謠言是長輩特有的行為,當你願意了解長輩的數位社交生活,將發現事實並非如此。中央研究院「研之有物」專訪院內民族學研究所李梅君助研究員,在研究 Cofacts 事實查核協作計畫時發現,臺灣民眾對公共議題的關注存在世代衝突,該衝突延伸至日常相處上,卻在事實查核的協作過程中看到正向溝通的曙光。究竟臺灣長輩發展出什麼樣的數位社交生活?如何應用第三方資訊與長輩溝通,甚至邀請長輩加入闢謠打怪行列?

圖/研之有物。

2018 年臺灣地方選舉和公民投票讓存在已久的世代衝突瞬間引爆,面對韓流現象、同性婚姻、性平教育等議題,厭世代年輕人(1990 年代左右出生)和戰後嬰兒潮世代長輩(約 1946-1964 年出生)因經濟與社會生長背景的不同,常發生意見分歧而爭吵不休的情形。

在臺灣最多人使用的 LINE 即時通訊軟體中,出現不實謠言滿天飛的亂象,年輕人紛紛將矛頭指向長輩,批評長輩不先查核資訊真假就亂發文。

中研院民族所李梅君助研究員在研究 Cofacts 事實查核協作計畫時,發覺臺灣世代衝突問題的嚴重性。年輕人認定長輩就是假訊息的傳遞者,但事實上,許多年輕人也常在無意間互傳不實謠言。

-----廣告,請繼續往下閱讀-----

「大眾常急著為長輩貼標籤,卻從來不去了解他們怎麼使用數位工具。這樣並無助於解決問題,只會加深彼此的誤會。」研究過程中逐一浮現的問題為李梅君指引出一條研究道路,從事實查核協作行動出發,逐步深入長輩的數位社交生活,探索緩解世代衝突、提升全民媒體素養的可能途徑。

「早安圖」的背後:長輩獨特的數位社交

圖/研之有物(圖片來源/Unsplash

從了解長輩的數位社交生活做起,應有助於促進不同世代的相互理解,李梅君選擇由長輩們發展出的「早安圖」文化來切入研究。

科技與生活的緊密結合讓人手一機成為常態,再加上疫情造成的人群接觸減少,讓人們日漸習慣將社交重心從實體轉往線上。越來越多長輩靠 LINE 群組維繫親友感情、接收外界資訊,每天一早發布的「早安圖」經常是長輩社交生活的起頭。

然而,早安圖一直有被汙名化的傾向,溫馨圖片配上吉祥文字的簡單排版被貼上具有長輩風格的標籤,甚至還被戲稱為「長輩圖」。李梅君與長輩相處後發現,早安圖的存在對於長輩的社交生活具有深刻意義。

-----廣告,請繼續往下閱讀-----

首先,早安圖是長輩證明自己跟的上年輕人腳步的重要象徵!身為晚近才接觸手機、電腦的「數位移民」,長輩常因不會操作數位工具、又害怕晚輩覺得自己笨拙,而感到焦躁不安。因此,當自己好不容易學會用手機拍照、修圖、發早安圖,對長輩來說是自信心的累積,代表自己沒被時代淘汰

此外,早安圖也是長輩與人互動的敲門磚。李梅君察覺,有些長輩在傳訊息時相當在意社交分寸,不像年輕人想到什麼就 LINE 一下朋友,反而擔心隨意發文會被當成不懂規矩的「老人」。因此,當與新朋友開啟話題時,他們會先禮貌性地試探,這時無害的早安圖就是最好的敲門磚,可以從對方回傳的字句、貼圖或已讀不回,判斷能否進一步交談。

如果我們願意深入體會早安圖對長輩的意義,你將發現早安圖是長輩表達「關懷」的重要媒介。

例如在不方便見面的疫情期間,許多長輩會互相分享充滿溫馨祝福的早安圖、早安短影片,當中包含一些身體保健資訊,即時表達對遠方親友的關心,也讓對方知道自己過的很好。

但是,伴隨著早安圖的問候,群組裡轉傳的文字與圖像影片卻可能含有具爭議性的農場內容,例如每天喝檸檬水可以防疫、常喝地瓜葉牛奶可以防癌等,讓以關懷為出發點的長輩成為散播謠言的代罪羔羊。為此,有越來越多公民團體開始號召民眾一起打擊假訊息,李梅君研究的 Cofacts 就是其中一個針對 LINE 假訊息亂象所發展的計畫。

-----廣告,請繼續往下閱讀-----

聽到外面的聲音:「事實查核協作社群」打開群組封閉的大門

LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。
圖/Unsplash

LINE 假訊息亂象一直是假新聞議題中非常難處理的一塊,因為 LINE 不像 Facebook、Twitter 或 Instagram 有審查下架機制,LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。

李梅君提到:「雖然 LINE 群組相當封閉,在臺灣卻已具有極大的公共性。」很多群組都涉及公共議題的討論,並累積千百人以上的成員,一旦有人惡意散播不實謠言,在缺乏查核機制的情況下,後果可能不堪設想。

因此,自 2016 年起,公民科技社群 g0v 臺灣零時政府的成員推出「Cofacts 真的假的 – 訊息回報機器人與查證協作社群」,邀請民眾主動回報在 LINE 上發現的可疑訊息,再由來自各領域的編輯志工進行事實查核,撰寫有助判斷訊息真假的回應。之後只要有民眾發出相似問題,機器人便會從資料庫中找出相關回應供民眾參考。收到回應的民眾如有不同看法,也可以補充新的回應。

在 Cofacts 群組回報 18 歲公民可以選市長的可疑訊息,獲得豐富的澄清回應與參考資料,使用者也可補充新的回應或分享給朋友。
圖/截圖自 Cofacts 群組

你可能會好奇,當今的「人工智慧」(AI)已可查核假訊息,為何 Cofacts 還在仰賴編輯志工這樣的「工人智慧」?李梅君指出,目前的 AI 僅可以偵查大規模的操弄訊息來源,或者評估影像有無修圖造假。當前要用 AI 來判讀文字內容的真偽還相當困難,因為一則文字訊息通常真假資訊參雜,當中還包括個人意見或情緒用詞,很難明確判定是真是假。

-----廣告,請繼續往下閱讀-----

因此,Cofacts 的編輯志工除了指出訊息錯誤之處,也會提醒該則訊息是否含有個人意見,有助民眾從封閉的 LINE 群組接收外界聲音,進而創造一處可以參與討論的公共空間,共同思考謠言是什麼、怎麼跟謠言對話。

和時間賽跑 艱辛的闢謠之路

不過該計畫也有艱辛之處,由於需仰賴大量人力進行事實查核,Cofacts 經常面臨闢謠速度趕不上謠言散播的問題。根據統計,Cofacts 的 LINE 目前有 42 萬名好友,過去 10 週每週傳來約 650 則新謠言;目前登記的編輯志工大約有 2,600 多人,但每週會固定回應訊息者只有 20 人上下,平均澄清一則謠言要花 20 至 30 分鐘。

李梅君分享實際參與事實查核的心得:「一開始你可能很熱血地上線回應訊息,但回應了一、二天後,可能會逐漸失去參與感,畢竟你只是一個沒支薪的志工,而且很多謠言看了又很令人痛苦,還要耐著性子花 30 分鐘回應。」

因此,為了維持志工夥伴的參與熱情,Cofacts 每個月都會辦一次聚會,藉由分組競賽活動,讓志工們培養共同打怪的向心力,也可相互交流查核經驗、結交志同道合的朋友。

-----廣告,請繼續往下閱讀-----
李梅君分享實際參與 Cofacts 事實查核的心得,編輯志工透過每月聚會維繫共同打怪的向心力。
圖/研之有物

至於使用 Cofacts 釐清謠言的民眾又有何回饋呢?李梅君聽過一些年輕志工分享參與事實查核的原因,主要是想透過 Cofacts 的第三方資訊與長輩對話。雖然不確定長輩能否接受,卻可盡量避免家人之間發生正面衝突。

根據李梅君的觀察,在政治議題上,純粹處理謠言無法真正化解世代衝突,因為謠言只是表現形式之一,背後牽涉每個人不同的價值觀與政治立場,需仰賴更多對話空間的產生。

不過,在疫情期間,與防疫相關的健康資訊則明顯受到不同世代的共同關注,Cofacts 的使用人數因此大幅成長,其中增加最多的就是 50 歲以上的使用者。因為健康資訊較不受政治立場影響,再加上全民必須共同面對疫情威脅,世代衝突的問題自然較少。

公民團體的辛勤奔走 努力提升全民媒體素養才是真正的關鍵

ChatGPT 等生成式 AI 問世後,未來可能會出現更多人為操作的假圖文,或是誤信 AI 偏差回覆等狀況。面對上述危機,李梅君認為:

應對關鍵在於,大眾是否具備足夠的「媒體素養」與「思辨能力」去判讀網路訊息。

可惜這在我們過去的教育裡並不受重視,直到近幾年教育部才開始在 108 課綱下推動「媒體素養教育」,要求在不同年級與學科中融入媒體素養課程。例如資訊課會介紹社群媒體用演算法投放廣告的邏輯;理化課會教學生分辨並思考「偽科學」的成因;國文課則透過閱讀不同文本培養思辨能力。

-----廣告,請繼續往下閱讀-----

然而,社會上多數人沒有上過相關課程,很多還是不太熟悉數位工具的長輩,幸好現在有 Cofacts 以及多家臺灣公民團體在做媒體素養教育。他們主動走進長輩的生活圈,教長輩怎麼使用手機、如何確認訊息真假,甚至鼓勵長輩善用發早安圖的習慣,成為謠言破除推手。

李梅君目前的研究正在觀察這些公民團體怎麼採取行動。例如 NGO 組織「假新聞清潔劑」會前進廟口、菜市場或老人服務中心等長輩聚集地,舉辦街頭宣講活動。在宣講過程中,一開始不會直接跟長輩講假訊息,因為假訊息在臺灣的脈絡裡很容易被導向敏感的政治議題,誤以為要聊網軍。

因此,宣講的切入點通常會先問長輩是不是常收到詐騙訊息?接著,志工會分享一些受騙案例,例如有人買了網路一頁式廣告的保養品,結果臉爛掉;或是吃了來路不明的保健食品,最後弄壞身體。藉由生活化、無政治立場、令人感同身受的案例,讓長輩意識到學會辨別訊息真假很重要!

另一個事實查核的組織「MyGoPen|麥擱騙」會製作一則則精美的謠言澄清圖文,吸引長輩像發早安圖一樣,將這些闢謠圖文大量轉發到各個群組。如此一來,長輩本身既可釐清謠言,還可幫助更多長輩遠離詐騙,更證明自己擁有不輸給年輕人的知識與能力。

-----廣告,請繼續往下閱讀-----
「MyGoPen/麥擱騙」製作的謠言澄清圖文,網站上也有詳細的澄清說明與參考資料
圖/截圖自 MyGoPen 群組

「我覺得這是很令人感動的事情,因為這個題目很難,可是有很多人願意用不同的角度去介入,而且大部分都是志工。」李梅君有感而發的說。

臺灣長期被國際視為境外假訊息泛濫的國度,如今一個提升全民媒體素養的生態圈正在形成,因假訊息而延伸出的世代衝突問題有待長時間相互理解溝通,但公民社群的力量讓人們看見改變的契機。

李梅君有感而發的談到,過去很多國際友人將臺灣視為一處被假訊息攻擊很嚴重的地方,現在我們已發展出一個應對的生態圈,國際上越來越多人來跟臺灣學習!圖/研之有物

延伸閱讀

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3767 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
給你多少錢,才會願意放棄使用 FB ?社群軟體的體驗該如何被「金錢」衡量?──《資訊超載的幸福與詛咒》
天下文化_96
・2022/08/27 ・2405字 ・閱讀時間約 5 分鐘

使用社群媒體後,你變得更快樂還是更憂鬱?

想知道更多資訊的時候,你可能會上網搜尋。有時候是為了資訊的工具價值,比如透過 Google 地圖確認 A 地到 B地 的路線;腳踝扭傷時,也可以從網路上搜尋到應變的實用資訊;又或是並非真的出於任何用途,只覺得知道某些事很有趣,像是忽然想了解流行音樂歷史。你當然完全可以這樣做。

我們身邊有許多資訊都是一些抽象的概念,其中部分資訊卻可能和你切身相關。比如依據某些基本事實可以推斷你的預期壽命;某些資訊可以了解你的健康風險、未來「錢」景,甚至是個性。比起 10 年前,我們現在能得到的資訊更為詳盡正確,再過 10 年,肯定能夠知道得更多。

這章要談的內容很多,不妨開頭就先提示最大的重點:

研究顯示,整體而言,臉書會讓人變得比較不開心,而且可能感到憂鬱、更為焦慮,也對生活變得更不滿意。

你每天花多少時間使用 FB?使用社群軟體對你的心情造成了什麼影響?圖/Pixabay

我並不打算危言聳聽,事實上這些影響並不大。然而,它們的確存在。

-----廣告,請繼續往下閱讀-----

而與此同時,有些人明明已經停用臉書、也感受到幸福感明顯增加,卻又非常想要重新打開臉書。實際上他們要求要得到一大筆錢才願意放棄臉書。這是為什麼?我們雖然無法確定,但一項合理的解釋是,使用臉書的體驗,包括帶來的資訊,並不會讓人變得更快樂,但還是有它的價值。

無知並不是幸福,而很多人都感受到這一點。人們需要知道自己在意的資訊,這是因為喜歡、甚至珍視一種和重要的人之間產生連結的感覺。

若須付費才能使用社群媒體,會怎樣?

重要的是,我們必須強調,社群媒體的功能不僅僅是提供資訊,至少不是我在這裡反覆強調的揭露資訊的意義。你會使用臉書,可能是為了和家人或朋友聯繫,也可能是為了改善荷包或健康。但無論如何,社群媒體的一大重點在於資訊傳遞,雖然這個概念要比我目前所談的更為廣泛。

而這裡的核心問題是:社群媒體究竟多值錢?

-----廣告,請繼續往下閱讀-----

在社群媒體上,大部分的資訊是免費的,至少表面上你無須付費;或許可以說你仍需要付出注意力或個資等等。臉書和推特這些企業是從廣告獲得收益,但有鑑於相關爭議不斷,也有人認真討論起將這些平台及其服務的商業模式改成付費使用。

除此之外也有些偏理論的探討,主要關注在如何評估這些平台的經濟價值。要是民眾必須付費才能使用臉書,情況會變得如何?而民眾又願意花多少錢成為用戶?

要是社群媒體要付費的話,你們願意花多少錢呢?圖/LightFieldStudios

這些答案會透露出一些重要的資訊,讓我們知道社群媒體與一般資訊所擁有的價值。而回答這些問題,也有助於了解一些更基本的問題:如何計算經濟上的價值;知道某些消費決定可能只是表面工夫;了解傳統經濟指標與實際民眾福利有何差距(請見第二章)。此外,這些答案也會進一步影響政策與法規。

要你放棄使用 FB ,可能比要你付費使用來得更難?

行為經濟學特別感興趣的一個問題,就是「支付意願」和「願意接受金額」間可能出現的巨大落差。

-----廣告,請繼續往下閱讀-----

以臉書為例,如果我們想知道它能為我們帶來多少福利,究竟該問民眾願意為此付出多少錢,抑或該問要給他們多少錢才會願意放棄使用臉書?許多研究都探討過稟賦效應(endowment effect)的現象,也就是被要求放棄某樣商品時所要求的價格,會遠高於他們當初獲得這些商品時支付的費用

稟賦效應目前還有爭議,至少在適用的領域、來源與程度上仍未有定論。我們可能會想知道,使用社群媒體願意付出的費用,是否大於不使用社群媒體所得到的費用?如果是的話,傳統論點又能否提出說明?

IKEA 所設置的家具體驗區,常常被拿來當作「稟賦效應」的案例。圖/Pixabay

另一個同樣常見、甚至是更基本的問題,則是涉及支付意願或願意接受金額的衡量與民眾福利。我在前面也提過,在經濟學中,要是談到民眾擁有某樣商品時的福利效果,往往是以民眾願意付出多少錢來使用那件商品作為衡量。

當然,「願意付出多少錢」也是現實市場的衡量標準。但請回想一下,要提出這項金額,事實上也就是做出預測:預測該商品會對自己的福利造成什麼樣的影響。

-----廣告,請繼續往下閱讀-----

這個問題乍看不難,尤其當談到自己熟悉的商品(鞋子、襯衫、肥皂);但換做是從未使用過的商品,回答起來也就沒那麼簡單。對於一項從未擁有過的商品,哪知道能帶給自己多大的福利效果,以及可以換算成多少錢?

對許多人而言,臉書、推特、Instagram 等平台都是再熟悉不過的社群媒體,而且有著豐富的使用體驗。但出於某些我們馬上會討論到的原因,社群媒體用戶就是很難估算這些平台可以換算的金錢價值。

只要看看民眾提出使用社群媒體願意付出的金額,就會了解在尋求資訊上,「願意付出的金額」和民眾得到的福利效果似乎並不對等;同時值得進一步研究其中的福利效果究竟是什麼。

在這種時候,「願意付出的金額」只反映出部分的福利效果,還可能只反映一小部分。我們必須找出反映效果不佳的實際原因,並且嘗試找出更能呈現福利效果的方式。而我在這裡的目標,就是希望推進這項任務的進展。

-----廣告,請繼續往下閱讀-----


——本文摘自《資訊超載的幸福與詛咒》,2022 年 8 月,天下文化 ,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。