0

1
2

文字

分享

0
1
2

如何用穿隧效應,洞察量子天地?中研院自行架設掃描穿隧能譜

研之有物│中央研究院_96
・2017/06/22 ・4175字 ・閱讀時間約 8 分鐘 ・SR值 584 ・九年級

量子物理抽象藝術示意圖。圖/Pixabay

「穿隧光譜能譜」的重要性

2016 年 11 月,中研院物理所與台大、清大的合作研究團隊,確認了層狀材料 PbTaSe2 ,如理論預測般具有可形成拓樸超導體的條件。拓樸超導體的特性可以做為容錯性量子計算的基礎,而使量子運算的技術有了重大的發展。

促成此研究的關鍵技術,正是由中研院物理所莊天明研究團隊,利用自行架設的掃描穿隧能譜。應用了量子世界的穿隧效應,而成功觀測到了 PbTaSe2 的能譜特徵與超導特性。

量子世界的穿隧效應

19 世紀末,伴隨著「牛頓力學」、「馬克斯威電磁理論」與「熱力學」三大定律等經典物理學理論的完成,大自然的物理規律,被美麗而清晰的理論與公式所描繪,帶來了物理發展的巔峰。

除了「光速恆定」與「黑體輻射」這兩個既有理論無法解釋的異數,物理學家們幾乎已經掌握了世界運行的法則。然而,短短數年內,科學家們陸續發現經典物理學沒有辦法解釋微觀尺度下的物理現象。

二十世紀初,量子力學的發展,開啟了微觀尺度的物理研究新世界。隨著普朗克(Max Planck)提出能量量子化;德布羅意(Louis de Broglie)提出物質波;戴維森(Clinton Davisson)及革末(Lester Germer)以電子束撞擊鎳晶體表面,發現電子束有類似光波的干涉與繞射現象。進而證實了微觀尺度下,物質在不同條件時會分別表現出現像粒子或波動的特性,稱之為「波粒二象性(wave-particle duality)」。這個微觀尺度下的特性,讓如電子這樣的微小粒子,在遇到能量更高的障壁時,並不會被完全阻擋。

只要障壁的能量不是無窮高,障壁的厚度也不是無窮厚。粒子就有機率可以穿透這道障壁,這就是所謂的「量子穿隧效應(Quantum Tunneling Effect)」。

「掃描穿隧顯微鏡」與「掃描穿隧能譜」

量子穿隧效應也應用於快閃記憶體等當代重要的科技,更被應用於精密觀察物體表面奈米結構的「掃描穿隧顯微鏡(scanning tunneling microscope, STM)」。

STM 具有原子尺寸的解析度,可以用來觀測物體表面的原子排列、結構及動態行為等。 STM 利用一個微小的探針,在探針與待測物之間加上一個電壓差(偏壓, bias),當探針與待測物接近到大約 10 Å 的距離,穿隧效應會讓電子從探針穿隧到待測物上,而產生穿隧電流(tunneling current)。

當探針開始在待測物表面水平移動時,由於待測物表面有不同的高低起伏,會改變待測物與探針之間的距離,而影響電子可以穿隧的機率,進而反映出不同大小的穿隧電流。

藉由量測穿隧電流的強弱,可以反推得到待測物表面的高低變化。若是將探針的針尖做到單原子的大小,就可以觀測到待測物表面一顆顆原子排列的樣貌。

掃描穿隧顯微鏡(STM)原理示意圖。來源/The IAP/TU Wien STM Gallery;圖製/廖英凱、張語辰
穿隧效應示意圖:(圖 1)電子填充在待測物的能量谷中,填充的頂部能階,稱為費米能階 εF 。在特定能量 ε 時,這一段能量谷裡所能分布的電子數,就是狀態密度。(圖 2)探針與待測物之間的真空屏障製造了相當大的能量障蔽,阻礙電子的流動。如同爬山一般,必須提供足夠大的能量(功函數),才能讓電子在兩物體之間流動。(圖 3)如果在探針(或樣品)製造一個偏壓,使兩物體的費米能階有高低差時。電子就有機會利用穿隧效應通過真空屏障。在此圖中,電子由待測物的價帶到達探針的傳導帶。 來源/Hoffman Lab;圖製/廖英凱、張語辰

科學家除了利用 STM 來觀察表面結構外,也可以藉量測穿隧電流的微分電導(dI/dV),來得知待測物的電性結構。

科學家從量測穿隧電流的微分電導(dI/dV)得知待測物的電性結構。 圖說/廖英凱、張語辰

LDOS 指的是材料的局部狀態密度(local density of states),可理解為在某一個特定能量時,我們可以放多少電子在這個位置上。同一顆原子, LDOS 會隨能量改變(以半導體為例:在能隙中 LDOS 為零,導電帶中能量越大 LDOS 越高)。

研究者可藉量測不同偏壓下的穿隧電流,以獲得原子的 LDOS,這種技術就是掃描穿隧能譜(scanning tunneling spectroscopy, STS)。

新穎的量子材料,儘管是相同元素的原子,在一樣的能量狀態下,也會在不同的位置表現出不同的 LDOS 。利用 STM 進行掃描得到表面形貌同時,進行 STS 的量測可以獲得穿隧能譜影像,得知電子在材料中不同位置與不同能量下的 LDOS 分布。

這時候我們可以注意到,要知道待測表面的電性結構,所要量測的物理量,只需要給定的偏壓和量測到的穿隧電流強度即可。研究者在利用 STM 掃描得到待測物表面高度的同時,還可以在每一個測量點上,給予數個不同的偏壓大小,來得到不同偏壓時的穿隧電流以估算出 LDOS 。掃描穿隧能譜(STS)就是應用掃描穿隧顯微鏡(STM)的掃描功能,來量測材料的局部狀態密度。

在傳統電性的實驗中,研究者處理的往往是組成元素較單純的材質。量測的目標是材料的電阻、電壓、電流等電性參數,並不著重於每一顆電子在原子尺度下的行為。猶如觀察魚群的活動,但不針對魚類個體的行為追蹤觀測。

新穎的量子材料中,電子間作用力變得更為明顯,理解電子在材料裡的複雜表現行為,是今日研究材料科學的關鍵。

對於當代更為多元複雜的新穎量子材料,研究人員必須藉由觀測微觀尺度下電子作用機制,才能了解材料中不同元素組成、比例與排列方式對電子運動的實際影響。並量測原子尺度下的相關物理量,提供給理論學家構想與修正模型的基礎。而 STS 的發展,就可以讓我們理解電子在材料中的複雜表現行為。

STS 能譜示意圖:儘管是在看似平整的表面上, LDOS 卻有複雜不均勻的分布,在不同能量時的 LDOS 分布也不盡相同。這裡就隱藏著微觀尺度下電子作用機制的奧秘。 來源/莊天明提供;圖說/廖英凱、張語辰

隱於中研院地下深處的 STM

利用 STM 和 STS 研究原子尺度的物質特徵和電子結構,仰賴非常高解析度的儀器。中研院 STM 系統藉由穿隧電流的量測,可以解析到小於 0.5 pm 以下(pm = 10-12 m)的表面形貌變化。因此,在量測過程中探針與樣品表面的距離變化更需遠小於 0.5 pm。就如同拿著高達 509 公尺的 101 大樓當作探針,但僅能跟待測物之間有不到 13 奈米的距離調控。

由莊天明博士自製的 STM 探針:如果把 101 大樓比做 STM 掃描探針的話,如同拿著 101 大樓,但要精細調控到 13 奈米的探針進退! 圖說/廖英凱、張語辰

除了距離的調控極度精密外,每次 STS 能譜影像實驗也需量測上百萬顆原子。又由於實驗儀器所仰賴的液態氦低溫環境,會因液態氦的消耗而須定期補充液態氦,使得實驗時間僅能控制在一周左右。這導致在實驗中,每一個 LDOS 的量測時間均不到 0.1 秒。因此,在實驗系統設計上需要極度降低外界的擾動,才能避免擾動所造成的距離變化,變成穿隧電流量測時的雜訊。

這樣探索最尖端的未知領域,已並非商用量產儀器得以觸及的領域,因此中研院物理所莊天明博士的團隊,就在物理所的地下二樓最深處的一隅,自行架設了一套低溫超高真空 STM 系統。

莊天明和中研院自製的低溫超高真空 STM 系統。 攝影/廖英凱

這台 STM 系統,是由中研院物理所的團隊自行設計研發與製作,為了達到極度良好的機械穩定性,並避免來自地震、車輛通行等造成的振動影響, STM 的實驗室位於中研院物理所地下室最不受打擾的角落。

低溫超高真空 STM 系統裝置在中研院自製的減振系統上,減振系統是利用三個各填充 500 公斤鉛塊的重型支座組成一個穩定的三腳架架構。並在每個支座上裝置共振頻率為 1Hz 的氣動彈簧,其上乘載了包含超導磁鐵與填充 650 公斤鉛塊,總重約 1 噸的工作平台,以此吸收消耗外界的各種振動。

實驗系統裝設在能有效隔絕外界噪音(NIC-51:500Hz 的聲音可降低 51 分貝)的隔音室中,以避免聲音的振幅造成 STM 探針的振動。在減振系統上,STM 探針利用液態氦的潛熱(4He)可達到 1.6K 的最低溫度,這樣低溫超高真空環境可確保樣品表面一塵不染讓研究人員持續觀測同一顆原子長達至少半年。

減振基座的設計須來自對古典力學阻尼的理解;STM 探針元件的設計與材料的採用,更需考量不同材質的膨脹係數與機械性質加以設計製作。

這樣極端條件下的實驗器材,已非商業化量產器材足以負荷,都須仰類研究團隊與中研院物理所頂尖的技師團隊,從零開始的設計與製作才得以付諸實現。這正是科學研究的價值所在,不僅止於成果的發表,更體現於實踐的過程。能造就頂尖研究成果的儀器,並非來自重金重本的投資,更仰賴基礎知識與精進工藝的乘載。

莊天明認為,實驗能力的培養,能讓研究者在設計實驗之始就取得研究競爭的領先地位,進而透過實驗成果提供資訊協助理論的修正。

從看見原子到發現全新超導體

2016 年 11 月,中研院物理所與台大、清大的合作研究團隊,從理論中預測層狀材料 PbTaSe2 可能具有拓樸超導體的特性,並成功合成單晶樣品。經由掃描穿透式電子顯微鏡(STEM)確認晶體結構;與中研院的 STM 和 STS 觀測到 PbTaSe2 的表面與電子結構,確認了 PbTaSe2 具有形成拓樸超導的關鍵性質。研究團隊認為這個材料有可能作為發展容錯性量子計算的基礎,並已經相關成果刊載於期刊「科學進展(Science Advances)」。

STM 與 STS 這些表面技術的突破與應用,可以搭配巨觀尺度的電性、結構等觀測結果。去呼應與驗證肉眼可見的物理現象,是如何對應到原子尺度的電子行為。

操作推動著尖端科技進展的儀器,莊天明描述自己在科學研發的這條路上,也歷程了大學時期對課堂裡反覆對公式和例題計算的迷惘,到開始接觸研究用自己的實驗器材看到原子的樣貌、量到波函數、親眼驗證了波粒二重性理論的感動。

或許,這就是激勵無數基礎科學研究者的迷人之處,承啟數百年來的知識累積,化為清幽一隅的獨步科技,煉成未至之境的領航明燈!

延伸閱讀:

採訪編輯|廖英凱美術編輯|張語辰

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。


本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位


 

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2354 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
強核力與弱核力理論核心:非阿貝爾理論——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/28 ・1733字 ・閱讀時間約 3 分鐘

非阿貝爾理論

量子色動力學與弱核力理論有個更為奇特的性質,兩者都是「非阿貝爾理論」 (non-Abeliantheories)。非阿貝爾的意思是強核力與弱核力理論核心(參見【科學解釋 6】)的對稱群代數是不可交換的。簡單來說就是「A 乘 B」不等於「B 乘 A」。

一般人的常識會告訴你,如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣,你用計算機怎麼試答案都不變。一個袋子裝三塊錢、兩個袋子總共是六塊錢;一個袋子裝兩塊錢,三個袋子總共還是六塊錢。

如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣。圖/pixabay

這件事對數字永遠都成立,是千真萬確的事實。然而,我們有個很好的方法能定義出一套數學架構,其中的 AB 不等於 BA。實際上,數學家已經鑽研這個領域很多年了。

條條大路通數學

或許更驚人的是,物理學家竟然也在許多地方應用這套數學,因為某些和物理學相關的事物也是 AB 不等於 BA。矩陣就是我們表示這些東西的一種方式。現在我在倫敦大學學院為新生上的數學方法課就有介紹矩陣力學。以前我的學校制定了一套「新數學」的課綱,所以我在年僅十五歲的時候就多少認識一點矩陣了。

數學的一個矩陣是一群按照行列排列整齊的數字。把兩個矩陣 A 和 B 相乘,會得到另一個矩陣 C,方法是把對應的列和行上面的數字依序相乘。

這種矩陣聽起來可能不像某部電影裡面那掌控一切、創造虛擬實境的超級電腦一樣迷人,卻有用的多。這部電影的角色身穿黑色皮衣,還有出現著名的慢動作躲子彈鏡頭

慢動作躲子彈鏡頭。圖/giphy

我來舉個例子。

你可以用一個矩陣來描述你移動某個物體的結果。相乘的順序(AB 或 BA)在這個例子有明顯的區別。物體先在原地轉九十度再向前直直走十公尺,和先走十公尺再轉九十度,兩種移動方式最後的終點顯然不會相同。假設矩陣B代表旋轉,矩陣 A 代表直行,那麼合在一起的「旋轉後直行」就是矩陣(C = AB);這和「直行後旋轉」的矩陣(D = BA)必定不會相同。C 不等於 D,所以 AB 不等於 BA。要是 AB 和 BA 永遠相同,我們就沒辦法用矩陣來描述這類的移動過程了。正是因為矩陣的乘法不可交換―非阿貝爾,這個工具才會如此有用。

數學和真實世界密不可分

在狄拉克試圖要找出能描述高速電子的量子力學方程式時,矩陣被證實是他所需要的工具。實際上,電子有某項特性讓狄拉克不得不使用矩陣來表示它,這項特性與他描述電子自旋的語言同出一轍;所有原子的行為和元素周期表的規律,都與自旋有深刻的關聯。除此之外,這個性質也啟發狄拉克去預測有反物質的存在。

數學和真實世界之間似乎有緊密的關係,這讓我讚嘆不已。優秀的研究要能解決問題、也要能提出好的問題。而問題永遠比解答還要多,為了研究我們要付出許多的時間和金錢,因此大家得做出抉擇。數學是威力極大的工具,能幫助科學家檢查實驗數據、並從結果當中尋找最有趣的新實驗方向。就算有些方法和結論,好比矩陣及反物質,看起來可是相當古怪的。

秉持著這份精神,我要在繼續討論希格斯粒子搜索實驗之前,先繞個路來講微中子,最後這回要介紹的是一個很重要的真實結果。2012 年 3 月 7 日,中國的大亞灣核反應爐微中子實驗(DayaBay Reactor Neutrino Experiment)發表了最新的研究成果。

One of the Daya Bay detectors.圖/wikipedia

他們的實驗結果不但對標準模型影響重大,也會決定粒子物理學未來的研究走向。如果你只想要繼續讀希格斯粒子的故事,大可跳過這一段沒關係,下一節再見。但是微中子的粉絲可千萬別錯過精彩好戲了!

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
50 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

0

5
3

文字

分享

0
5
3
【科學寶可夢】朱/紫中的骨紋巨聲鱷 & 狂歡浪舞鴨:一個締造火焰新紀錄、一個用腳踢破音速
Rock Sun
・2022/12/23 ・3135字 ・閱讀時間約 6 分鐘

身為一名訓練師,你真的了解你的寶貝們嗎?寶可夢圖鑑讀熟了沒?

其實圖鑑告訴你的比想像中的還多喔!跟著泛科空想寫手 Rock 一起來上一門訓練師的科學課吧!來跟大家分析這些寶可夢的戰鬥是多麼的「科學」。

骨紋巨聲鱷:火焰溫度新紀錄

Skeledirge - WikiDex, la enciclopedia Pokémon
圖/Bulbapedia

啊~火焰!

幻想世界中骨灰級的攻擊武器,也是空想科學寫作時常遇到的對手。

在過去的【科學寶可夢】中,火焰已經不是第一次出現了。第二篇關於噴火龍的科學中就有稍微提到,後來因為鴨嘴火龍和火伊布的圖鑑敘述都有提到他們火焰的溫度,所以在同一篇一起分析過,但那已經是第一世代寶可夢的事了~ 現在圖鑑都來到 900 號了,事情果然很不一樣。

溫柔的歌聲能治癒聽者的靈魂,會使用攝氏 3000 度的火焰把敵人燒成灰燼。」——骨紋巨聲鱷紫版敘述註1

骨紋巨聲鱷的敘述很直接,就是直接說出了牠噴出的火焰溫度,這簡直是一個福音,這樣我們就不需要到處拼湊,可以直接地將這個數字與過去的幾個得到的火焰溫度做比較。

噴火龍:至少 1400 ℃

鴨嘴火龍:1200 ℃

火伊布:1650 ℃

火爆獸:800℃

骨紋巨聲鱷:3000℃

這也太高了吧!?先別說生物怎麼有辦法產生這種高溫註2,真的要把人燒成灰燼哪裡需要 3000℃ 啦!

就算燒成這樣只要幾百度應該就夠了。圖/維基百科

一般把屍體燒成骨灰的火葬場,溫度只需要 1000℃ 就夠了,3000℃ 根本是大材小用,而你知道這個溫度能夠辦到什麼事嗎?

絕大部分我們知道的物質在這種溫度下都會熔化或者汽化,能夠倖存的元素大概只有鎢、錸、鋨這幾個金屬還有一些特殊的聚合物了;如果燒的是人的話,別說是燒成灰,整個身體一定在一陣白光下消失的無影無蹤……因為在這種溫度下,火焰不會是正常的橘紅色,而是白色的。

這時如果骨紋巨聲鱷的訓練師就直接站在它旁邊,就算不是被直接擊中,他那超過岩漿溫度兩倍的 3000℃ 火焰所散發出的熱氣和輻射熱註3,應該足以讓訓練師瞬間嚴重灼傷,再加上強光,這絕對是不支倒地然後變成逐漸變成焦屍,然後跟四周的花草樹木付之一炬。

所以如果要叫你的骨紋巨聲鱷使出噴射火焰的話,記得先閃的非常非常遠,放招後遠距離收回寶可夢,然後趕快離開被焚化、整個燒得亂七八糟的現場。

「我只是叫我的骨紋巨聲鱷用一下火花」。圖/envato.elements

狂歡浪舞鴨:這到底是哪一國的超強踢腿舞啊?

圖/Bulbapedia

如果要說格鬥系的寶可夢要怎麼在圖鑑中誇耀他們的力量,最常用的方式就是:把東西丟出去或弄壞。

在以前的的腕力+豪力+怪力的文章中,我們可以看到各種誇耀寶可夢力氣的方式,例如、「能夠跟 100 個成年人角力把他們摔出去」、「可以用一隻指頭舉起相撲選手」、「有辦法舉起一台垃圾車」、「把人打飛到地平線彼端」……等。

而這次,我們的狂歡浪舞鴨的特技是能夠踢翻一台卡車。

只要一腳就能踢翻卡車的強韌腳力,展現充滿異國風情的舞蹈。」——狂歡浪舞鴨朱版敘述註4

要計算這有多誇張,我們需要知道一個非常重要的資訊……究竟是哪一種卡車呢?

卡車這種交通工具有非常非常多的規格,最輕的例如小皮卡只有 2~2.5 公噸,最重的可以達到 15 公噸,甚至在某些重工業地區可以找到更重的運貨卡車。

寶可夢朱/紫據稱是參考西班牙為藍本設計的,經過一番搜尋之後,筆者得知西班牙地區是全歐洲輕型卡車比例最高的地方註5,這類卡車本身重大概介於 3~4 公噸之間,如果滿載貨物的話,重量可以達到 10 公噸以上,我們這邊就大概取個平均值 7 公噸好了。

像這類的卡車就是輕型卡車~ 圖/ISUZU

然後我們還得先定義踢翻卡車這件事情:我們就假設狂歡浪舞鴨用腳朝卡車的側面一半高的地方踢下去,然後車子會以一邊的車輪為支點翻過去,側面著地。

經過一些力矩的計算,我們可以知道要把一台 7 公噸重的卡車踢翻,需要從從中間給予大約 68600 牛頓的力……這可比一台小汽車引擎全力輸出時的力道還要強啊~

筆者自製大略圖解

但是最誇張的還在後面!

最後一步,我們想要知道狂歡浪舞鴨的這一腿到底有多快!要得到這個結果,筆者需要知道此鴨的整隻腳重量為何,因為畢竟是腳在對卡車施力的。

圖鑑上寫說狂歡浪舞鴨體重為 62 公斤,而牠的外貌滿接近人形生物的,所以我們先參考人體結構來預估。人類的一整支腳平均占全身體重的 16~18% 左右,我們的狂歡浪舞鴨看起來腿略長,而且既然是格鬥系的,那牠的腿應該很壯,我們就假設牠的整隻腿重量占比更多,大概是全身的 25%,重量的話就是差不多 15.5 公斤。

要計算牠這腿速度多少,我們最後剩下需要的假設的就是假設腿和卡車的接觸時間,依照之前的經驗,就姑且設定為 0.1 秒接觸,然後腿踢中之後立刻停下,再加上很不合理的力道 100% 轉換假設,但是相信我~不這麼做的話答案只會更扯。

套入牛頓第二運動定律的公式,我們可以知道這腿在停下來之前,速度高達秒速 443 公尺也就是音速的 1.3 倍,這也太快了吧!你的腳怎麼沒有被音爆撕裂啊?相較之下,泰拳高手秒速 17 公尺的踢擊根本是個笑話,如果被狂歡浪舞鴨的這一腳踢到,我看大部分的寶可夢應該是內臟破裂死亡了。

如果是普通人的話,被踢一腳一定直接全身骨折,內臟破裂,任督二脈也不用通了。圖/GIPHY

這真是太恐怖了,但狂歡浪舞鴨你為什麼無聊要去踢卡車啊?這種腳力你應該要去踢足球啊!還有這到底是哪一國的舞蹈會有如此的訓練呢?真想知道~

註解:

  1. 骨紋巨聲鱷的另一版敘述是「可以透過歌聲改變外形的火鳥,據說是靈魂寄宿在頭上的火球所形成的。」,從這個敘述我們知道牠的火焰跟某種靈魂力量有關,這大概就是為什麼火焰溫度能達到 3000 度的秘訣吧?話說筆者很確定是這裡的溫度是說攝氏,因為英文版的敘述中有寫是 5400 華氏。
  2. 也有可能……骨紋巨聲鱷根本不是生物!畢竟牠有幽靈屬性,但這表示牠的出現根本不是進化,而是死亡呢?
  3. 這裡我們因為 3000℃ 的火焰而傷透腦筋,但你知道嗎?這還不是寶可夢圖鑑裡最扯的,有兩隻寶可夢:熔岩蝸牛 和 噴火駝,他們的圖鑑敘述都寫到牠們能夠產生 1 萬度 ℃ 的高溫,前者是體溫,後者是噴出的岩漿,這確定不是多寫一個0嗎? 目前科學家有辦法產出最高的溫度只有 4990℃ 而已啊~
  4. 狂歡浪舞鴨另一版的敘述是「會用充滿異國情調的舞蹈迷倒看到的對手,然後揮舞以水構成的羽飾將其劈裂。」為什麼羽飾是用水構成的啊?這是怎麼辦到的?這跟強力水刀差在哪裡?
  5. 幸好這代寶可夢不是參考德國,因為這是歐洲重型卡車比例最高的地方,如果狂歡浪舞鴨源自這裡,他這一腳一定超出天際。

Rock Sun
63 篇文章 ・ 619 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者