1

3
0

文字

分享

1
3
0

誰在傳送假訊息?提升全民媒體素養,讓謠言止於智者!

研之有物│中央研究院_96
・2023/06/09 ・4698字 ・閱讀時間約 9 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|莊崇暉、田偲妤
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

不要再轉傳假訊息了!


「我家親戚群組又在 LINE 傳假訊息了!」這是常在年輕族群中聽到的抱怨,彷彿隨意散播謠言是長輩特有的行為,當你願意了解長輩的數位社交生活,將發現事實並非如此。中央研究院「研之有物」專訪院內民族學研究所李梅君助研究員,在研究 Cofacts 事實查核協作計畫時發現,臺灣民眾對公共議題的關注存在世代衝突,該衝突延伸至日常相處上,卻在事實查核的協作過程中看到正向溝通的曙光。究竟臺灣長輩發展出什麼樣的數位社交生活?如何應用第三方資訊與長輩溝通,甚至邀請長輩加入闢謠打怪行列?

圖/研之有物。

2018 年臺灣地方選舉和公民投票讓存在已久的世代衝突瞬間引爆,面對韓流現象、同性婚姻、性平教育等議題,厭世代年輕人(1990 年代左右出生)和戰後嬰兒潮世代長輩(約 1946-1964 年出生)因經濟與社會生長背景的不同,常發生意見分歧而爭吵不休的情形。

在臺灣最多人使用的 LINE 即時通訊軟體中,出現不實謠言滿天飛的亂象,年輕人紛紛將矛頭指向長輩,批評長輩不先查核資訊真假就亂發文。

中研院民族所李梅君助研究員在研究 Cofacts 事實查核協作計畫時,發覺臺灣世代衝突問題的嚴重性。年輕人認定長輩就是假訊息的傳遞者,但事實上,許多年輕人也常在無意間互傳不實謠言。

-----廣告,請繼續往下閱讀-----

「大眾常急著為長輩貼標籤,卻從來不去了解他們怎麼使用數位工具。這樣並無助於解決問題,只會加深彼此的誤會。」研究過程中逐一浮現的問題為李梅君指引出一條研究道路,從事實查核協作行動出發,逐步深入長輩的數位社交生活,探索緩解世代衝突、提升全民媒體素養的可能途徑。

「早安圖」的背後:長輩獨特的數位社交

圖/研之有物(圖片來源/Unsplash

從了解長輩的數位社交生活做起,應有助於促進不同世代的相互理解,李梅君選擇由長輩們發展出的「早安圖」文化來切入研究。

科技與生活的緊密結合讓人手一機成為常態,再加上疫情造成的人群接觸減少,讓人們日漸習慣將社交重心從實體轉往線上。越來越多長輩靠 LINE 群組維繫親友感情、接收外界資訊,每天一早發布的「早安圖」經常是長輩社交生活的起頭。

然而,早安圖一直有被汙名化的傾向,溫馨圖片配上吉祥文字的簡單排版被貼上具有長輩風格的標籤,甚至還被戲稱為「長輩圖」。李梅君與長輩相處後發現,早安圖的存在對於長輩的社交生活具有深刻意義。

-----廣告,請繼續往下閱讀-----

首先,早安圖是長輩證明自己跟的上年輕人腳步的重要象徵!身為晚近才接觸手機、電腦的「數位移民」,長輩常因不會操作數位工具、又害怕晚輩覺得自己笨拙,而感到焦躁不安。因此,當自己好不容易學會用手機拍照、修圖、發早安圖,對長輩來說是自信心的累積,代表自己沒被時代淘汰

此外,早安圖也是長輩與人互動的敲門磚。李梅君察覺,有些長輩在傳訊息時相當在意社交分寸,不像年輕人想到什麼就 LINE 一下朋友,反而擔心隨意發文會被當成不懂規矩的「老人」。因此,當與新朋友開啟話題時,他們會先禮貌性地試探,這時無害的早安圖就是最好的敲門磚,可以從對方回傳的字句、貼圖或已讀不回,判斷能否進一步交談。

如果我們願意深入體會早安圖對長輩的意義,你將發現早安圖是長輩表達「關懷」的重要媒介。

例如在不方便見面的疫情期間,許多長輩會互相分享充滿溫馨祝福的早安圖、早安短影片,當中包含一些身體保健資訊,即時表達對遠方親友的關心,也讓對方知道自己過的很好。

但是,伴隨著早安圖的問候,群組裡轉傳的文字與圖像影片卻可能含有具爭議性的農場內容,例如每天喝檸檬水可以防疫、常喝地瓜葉牛奶可以防癌等,讓以關懷為出發點的長輩成為散播謠言的代罪羔羊。為此,有越來越多公民團體開始號召民眾一起打擊假訊息,李梅君研究的 Cofacts 就是其中一個針對 LINE 假訊息亂象所發展的計畫。

-----廣告,請繼續往下閱讀-----

聽到外面的聲音:「事實查核協作社群」打開群組封閉的大門

LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。
圖/Unsplash

LINE 假訊息亂象一直是假新聞議題中非常難處理的一塊,因為 LINE 不像 Facebook、Twitter 或 Instagram 有審查下架機制,LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。

李梅君提到:「雖然 LINE 群組相當封閉,在臺灣卻已具有極大的公共性。」很多群組都涉及公共議題的討論,並累積千百人以上的成員,一旦有人惡意散播不實謠言,在缺乏查核機制的情況下,後果可能不堪設想。

因此,自 2016 年起,公民科技社群 g0v 臺灣零時政府的成員推出「Cofacts 真的假的 – 訊息回報機器人與查證協作社群」,邀請民眾主動回報在 LINE 上發現的可疑訊息,再由來自各領域的編輯志工進行事實查核,撰寫有助判斷訊息真假的回應。之後只要有民眾發出相似問題,機器人便會從資料庫中找出相關回應供民眾參考。收到回應的民眾如有不同看法,也可以補充新的回應。

在 Cofacts 群組回報 18 歲公民可以選市長的可疑訊息,獲得豐富的澄清回應與參考資料,使用者也可補充新的回應或分享給朋友。
圖/截圖自 Cofacts 群組

你可能會好奇,當今的「人工智慧」(AI)已可查核假訊息,為何 Cofacts 還在仰賴編輯志工這樣的「工人智慧」?李梅君指出,目前的 AI 僅可以偵查大規模的操弄訊息來源,或者評估影像有無修圖造假。當前要用 AI 來判讀文字內容的真偽還相當困難,因為一則文字訊息通常真假資訊參雜,當中還包括個人意見或情緒用詞,很難明確判定是真是假。

-----廣告,請繼續往下閱讀-----

因此,Cofacts 的編輯志工除了指出訊息錯誤之處,也會提醒該則訊息是否含有個人意見,有助民眾從封閉的 LINE 群組接收外界聲音,進而創造一處可以參與討論的公共空間,共同思考謠言是什麼、怎麼跟謠言對話。

和時間賽跑 艱辛的闢謠之路

不過該計畫也有艱辛之處,由於需仰賴大量人力進行事實查核,Cofacts 經常面臨闢謠速度趕不上謠言散播的問題。根據統計,Cofacts 的 LINE 目前有 42 萬名好友,過去 10 週每週傳來約 650 則新謠言;目前登記的編輯志工大約有 2,600 多人,但每週會固定回應訊息者只有 20 人上下,平均澄清一則謠言要花 20 至 30 分鐘。

李梅君分享實際參與事實查核的心得:「一開始你可能很熱血地上線回應訊息,但回應了一、二天後,可能會逐漸失去參與感,畢竟你只是一個沒支薪的志工,而且很多謠言看了又很令人痛苦,還要耐著性子花 30 分鐘回應。」

因此,為了維持志工夥伴的參與熱情,Cofacts 每個月都會辦一次聚會,藉由分組競賽活動,讓志工們培養共同打怪的向心力,也可相互交流查核經驗、結交志同道合的朋友。

-----廣告,請繼續往下閱讀-----
李梅君分享實際參與 Cofacts 事實查核的心得,編輯志工透過每月聚會維繫共同打怪的向心力。
圖/研之有物

至於使用 Cofacts 釐清謠言的民眾又有何回饋呢?李梅君聽過一些年輕志工分享參與事實查核的原因,主要是想透過 Cofacts 的第三方資訊與長輩對話。雖然不確定長輩能否接受,卻可盡量避免家人之間發生正面衝突。

根據李梅君的觀察,在政治議題上,純粹處理謠言無法真正化解世代衝突,因為謠言只是表現形式之一,背後牽涉每個人不同的價值觀與政治立場,需仰賴更多對話空間的產生。

不過,在疫情期間,與防疫相關的健康資訊則明顯受到不同世代的共同關注,Cofacts 的使用人數因此大幅成長,其中增加最多的就是 50 歲以上的使用者。因為健康資訊較不受政治立場影響,再加上全民必須共同面對疫情威脅,世代衝突的問題自然較少。

公民團體的辛勤奔走 努力提升全民媒體素養才是真正的關鍵

ChatGPT 等生成式 AI 問世後,未來可能會出現更多人為操作的假圖文,或是誤信 AI 偏差回覆等狀況。面對上述危機,李梅君認為:

應對關鍵在於,大眾是否具備足夠的「媒體素養」與「思辨能力」去判讀網路訊息。

可惜這在我們過去的教育裡並不受重視,直到近幾年教育部才開始在 108 課綱下推動「媒體素養教育」,要求在不同年級與學科中融入媒體素養課程。例如資訊課會介紹社群媒體用演算法投放廣告的邏輯;理化課會教學生分辨並思考「偽科學」的成因;國文課則透過閱讀不同文本培養思辨能力。

-----廣告,請繼續往下閱讀-----

然而,社會上多數人沒有上過相關課程,很多還是不太熟悉數位工具的長輩,幸好現在有 Cofacts 以及多家臺灣公民團體在做媒體素養教育。他們主動走進長輩的生活圈,教長輩怎麼使用手機、如何確認訊息真假,甚至鼓勵長輩善用發早安圖的習慣,成為謠言破除推手。

李梅君目前的研究正在觀察這些公民團體怎麼採取行動。例如 NGO 組織「假新聞清潔劑」會前進廟口、菜市場或老人服務中心等長輩聚集地,舉辦街頭宣講活動。在宣講過程中,一開始不會直接跟長輩講假訊息,因為假訊息在臺灣的脈絡裡很容易被導向敏感的政治議題,誤以為要聊網軍。

因此,宣講的切入點通常會先問長輩是不是常收到詐騙訊息?接著,志工會分享一些受騙案例,例如有人買了網路一頁式廣告的保養品,結果臉爛掉;或是吃了來路不明的保健食品,最後弄壞身體。藉由生活化、無政治立場、令人感同身受的案例,讓長輩意識到學會辨別訊息真假很重要!

另一個事實查核的組織「MyGoPen|麥擱騙」會製作一則則精美的謠言澄清圖文,吸引長輩像發早安圖一樣,將這些闢謠圖文大量轉發到各個群組。如此一來,長輩本身既可釐清謠言,還可幫助更多長輩遠離詐騙,更證明自己擁有不輸給年輕人的知識與能力。

-----廣告,請繼續往下閱讀-----
「MyGoPen/麥擱騙」製作的謠言澄清圖文,網站上也有詳細的澄清說明與參考資料
圖/截圖自 MyGoPen 群組

「我覺得這是很令人感動的事情,因為這個題目很難,可是有很多人願意用不同的角度去介入,而且大部分都是志工。」李梅君有感而發的說。

臺灣長期被國際視為境外假訊息泛濫的國度,如今一個提升全民媒體素養的生態圈正在形成,因假訊息而延伸出的世代衝突問題有待長時間相互理解溝通,但公民社群的力量讓人們看見改變的契機。

李梅君有感而發的談到,過去很多國際友人將臺灣視為一處被假訊息攻擊很嚴重的地方,現在我們已發展出一個應對的生態圈,國際上越來越多人來跟臺灣學習!圖/研之有物

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3553 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

0
2

文字

分享

1
0
2
電子信箱串連 Line 通知?再也不怕漏收重要信件!信件自動化篩選、通知,詳細教學!
泛科學院_96
・2024/05/19 ・4129字 ・閱讀時間約 8 分鐘

上次 notion + zapier 做完後,開會總算沒挨罵了,自動化服務真的讚!

而這次介紹 MAKE 串 LINE 做重要信件通知,也源自於我遇到的問題。

如果你不想聽故事,可以往下看教學。

Line Notify

首先,我們會用到 line notify 的服務,要先到官網登入申請。

-----廣告,請繼續往下閱讀-----

登入後如果完全沒用過,會直接進到登錄服務畫面。

這邊除了 email 以外可以隨便填,email 之後要收確認信用的,請用你常用的 email。 然後提醒一下,網址跟 callback URL 不要用 google 之類常見的網址,會沒辦法通過,請隨便打一串看起來正常的網址。

設定完成後按登錄。

這時回去剛剛填的 email 收通知信,開通剛設定好的 line notify。

-----廣告,請繼續往下閱讀-----

大功告成,這時點右上角的「管理登入服務」,就會看到剛剛設定好的 line notify,這樣 line 的部分就設定好了,可以去 make 做自動化串連。

Make

接著登入 make,如果是第一次使用,他會問你很多廢話。

不用管他隨邊點,直到你看到這個畫面。

點右上角 creat a new senario。

-----廣告,請繼續往下閱讀-----

一進去會看到的這個圓圈,這個圓圈跟之前 Zapier 說的 trigger 是一樣的東西,可以手動自己設定流程 flow。

但我們還是叫 AI 幫我們啦,點右下角的 AI Assistant,對話框選選 creat or edit a senario。

輸入「if my gmail get a new email, then send LINE notification」

然後得到畫面上的 flow,左邊是 Gmail watch email,右邊是 line send a notification。

如果你用中文輸入類似的內容,常會跑出很複雜的 flow,這種 flow 裡面有很多有趣的功能。

但這集用不到,我們還是先回到正確的 flow 上。

-----廣告,請繼續往下閱讀-----

點開 gmail,連上要整理的信箱。

連接完成後進入設定,先點選藍色的 click here to choose folder。

這邊會出現你在 gmail 裡做的標籤分類,由於我完全沒有按照規則整理,就直接選 inbox,對所有郵件進行分析。

filter type 用 simple filter。

-----廣告,請繼續往下閱讀-----

下面的 Criteria 選 all emails 就好了,我們後面會再用 filter 細分。

然後這個,選 no。

選擇 yes 會把偵測過的 email 變成已讀,我不想這樣。

然後這邊是每次執行 flow 時,會抓取多少筆最新的 email 到 line 上發布通知。

-----廣告,請繼續往下閱讀-----

免費的 make 是 15 分鐘執行一次 flow,請自己評估每 15 分鐘會收到多少封有用的信件,設定太多你的 LINE 通知會炸裂。

我自己測試後,設定為 5 就差不多了。

設定好點下 OK,會跳出從哪封 email 開始抓資料,用 from now on 就好,之後的新郵件就會自動讀取了。

按下OK,接下來就可以來設定 filter 啦。

-----廣告,請繼續往下閱讀-----

點連接線旁邊的板手會跳出選單,選第一個 set up a filter。

進入 filter 設定畫面,上面的 label 是幫這個 filter 上標籤,填你喜歡的就好。

然後點 condition 下面的輸入框,選 subject 標題跟 text content 內文。

然後在 text operator 這裡,選擇 contains。

contains 是在特定字串中如果包含某個關鍵字,就可以通過。

這邊說的特定字串,就是上面欄位設定的標題跟內文。

接下來,在下面空格打上關鍵字,就完成啦。

如果有多個關鍵字要篩選,點選 add OR rule 設定其他關鍵字,不能多個關鍵字打在一起。

按下OK,你會看到板手變成一個漏斗,這樣 filter 就設定完成。

接著點開 line,他會要你輸入 notify API。

回到 line notify 的「管理登入服務」頁面,點擊剛剛設定好的服務,進入服務細節的頁面,複製上面的 client ID。

回到 Make 複製貼上按SAVE。

接著會進到這個頁面,這邊是設定你要在哪個聊天室發送通知,你可以設定在工作群組發送,我這邊先設定我自己就好。

然後進入 line 推播訊息的設定頁面。

message 這欄可以打成這樣,這樣就不會丟一個不知道在做什麼訊息,你也可以發揮創意寫一些幹話進去,增添趣味。

下面的設定用不到,我們直接按OK就完成了。

接下來就要測試啦,我先分別寄三封信件到公用信箱中,分別是:

  1. 標題有關鍵字
  2. 內文有關鍵字
  3. 沒有關鍵字

寄完後,按下 run once。

成功的話就會在 line 上收到通知,果然,沒有把不含關鍵字的信件傳到 line 上,測試成功。

現在把下面的 scheduling 打開,就完成所有設定了。

以後再也不用擔心自己漏接公用信箱的重要信件啦!

結論

最後分享一下實做心得:

比起 zapier 跟 ifttt,make 用起來更有寫程式的感覺,對完全沒有程式背景的人,Zapier 跟 ifttt 會比較好上手,但在免費版的情況下,make 能做到比 zapier 更複雜的自動化功能。

像前面有出現過的複雜流程圖,就可以用 router 做出複數條件判斷的流程,例如前面抓gmail的流程,加上 router 後就不只能傳送提醒到line,還能自動回復罐頭訊息給符合條件的郵件,這如果要在zapier做,就要做兩個流程才能達成了。

另外如果你的公司信箱不是使用Gmail,前面的模組可以從Gmail改成Email,Connection type選用Microsoft系列。

理論上只要這邊按 save,就可以選擇你要串連的microsoft帳號。我串完之後還是抓不到信件,但 make 跟 microsoft 帳戶上,都顯示授權成功,如果有人知道這是什麼問題,請一定要留言告訴我⋯⋯

這次的分享就到這邊,如果有其他想看的 AI 工具測試或相關問題,可以直接留言 ,或給加入 Discord 跟我們一起討問喔。

如果喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,我們下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 1
泛科學院_96
44 篇文章 ・ 49 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

2

1
1

文字

分享

2
1
1
讓 AI 取代真人執法可行嗎?將判斷全交給 AI 可能隱藏什麼危險?——專訪中研院歐美研究所陳弘儒助研究員
研之有物│中央研究院_96
・2024/03/18 ・6292字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

人工智慧將改變以人為主的法治領域?

由人工智慧擔任警察,再也不是科幻電影的情節,交通管制常見的科技執法就是應用 AI 辨識闖紅燈、未依規定轉彎、車輛不停讓行人等違規行為。 AI 的客觀、高效率正在挑戰以人為審判主體的法治領域,這樣的轉變會對我們產生什麼影響呢?中央研究院「研之有物」專訪院內歐美研究所陳弘儒助研究員,他將帶我們思考:當 AI 取代人類執法時,將如何改變人們對守法的認知?

交通尖峰時段,後方出現一台救護車,你願意闖紅燈讓道嗎?
圖|iStock

想像有一天你正在尖峰時段開車,車子停在十字路口等紅燈時,後方出現一輛急駛而來的救護車,你為了讓道必須開過停止線。這時你是否願意冒著違規被開罰的風險?還是承擔風險以換取他人盡速就醫?

在上述情境中,針對「要不要闖紅燈」我們經歷了一段價值判斷過程。如果剛好十字路口有真人警察,他的判斷可能是:這是情急之下不得不的行為,並非蓄意違規。

然而,如果負責執法的是「法律人工智慧系統」(Artificially legal intelligent,簡稱 ALI)情況可能截然不同。

-----廣告,請繼續往下閱讀-----

ALI 這個詞源自 Mireille Hildebrandt 的研究,在概念上可區分為兩類:採取傳統程式碼的 IFTTT(if this then that)、運用機器學習的資料驅動。前者是注重法律推理或論證的計算機模型,將法律規範轉為程式碼,藉由程式編寫來執行法律任務。後者則透過大量資料的學習,來預測行為範式,用於再犯率、判決結果預測上有較好的成果。

一般情況下,應用在交通管制的 ALI 會辨識車輛是否超速、闖紅燈等違規行為,不過交通情境千變萬化,ALI 能否做出包含「道德價值的判斷」將是一大挑戰!

中研院歐美研究所陳弘儒助研究員察覺,人工智慧(AI)正在左右人們對守法的價值判斷及背後的因果結構,進而反思當我們將原本由人來判斷的事項,全權交由 AI 來執行時,可能產生哪些潛移默化的影響?

讓我們與陳弘儒展開一場從法哲學出發的對話,探索 AI 與法治價值之間的緊張關係。

-----廣告,請繼續往下閱讀-----
中研院歐美研究所陳弘儒助研究員,從法哲學出發,探索 AI 與法治價值之間的緊張關係。
圖|之有物

問

怎麼會對「人工智慧」(AI)與「法律人工智慧系統」(ALI)產生研究興趣?

會對 AI 感興趣是因為我很早就對電腦有興趣,我原本大學想唸資訊工程,因為高中有些科目沒辦法唸,於是去唸文組,大學進入法律系就讀,研究所考入「基礎法學組」研讀法哲學。

後來我到美國讀書,當時 AlphaGo 的新聞造成很大的轟動,啟發我思考 AI 的應用應該有些法律課題值得探討,於是開始爬梳 AI 與法律的發展脈絡。

AI 這個詞大概在 1950 年代被提出,而 AI 與法律相關的討論則在 1970、80 年代就有學者開始思考:我們能否將法律推理過程電腦程式化,讓電腦做出跟法律人一樣的判斷?

事實上,AI 沒有在做推理,它做的是機率的演算,但法律是一種規範性的判斷,所有判斷必須奠基在法律條文的認識與解釋上,給予受審對象合理的判決理由。

這讓我好奇:如果未來廣泛應用 AI 執法,法律或受法律規範的民眾會怎麼轉變?

-----廣告,請繼續往下閱讀-----

至於真正開始研究「法律人工智慧系統」(ALI)是受到我父親的啟發。有一陣子我經常開車南北往返,有一天我跟父親聊到用區間測速執法的議題。交通部曾在萬里隧道使用區間測速,計算你在隧道裡的平均速率,如果超速就開罰。

父親就問我:「政府有什麼理由用區間測速罰我?如果要開罰就必須解釋是哪一個時間點超速。」依照一般的數學邏輯,你一定有在某個時間點超速,所以平均起來的速率才會超過速限,可是法律判斷涉及規範性,我們必須思考背後的正當性課題,不能只用邏輯解釋,這啟發我逐漸把問題勾勒出來,試圖分析執法背後的規範性意涵。

問

如果將執行法律任務的權限賦予 AI,可能暗藏什麼風險?

我們先來談人類和 AI 在做判斷時的差別。人類無時無刻都在做判斷,判斷的過程通常會先做「區分」,例如在你面前有 A 和 B 兩個選項,在做判斷前必須先把 A 和 B 區分開來,讓選項有「可區別性」。

在資料龐大的情況下,AI 的優勢在於能協助人類快速做好區分,可是做判斷還需經歷一段 AI 難以觸及的複雜過程。人類在成長過程中會發展出一套顧及社會與文化認知的世界觀,做判斷時通常會將要區分的選項放進這個世界觀中,最終做出符合社會或自身考量的抉擇。

-----廣告,請繼續往下閱讀-----

當我們將判斷程序交由 AI 執行,就會涉及「判斷權限移轉」的問題,這經常在日常生活中發生,你只要發現原本自己可以執行的事情,有另外一個對象做的比你好或差不多好,你就會漸漸把判斷的工作交給它,久而久之,你大概會覺得這是很好的做法,因為可以節省大量時間。

自駕車導航系統就是判斷權限移轉的例子,由於導航通常可以找出最佳行車路線,駕駛人幾乎會跟著走,但仍有可能誤入路況不佳或無法通行的地方。
圖|Vladimir Srajber, Pexels

我擔心這種判斷權限移轉會快速且廣泛的發生,因為 AI 的工作效率極高,可以大幅節省人力成本,但是哪一些權限可以放給 AI?哪一些權限人類一定要守住?我們經常沒有充足的討論,等到發生問題再亡羊補牢可能為時已晚。

以讓道給救護車而闖紅燈的情境為例,如果讓 AI 來做交管,可以節省警察人力,又可以快速精準地開罰,卻迫使民眾需額外花時間,證明闖紅燈有正當理由。如果是真人警察來判斷,警察通常會認為你的行為有正當理由而不開罰。這對於受法律規範的民眾來說,會產生兩種全然不同的規範作用。

AI 產生的規範作用會讓民眾擔心事後銷單的麻煩程序,如果無法順利解決,可能會訴諸民意代表或上爆料公社,並漸漸改變民眾對守法的態度。而真人警察產生的規範作用,將使民眾自主展現對法律的高度重視,雖然當下的行為牴觸法律,卻是行為人經過多方權衡後做的判斷,相信法律會支持自己出於同理心的行為。

-----廣告,請繼續往下閱讀-----

問

使用 AI 執法除了看上它的高效率,也是因為和真人相比 AI 不會受私情影響,比較可以做出公正的判斷。如果從法治觀念來看,為何決策權不能全權交由 AI 執行?

我認為法治的核心價值在臺灣並沒有很好的發展,我們常想的是怎麼用處罰促成民眾守法,長久下來可能會得到反效果。當人們養成凡事規避處罰的習慣,一旦哪天不再受法律約束,可能會失去守法的動機。

事實上,法治最根深柢固的價值為:

法律作為一種人類行為規範的展現,促使民眾守法的方式有很多種,關鍵在於尊重人的道德自主性,並向民眾陳述判決理由。

給理由非常重要,可以讓民眾不斷透過理由來跟自己和法律體系溝通。如此也可以形成一種互惠關係,使民眾相信,國家公權力能用適當的理由來制定法律,而制定出的法律是以尊重公民自主性為主。當民眾理解法律對我所處的社會有利,會比較願意自動產生守法的動機。

AI 執法看似比人類「公正無私」,但它的執法方式以處罰為主、缺乏理由陳述,也沒有對具體情境的「敏感性」。人跟人之間的互動經常需要敏感性,這樣才能理解他人到底在想什麼。這種敏感性是要鍛鍊的,真人警察可在執法過程中,透過拿捏不同情境的處理方式來累積經驗。

-----廣告,請繼續往下閱讀-----

例如在交通尖峰時段應該以維持交通順暢為原則,這時警察是否具備判斷的敏感性就很重要,例如看到輕微的違規不一定要大動作開罰,可以吹個警笛給駕駛警示一下就好。

我越來越覺得人類這種互動上的敏感性很重要,我們會在跟他人相處的過程中思考:跟我溝通的對象是什麼樣的人?我在他心中是什麼模樣?然後慢慢微調表現方式,這是人類和 AI 最根本的不同。

行動者受各種法律變項影響的因果圖。上圖是由真人警察執法,對於處罰之可能性有影響力,可依不同情境判斷是否開罰。下圖是由全自動法律人工智慧執法,由 AI 直接將處罰之可能性加諸在行動者身上,缺乏真人警察二次確認,很可能影響行動者對守法與否的衡量。
圖|之有物(資料來源|陳弘儒)

問

相較於法律人工智慧,ChatGPT 等生成式 AI 強大的語言功能似乎更接近理想中的 AI,其發展可能對我們產生哪些影響?

我認為會有更複雜的影響。ChatGPT 是基於大型語言模型的聊天機器人,使用大量自然語言文本進行深度學習,在文本生成、問答對話等任務上都有很好的表現。因此,在與 ChatGPT 互動的過程中,我們容易產生一種錯覺,覺得螢幕後好像有一名很有耐心的真人在跟你對話。

事實上,對於生成式 AI 來說,人類只是刺激它運作的外在環境,人機之間的互動並沒有想像中的對等。

仔細回想一下整個互動過程,每當外在環境(人類)給 ChatGPT 下指令,系統才會開始運作並生成內容,如果我們不滿意,可以再調整指令,系統又會生成更多成果,這跟平常的人際互動方式不太一樣。

-----廣告,請繼續往下閱讀-----
ChatGPT 能讓使用者分辨不出訊息來自 AI 或真人,但事實上 AI 只是接受外在環境(人類)刺激,依指令生成最佳內容,並以獲得正向回饋、提升準確率為目標。
圖|iStock

資工人員可能會用這個理由說明,生成式 AI 只是一種工具,透過學習大量資料的模式和結構,從而生成與原始資料有相似特徵的新資料。

上述想法可能會降低人們對「資料」(Data)的敏感性。由於在做 AI 訓練、測試與調整的過程中,都必須餵給 AI 大量資料,如果不知道資料的生產過程和內部結構,後續可能會產生爭議。

另一個關於資料的疑慮是,生成式 AI 的研發與使用涉及很多權力不對等問題。例如現在主流的人工智慧系統都是由私人公司推出,並往商業或使用者付費的方向發展,代表許多資料都掌握在這些私人公司手中。

資料有一種特性,它可以萃取出「資訊」(Information),誰有管道可以從一大群資料中分析出有價值的資訊,誰就有權力影響資源分配。換句話說,多數人透過輸入資料換取生成式 AI 的服務,可是從資料萃取出的資訊可能在我們不知情的狀況下對我們造成影響。

問

面對勢不可擋的生成式 AI 浪潮,人文社會學者可以做些什麼?

國外對於 AI 的運用開始提出很多法律規範,雖然國外關於價值課題的討論比臺灣多,但並不代表那些討論都很細緻深入,因為目前人類跟 AI 的相遇還沒有很久,大家還在探索哪些議題應該被提出,或賦予這些議題重新認識的架構。

這當中有一個重要課題值得思考:

我們需不需要訓練 AI 學會人類的價值判斷?

我認為訓練 AI 理解人類的價值判斷很可能是未來趨勢,因為 AI 的發展會朝人機互動模式邁進,唯有讓 AI 逐漸理解人類的價值為何,以及人類價值在 AI 運作中的局限,我們才有辦法呈現 AI 所涉及的價值課題。

當前的討論多數還停留在把 AI 當成一項技術,我認為這種觀點將來會出問題,強大的技術如果沒有明確的價值目標,是一件非常危險的事情。實際上,AI 的發展必定有很多價值課題涉入其中,或者在設計上有一些價值導向會隱而不顯,這將影響 AI 的運作與輸出成果。

思考怎麼讓 AI 理解人類價值判斷的同時,也等於在問我們人類:對我們來說哪一些價值是重要的?而這些重要價值的基本內容與歧異為何?

我目前的研究有幾個方向,一個是研究法律推理的計算機模型(Computational models of legal reasoning);另一個是從規範性的層面去探討,怎麼把價值理論、政治道德(Political morality)、政治哲學等想法跟科技界交流。未來也會透過新的視野省視公民不服從議題。

這將有助科技界得知,有很多價值課題需要事先想清楚,影響將擴及工程師怎麼設計人工智慧系統?設計過程面臨哪些局限?哪些局限不應該碰,或怎麼把某些局限展現出來?我覺得這些認識都非常重要!

鐵面無私的 ALI ?人類與人工智慧執法最大的分野是什麼?

陳弘儒的研究室有許多公仔,包括多尊金斯伯格(Ginsburg)公仔,她是美國首位猶太裔女性大法官,畢生為女權進步與性別平權奮鬥。
圖|之有物

陳弘儒是臺灣少數以法哲學理論研究法律人工智慧系統(ALI)的學者,他結合各種現實情境,與我們談論 ALI、生成式 AI 與當代法治價值的緊張關係。

由於 ALI 擅長的資料分類與演算,與人類判斷過程中涉及的世界觀與敏感性思辨,有著根本上的差異;以處罰為主、缺乏理由陳述的判斷方式,也容易影響民眾對公權力的信任。因此陳弘儒認為,目前 ALI 應該以「輔助人類執法」為發展目標,讓人類保有最終的判斷權限

至於現正快速發展的生成式 AI ,根據陳弘儒的觀察,目前仍有待各方專家探索其中的價值課題,包括資料提供與使用的權力不對等、哪些人類價值在訓練 AI 的過程中值得關注等。

在過去多是由人文社會學者提出警告,現在連 AI 領域的權威專家也簽署公開信並呼籲:AI 具有與人類競爭的智慧,這可能給社會和人類帶來巨大風險,應該以相應的關注和資源進行規劃和管理

在訪談過程中,有一件令人印象深刻的小插曲,陳弘儒希望我們不要稱呼他「老師」,因為他從小就畏懼老師、警察等有權威身分的人,希望以更平等的方式進行對話。

假如今天以 AI 進行採訪,整個談話過程或許能不受倫理輩分影響,但這也讓我們意識到,在 AI 的世界裡,許多人際互動特有的敏感性、同理反思都可能不復存在。

陳弘儒的研究讓我們體會,AI 在法治領域的應用不僅是法律問題,背後更包含深刻的哲學、道德與權力課題,也讓我們更了解法治的核心價值:

法律要做的不只是規範人們的行為,而是透過理由陳述與溝通展現對每個人道德自主性的尊重。

所有討論 2
研之有物│中央研究院_96
296 篇文章 ・ 3553 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook