Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

給你多少錢,才會願意放棄使用 FB ?社群軟體的體驗該如何被「金錢」衡量?──《資訊超載的幸福與詛咒》

天下文化_96
・2022/08/27 ・2405字 ・閱讀時間約 5 分鐘

使用社群媒體後,你變得更快樂還是更憂鬱?

想知道更多資訊的時候,你可能會上網搜尋。有時候是為了資訊的工具價值,比如透過 Google 地圖確認 A 地到 B地 的路線;腳踝扭傷時,也可以從網路上搜尋到應變的實用資訊;又或是並非真的出於任何用途,只覺得知道某些事很有趣,像是忽然想了解流行音樂歷史。你當然完全可以這樣做。

我們身邊有許多資訊都是一些抽象的概念,其中部分資訊卻可能和你切身相關。比如依據某些基本事實可以推斷你的預期壽命;某些資訊可以了解你的健康風險、未來「錢」景,甚至是個性。比起 10 年前,我們現在能得到的資訊更為詳盡正確,再過 10 年,肯定能夠知道得更多。

這章要談的內容很多,不妨開頭就先提示最大的重點:

研究顯示,整體而言,臉書會讓人變得比較不開心,而且可能感到憂鬱、更為焦慮,也對生活變得更不滿意。

你每天花多少時間使用 FB?使用社群軟體對你的心情造成了什麼影響?圖/Pixabay

我並不打算危言聳聽,事實上這些影響並不大。然而,它們的確存在。

-----廣告,請繼續往下閱讀-----

而與此同時,有些人明明已經停用臉書、也感受到幸福感明顯增加,卻又非常想要重新打開臉書。實際上他們要求要得到一大筆錢才願意放棄臉書。這是為什麼?我們雖然無法確定,但一項合理的解釋是,使用臉書的體驗,包括帶來的資訊,並不會讓人變得更快樂,但還是有它的價值。

無知並不是幸福,而很多人都感受到這一點。人們需要知道自己在意的資訊,這是因為喜歡、甚至珍視一種和重要的人之間產生連結的感覺。

若須付費才能使用社群媒體,會怎樣?

重要的是,我們必須強調,社群媒體的功能不僅僅是提供資訊,至少不是我在這裡反覆強調的揭露資訊的意義。你會使用臉書,可能是為了和家人或朋友聯繫,也可能是為了改善荷包或健康。但無論如何,社群媒體的一大重點在於資訊傳遞,雖然這個概念要比我目前所談的更為廣泛。

而這裡的核心問題是:社群媒體究竟多值錢?

-----廣告,請繼續往下閱讀-----

在社群媒體上,大部分的資訊是免費的,至少表面上你無須付費;或許可以說你仍需要付出注意力或個資等等。臉書和推特這些企業是從廣告獲得收益,但有鑑於相關爭議不斷,也有人認真討論起將這些平台及其服務的商業模式改成付費使用。

除此之外也有些偏理論的探討,主要關注在如何評估這些平台的經濟價值。要是民眾必須付費才能使用臉書,情況會變得如何?而民眾又願意花多少錢成為用戶?

要是社群媒體要付費的話,你們願意花多少錢呢?圖/LightFieldStudios

這些答案會透露出一些重要的資訊,讓我們知道社群媒體與一般資訊所擁有的價值。而回答這些問題,也有助於了解一些更基本的問題:如何計算經濟上的價值;知道某些消費決定可能只是表面工夫;了解傳統經濟指標與實際民眾福利有何差距(請見第二章)。此外,這些答案也會進一步影響政策與法規。

要你放棄使用 FB ,可能比要你付費使用來得更難?

行為經濟學特別感興趣的一個問題,就是「支付意願」和「願意接受金額」間可能出現的巨大落差。

-----廣告,請繼續往下閱讀-----

以臉書為例,如果我們想知道它能為我們帶來多少福利,究竟該問民眾願意為此付出多少錢,抑或該問要給他們多少錢才會願意放棄使用臉書?許多研究都探討過稟賦效應(endowment effect)的現象,也就是被要求放棄某樣商品時所要求的價格,會遠高於他們當初獲得這些商品時支付的費用

稟賦效應目前還有爭議,至少在適用的領域、來源與程度上仍未有定論。我們可能會想知道,使用社群媒體願意付出的費用,是否大於不使用社群媒體所得到的費用?如果是的話,傳統論點又能否提出說明?

IKEA 所設置的家具體驗區,常常被拿來當作「稟賦效應」的案例。圖/Pixabay

另一個同樣常見、甚至是更基本的問題,則是涉及支付意願或願意接受金額的衡量與民眾福利。我在前面也提過,在經濟學中,要是談到民眾擁有某樣商品時的福利效果,往往是以民眾願意付出多少錢來使用那件商品作為衡量。

當然,「願意付出多少錢」也是現實市場的衡量標準。但請回想一下,要提出這項金額,事實上也就是做出預測:預測該商品會對自己的福利造成什麼樣的影響。

-----廣告,請繼續往下閱讀-----

這個問題乍看不難,尤其當談到自己熟悉的商品(鞋子、襯衫、肥皂);但換做是從未使用過的商品,回答起來也就沒那麼簡單。對於一項從未擁有過的商品,哪知道能帶給自己多大的福利效果,以及可以換算成多少錢?

對許多人而言,臉書、推特、Instagram 等平台都是再熟悉不過的社群媒體,而且有著豐富的使用體驗。但出於某些我們馬上會討論到的原因,社群媒體用戶就是很難估算這些平台可以換算的金錢價值。

只要看看民眾提出使用社群媒體願意付出的金額,就會了解在尋求資訊上,「願意付出的金額」和民眾得到的福利效果似乎並不對等;同時值得進一步研究其中的福利效果究竟是什麼。

在這種時候,「願意付出的金額」只反映出部分的福利效果,還可能只反映一小部分。我們必須找出反映效果不佳的實際原因,並且嘗試找出更能呈現福利效果的方式。而我在這裡的目標,就是希望推進這項任務的進展。

-----廣告,請繼續往下閱讀-----


——本文摘自《資訊超載的幸福與詛咒》,2022 年 8 月,天下文化 ,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
從離子阱到拓樸量子位元:量子計算的未來還有多少可能?
PanSci_96
・2024/10/13 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦的新戰場:Atom Computing 的崛起

量子電腦的發展一直以來被視為科技的終極挑戰,從 Google 的量子霸權,到 IBM 不斷推進的Condor 超導電腦,業界翹首以待。然而,截至 2024 年,量子計算領域出現了一個新的變數。Atom Computing 一家美國新興公司,推出了擁有 1,180 個量子位元的量子電腦,不僅超越了IBM神鷹量子電腦的 1,121 個量子位元,甚至德國達姆施塔特工業大學也宣布開發出 1,305 個量子位元的超級電腦。

這些新興勢力的出現,不僅在位元數量上超越了 Google 與 IBM 的現有設備,更顛覆了量子電腦技術路線的既有認知。與以往依賴超導技術的量子電腦不同,Atom Computing 與達姆施塔特大學採用了「離子阱」( Ion Traps ) 技術,利用雷射與電場操控離子,形成穩定且壽命較長的量子位元。這是否意味著,超導量子電腦將不再是量子計算的唯一未來?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

離子阱技術:量子計算的新契機?

為了理解這一新興技術的潛力,我們首先需要認識量子位元的製作原理。超導量子電腦運用電子在超低溫下的行為,來實現穩定的量子狀態。然而,隨著量子位元數量增加,超導系統面臨物理尺寸與能耗的挑戰。這也是為何離子阱技術逐漸受到重視。

離子阱技術是透過電場陷阱將帶電的離子懸浮在空中,並利用雷射操控其量子態。這種技術擁有更高的穩定性,且能在更長時間內維持量子位元的疊加態。然而,由於需要超低溫、精確的電場控制以及真空環境,離子阱技術在商業應用中的成本仍然偏高,但它的潛力不容忽視。

-----廣告,請繼續往下閱讀-----

中性原子與光學魔法:更進一步的量子技術

除了離子阱技術,Atom Computing 與德國團隊則採用另一種不同的策略——使用中性原子來取代離子。中性原子不帶電,這意味著無法直接依賴電場控制,那它們如何操控?答案在於光學技術。他們運用光鑷(光學鑷子)和雷射致冷技術,用光來束縛和操控中性原子。光鑷是 2018 年諾貝爾物理學獎的技術,利用雷射的動量來推動和控制微小的粒子。

在這種方法下,雷射不僅能束縛原子,還能通過致冷技術將原子的運動降到極低,使得量子態更穩定。這種新興技術雖然仍處於實驗階段,但已顯示出其在量子計算中的巨大潛力。

量子點與鑽石空缺:人造原子的力量

另一個在量子計算領域獲得關注的技術是「量子點」( Quantum Dots )。量子點被視為人造原子,科學家透過在矽晶體等半導體材料中束縛電子,並利用微波來控制其自旋狀態。這項技術的最大優勢是半導體產業已經相當成熟,因此如果量子點技術能成功商業化,其普及速度將非常快速。即便如此,量子點技術仍需要在低溫環境下運作,且面臨如何克服材料內部雜訊干擾的挑戰。

與此類似的技術還包括「鑽石空缺」( Diamond Vacancies ),它透過在人造鑽石中替換部分碳原子,以氮原子取代,並使用雷射來激發這些空缺結構。鑽石空缺技術的最大優點是它不需要極低溫,能在室溫下運作,這使得它在未來的量子計算應用中具有很大的潛力。

-----廣告,請繼續往下閱讀-----
量子電腦模擬的原子核 。圖/wikimedia

二維世界的探索:拓樸量子位元

隨著三維物理的極限逐漸顯現,科學家們將目光投向了二維世界,探索其中的量子計算可能性。微軟與貝爾實驗室都在研究的「拓樸量子位元」( Topological Qubits ) 便是一個例子。拓樸量子位元基於一種稱為「任意子」( Anyon ) 的準粒子運作,這種粒子只存在於二維空間中,並且擁有無視傳統量子力學法則的特性。

拓樸量子位元透過操控粒子的空間幾何軌跡來實現運算,這種軌跡在二維空間中表現出穩定且高度容錯的特性。因此,與其他量子位元相比,拓樸量子位元的穩定性與耐久性更佳。然而,這項技術仍處於實驗階段,距離實際應用還有一段路要走。

量子電腦的未來:量子糾錯與穩定性挑戰

儘管量子電腦擁有極大的潛力,但其目前仍面臨著許多挑戰,最重要的便是量子位元之間的「保真度」( Fidelity ) 與「量子糾錯」( Quantum Error Correction ) 技術。現代的量子電腦對外界干擾極為敏感,甚至微小的環境變化都可能導致計算結果的錯誤。因此,提升量子位元的精確率,並開發有效的糾錯技術,是量子計算未來必須跨越的關鍵。

以 Google 為例,他們在 2023 年發布的研究顯示,通過增加量子位元數量並使用「表面碼」( Surface Code ) 技術,他們成功降低了量子計算中的錯誤率。這項進展意味著量子糾錯技術正逐步成為現實,然而,大規模商業化的量子電腦仍需更多時間才能問世。

-----廣告,請繼續往下閱讀-----

誰將引領量子計算的未來?

量子電腦的發展方向多樣,從超導量子電腦、離子阱、中性原子、量子點、鑽石空缺,到拓樸量子位元,每一種技術都有其獨特的優勢與挑戰。誰能成為量子計算的最終霸主,仍然是未解之謎。或許在不遠的將來,量子電腦將以我們無法想像的速度改變世界,重新定義我們對計算、數據與科技的理解。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。