0

1
3

文字

分享

0
1
3

如果 LK-99 不是室溫超導體,有研究價值嗎?超導現象到底是什麼?

PanSci_96
・2023/08/13 ・5671字 ・閱讀時間約 11 分鐘

室溫超導發現!人類將迎來科技革命!?我到底要買哪支股票?

韓國團隊發現全新超導體 LK-99,宣稱可以在 1 大氣壓,攝氏 127 度以下維持超導態,溫度甚至比水的沸點還高!

這則新聞想必你已經看到了,不只在科學界,在全世界都炸了鍋,因為這方法簡單到具有污辱性,甚至有人比喻,這就像是有人用某個比例的蘿蔔、香菜跟芋頭煮一煮火鍋就做出長生不老藥一樣誇張。難道我們引頸期盼的材料學聖杯就這樣降臨了嗎?

LK-99 到底是什麼?這個發現有多重要?

7 月 23 日,南韓團隊宣布合成出一種新材料 LK-99,這是一種把鉛磷灰石中的鉛部分替換成銅的材料。團隊說 LK-99 已經產生超導量子阱並表現出抗磁性,是史上第一塊常溫常壓下能維持超導的材料。

-----廣告,請繼續往下閱讀-----

如果這是真的,那可能會是本世紀中最偉大的發現之一。

為什麼這麼說呢?因為超導體有一個非常特別的性質——電阻為零。

這能不興奮嗎?要知道,當你掌握一個完美的零電阻材料,意味著用它做電線,能量在傳輸時就不會因為有電阻而消耗能量,如果我們的電力系統全部換成超導體,電力傳輸時就完全不會損耗能量,甚至不用設置高壓電系統。除此之外,零電阻、零能量損耗,也意味電流經過時不會發熱。

這兩點加起來,如果我們的高鐵、超級電腦、粒子加速器甚至核融合,等等需要大量電力的設備如果全部使用超導體作為電力載體,就可以突破過往的負載極限,省下龐大的冷卻設備建置費用和空間。除了讓科幻成真,也是解決全球暖化的奇兵。

-----廣告,請繼續往下閱讀-----

但話說回來,超導體為什麼能零電阻呢?

超導體為什麼會零電阻?

我們先回到第一個超導體被發現的時刻。19 世紀末、20 世紀初,當時氫氣、氦氣等在元素週期表靠前的氣體都還未能被人類成功液化,有兩位專攻低溫物理的科學家,詹姆斯.杜瓦和海克.卡末林.昂內斯,則在挑戰這項艱難任務。兩人當中的杜瓦率先液化了氧氣與氫氣,並開發了用來儲存低溫氣體的儲存罐,至今實驗室仍然會以發明者名字命名的杜瓦瓶來儲存液態氮。

左為常壓式液態氮儲存桶(杜瓦瓶),右為正壓式液態氮儲存桶。圖/wikimedia

另一位科學家昂內斯則造出了液態氦,溫度低達攝氏 -269 度,只比絕對零度高 4K。昂內斯接著開始利用液態氦冷卻其他金屬,想觀察金屬在低溫時的特性。當時的科學家對於電阻有幾種不同的猜測,隨著溫度線性降低、停在某個極限,或是隨著溫度降低重新上升。

科學家對於電阻在低溫時的特性有不同的猜測,紅色為電阻隨著溫度線性降低,黃色是指電阻會停在某個極限,藍色則表示電阻隨著溫度降低重新上升。圖/清華大學物理系

但出乎意料的是,1911 年,當昂內斯在量測汞,也就是水銀的電特性時。溫度向下探到 4.2K 時,電阻突然雪崩式下降,突然就變成零了,第一個超導體被發現了。

-----廣告,請繼續往下閱讀-----
水銀在溫度向下探到 4.2K 時,電阻會降至零。圖/hyperphysics

超導體研究的大門至此被打開,許多超導材料陸續被發現,但直到昂內斯發現第一個超導體的 46 年後,也就是 1957 前,才有了能解釋超導現象發生的理論。理論提出者是約翰.巴丁、利昂.庫珀和約翰.施里弗三位科學家,並以三人的字首,將理論命名為 BCS 理論。BCS 理論認為,在低溫下,電子在晶格中的移動方式會產生改變。

首先,電子會兩兩成對,形成庫柏對 (Cooper pair)。接著,分散在材料中的大量庫柏對,則會形成一大團的凝聚。此時的電子就如同堅固的方陣,在材料中暢行無阻,要阻擋一顆電子,就等於要跟所有電子做對。也就是如果沒有足夠強的能量,例如高溫、高電流或高磁場一口氣拆散這團凝聚,電子在材料中的電阻就是零。

電子會兩兩成對,形成庫柏對 (Cooper pair)。接著,分散在材料中的大量庫柏對,會形成一大團的凝聚。圖/PanSci YouTube

當然,實際內部發生的事情沒那麼簡單,為什麼原本應該同性相斥的電子會手拉手成為方陣?這就與量子力學有關。電子會因為與晶格中的聲子作用形成庫柏對。所謂聲子,就是在材料晶格震盪中誕生的粒子,用以傳遞聲能、熱能。當電子與聲子作用形成庫柏對,會從原本與中子、質子類似的費米子,變成性質與光子、聲子相似的玻色子。

恩,這邊真的有點難懂,這牽涉到量子力學中粒子的自旋性。如果大家有興趣,可以留言告訴我們,我們有機會再來深入介紹這些燒腦的量子力學。

-----廣告,請繼續往下閱讀-----

總之,原本會互相排斥的電子形成了手牽手的庫柏對凝聚,並且在移動時不會與晶格產生能量交換,也就是不會產生電阻,可以在超導體中自由穿梭。

而且超導體除了零電阻之外,還有另外一個有趣的特性,就是能真正做到磁懸浮,這又是怎麼一回事?

為什麼超導體會飄?——超導體的磁懸浮

超導體的零電阻現象,最早在 1911 年昂內斯就發現了。但直到 1933 年,科學家邁斯納才發現,在超導溫度以下的超導體,就算在外加磁場中,內部也完全不會有磁力線穿透。甚至如果材料在常溫時先放進磁場中,讓磁力線通過材料,逐漸冷卻溫度到低於臨界溫度的時候,磁力線竟然也會被自動排除。這個現象稱為邁斯納效應,背後的原因,是因為一個零電阻的完美導體,可以在磁力線通過時產生感應電流,製造相同大小、方向相反的磁力線「抵銷」這些外部磁場,阻止表面磁通量的改變。因此,我們通常會稱超導體是一個完美的抗磁性材料,可以在磁場中產生斥力。

邁斯納效應,當溫度小於臨界溫度 (Tc) 時,材料內部磁場被抵銷。圖/wikimedia

等等,但你有沒有想過,一個完美的抗磁性材料,雖然可以漂浮,但在許多的超導體展示影片中,超導體都能在軌道上滑行,甚至當它懸浮在軌道下方時也不會墜落,感覺好像哪裡怪怪的吧?

-----廣告,請繼續往下閱讀-----

例如有種具備反磁性但不是超導的熱解碳,雖然可以漂浮在磁鐵上,但是會在磁鐵上方滑來滑去,無法被固定。沒錯,看到材料漂浮在磁鐵上,不見得就是超導體。

其實邁斯納效應只能解釋一部份的超導體——也就是第一類超導體的抗磁性。在高溫超導體和其他第二類超導體中,還有一個重要的關鍵:磁通量鎖定 (Flux pinning)。

第二類超導體雖然也會在溫度低於臨界溫度時進入超導態和產生邁斯納效應,將磁力線隔絕在外。但是當外加磁場存在的時候,磁力線會穿過某些通道,並且開出一個又一個的小洞,並以漩渦的形式在通道中產生「磁通渦旋」。這些渦漩是超導態被破壞的區域。但特別的是,這些小洞會牢牢抓著從中穿過的磁力線,所以當超導體懸在磁鐵側邊或下方時,仍然會被牢牢抓住。

超導體產生磁通渦旋時的磁力線分布。圖/wikimedia

講到這邊,我們已經知道超導體特別在哪裡了,那我們離將超導體實際應用還有多遠呢?

-----廣告,請繼續往下閱讀-----

超導體容易被應用嗎?為什麼很少聽到超導體產品?

在韓國超導體的消息公開之前,一直以來就有各路研究者發現在高壓下可以進入超導的材料,但這些需要高壓的材料,是難以被應用在產品中的,甚至其中的大部分都難以在其他實驗室中被還原。目前在常壓下能達到最高溫的超導體材料是汞鋇鈣銅氧化物,臨界溫度最高大約是 135K,也就是攝氏零下 138 度。雖然離室溫還很遠,但至少靠液態氮就能到達超導態。

而且事實上,要看到生活周遭的電器全部被超導體替代,真的還有一段距離。因為,除了需要臨界溫度 (Tc) 外,超導體還有兩個重要的指標:臨界電流密度 (Jc) 和臨界磁場 (Hc)。仔細想想也很合理,就算材料能允許磁力線和電子通過,也不代表能無上限的開放這些通道。因此當材料被施加過強的磁場,或是通以過強的電流,超導態就會被破壞,回到正常狀態。

雖然常見的釔鋇銅氧、鉍鍶鈣銅氧等高溫超導,已經能做到每平方公分耐受 1 萬安培以上的電流,但目前這一小塊 LK-99 能承受的臨界電流,大約只有數百毫安培。所以就算高溫超導能在實驗室中製作出來,離全面更換電網、應用在核融合等科技還有段距離。為了承受大電流,不是要找到更好的材料,就是需要製作截面積巨大的導線,不論哪一個,成本和技術都還是非常高昂。當然,我們也很期待幾年內就有人成功商業化並跳出來打臉我,我肯定會痛苦卻快樂地接受。

LK-99 能承受的臨界電流,大約只有數百毫安培。圖/PanSci YouTube

但話說回來,這次研究大家最關注的就是臨界溫度突破這一點了。很多人懷疑,至今超導材料的極限是 -138℃,一下子跳到 127℃,顯然不合常理。這就必須說說,關於「高溫超導」的物理機制我們了解多少了?

-----廣告,請繼續往下閱讀-----

咦?我們不是前面都講完了嗎?不,雖然我們前面提了 BCS 理論,看似我們對超導體已經有完整認知,可惜的是,BCS 理論涉及庫柏對與聲子的交互作用。而根據用來研究固體材料中聲子行為的德拜模型推估,BCS 理論只能用於解釋凱氏溫標 30K 以下時,材料中能形成庫柏對的原因。

那 30K 也就是 -243℃ 以上的高溫超導體呢?雖然我們知道超導現象必然與庫柏對的形成有關,也有許多論文提出不同的模型與看法,但可怕的是,從 1986 年開始發展銅氧化合物陶瓷高溫超導,第一次突破了液態氫的 40K「溫度壁壘」,至今 40 年過去了,我們還未能完全了解這些超導材料背後的物理機制。

許多年來高溫超導的研究確實是邊摸索著邊前進,藉由替換材料中的特定元素,改變晶格結構,並測量新材料的特性,試著了解其物理機制並繼續改良。例如這次韓國團隊的 LK-99,就是一種把鉛磷灰石中的鉛部分替換成銅的材料,希望通過晶格的壓縮,讓材料間能形成庫柏對。

那麼這次韓國的研究,會成為跨時代的里程碑嗎?

韓國超導體研究有什麼重要意義?

這次超導新聞一爆發,幾乎撼動了整個世界,各國專家甚至鄉民們紛紛投入實驗,想複製出一模一樣的東西。我們這些吃瓜群眾,也理所當然關心這項科技會不會引發下一次科技革命,或忙著找概念股準備投資。結果很快的,發表在 arXiv 上地論文也引起不小風波。首先,arXiv 上的論文不須經過審查,再來,隔沒幾天就爆出此文章連續兩天發布,作者名單卻不同等等的爭議。

另一方面,也有許多實驗室宣布投入研究,嘗試復刻出一樣的結果。不論是實驗復刻結果或是學術倫理的爭議,目前我們確實也只能等待其他實驗室的回饋。什麼?你說實驗很簡單,要有實驗精神,幹嘛不自己動手試看看?

LK99 還具有研究意義嗎?

但話說回來,就算這次結果出爐,LK99 不是完美的超導體,只是個具備抗磁性的材料,我們也不需要直接將此研究視為敝屣。因為只要它仍存在部分反磁性或或是特殊的電阻特徵,對於材料科學研究上就一定還是有所貢獻的。

最早,我們認為世界上的物質分為氣、液、固三態,隨著科學進步,我們逐漸發現物質在特定條件下可以出現許多有趣的特性,每次的新發現都帶來新科技革新與生活便利,例如大氣和燈管中的電漿態、主宰數十年螢幕科技的液晶態、在化學工業、半導體產業發光發熱的超流體、還有我們這集提到的超導體、凝聚態等等。

物質狀態相圖。圖/Wikimedia

在微觀尺度下,許多材料的特性我們都還未完全了解,而這方面正是我們最需要的。例如當今的半導體產業,電晶體的尺寸在物理尺度上已趨近極限,當電晶體縮到只有幾層原子甚至單層原子後,過去在塊材中沒見過的物理特性就會一個一個冒出來。

而高溫超導體中觀察到的庫柏對、玻色子、費米子之間的交互作用,更是量子力學中的重要研究對象。

最後,即使超導體無法立刻普及在生活,高溫超導體也被視為量子電腦的救星之一。目前量子電腦的候選材料有很多種,半導體、離子阱、超導體等等。但不論哪種方法,幾乎都要求極低溫。因為只要溫度一高,晶格一擾動,量子位元就會被破壞。

如果超導體可以在更高溫中運作,或至少,藉由這個研究學到的凝態物理能幫助我們開發更好的材料,都能讓我們在量子電腦科技中向前推進一大步。

這次的爆炸新聞,是成是敗還需要持續來觀察,如果有什麼後續的消息,我們也會持續關注。我們由衷希望它真的能成為超導體科技發展的一盞明燈——一盞電阻為零的明燈。

你覺得呢?你覺得這次的 LK-99 會掀起科學革命嗎?

  1. 會,不論結果如何,新的研究領域密室已經被撬開了
  2. 實驗太粗糙了,我先多打幾個問號
  3. 通用AI、核融合商轉越來越近,現在又加上室溫常壓超導,這這這,外星人應該快發出警告了吧?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
從「衛生紙」開始的環保行動:一起愛地球,從i開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1604字 ・閱讀時間約 3 分鐘

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
圖說:從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

圖說:人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

圖說:只要認明FSC(森林管理委員會)認證與PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

圖說:選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia