Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

現代福爾摩斯:鑑識科學解密──《知識大圖解》

知識大圖解_96
・2016/01/07 ・3534字 ・閱讀時間約 7 分鐘 ・SR值 509 ・六年級

police-862341_1920

封鎖線後的鑑識工作實錄

電視影集《CSI犯罪現場》自2000年開播以來紅遍全球,讓人們對於鑑識工作產生無限遐想;但許多人並不知道,犯罪調查領域其實早從西元七世紀就已經存在。

史書記載,曾有市場攤商利用指紋證明一名男子就是欠債不還的人,從那時開始,犯罪學就開展出一個全新領域。

如今,除了警察之外,最快抵達犯罪現場的就是鑑識小組,他們盡全力維持現場完整,以確保證據不被移動或破壞,增加將歹徒繩之以法的機會。不過「小組」這個詞,有時候不見得是指一群人。

「小組」的實際組成要視當地警力而定,有時所謂的鑑識小組可能就只是一名受過多重領域訓練的資深警員在現場進行縝密作業,包括拍照或蒐集指紋、衣物、毛髮、碎裂玻璃等重要跡證。不過,遇到謀殺等重大案件,就有可能出動多達四人,其中包括專業攝影人員和現場指揮。

-----廣告,請繼續往下閱讀-----

亞莉珊卓.奧圖(Alexandra Otto)是位有11年資歷的犯罪現場調查員,2006年才遷至英國多塞特的伯恩茅斯大學(Bournemouth University)擔任鑑識科學講師。透過這次與本刊的訪談,她詳細解說了鑑識工作從接到電話那一刻,到結案為止的完整過程。

「首先,我們會接到受理報案的控制中心打來的電話,接著前往現場,與警員和附近住戶談話了解案情。進入凶案現場之前,我們就已經先勘察周遭環境,尋找可能的線索。」

「接著我們穿上防護裝、戴上手套和口罩,再進入屋內。戴口罩的目的是避免唾液或其他外來物質汙染了現場證據。我們也會拍攝大量涵蓋各個角落的現場照片,主要提供檢方使用,但也會提供給辯方。接下來是開始採集證據,像是窗戶上的血跡、從衣服脫落的纖維,或是入侵者可能打開過的信封等,每個線索都不能輕易放過。」

「下個階段則是撲粉採集指紋,我們會用膠帶擷取指紋,並將其裝入特殊的封袋裡,再送去給指紋專家,其他證據則會送往實驗室。在法醫抵達現場、做完檢查之前,我們絕不隨便碰屍體。等法醫對屍體蒐證完畢,屍體會被裝入屍袋裡,送到停屍間。」

-----廣告,請繼續往下閱讀-----

「一旦實驗室做完所有檢驗和分析,我們會拿到結果報告,然後再轉交給刑警部門,由他們繼續調查工作。我們會被傳喚到法庭,針對鑑識部分作證,但偵查和分析工作實際上則分別由警探和化驗人員負責。」

近年來,英國國內多數化驗工作都交由官方的鑑識科學部門進行,但因不堪每個月高達330萬美元的虧損,該部門現已被迫關閉,目前英國警方所有的犯罪現場化驗分析都委託私人公司進行。

「這些外包公司其實很不錯,」奧圖女士表示,「唯一的問題是證據汙染。英國的鑑識科學部是全球知名的單位,尤其是它的實驗室永遠一塵不染。這一點私人公司就做不到了,不時有證據被汙染的事情傳出。像DNA這麼細微的東西,更要特別謹慎處理才行。」

屍體運離犯罪現場後,會被放入消毒過的屍袋,再送到停屍間,等待法醫驗屍,以判定死亡時間和死亡原因。同時,所有蒐集到的蛛絲馬跡都會經過化驗、分析,包括用顯微鏡檢視衣物脫落的線頭,研判嫌犯穿什麼衣物,並分析採集到的DNA片段,比對資料庫的檔案。

-----廣告,請繼續往下閱讀-----

手指的汗腺分泌在物體上,留下痕跡,或是手指在未乾油漆或其他可塑表面上施加壓力,都會留下指紋。

「像玻璃這類光滑表面,得用細小的粉末,例如鋁粉或金粉,」奧圖女士解釋,「粗糙的表面要用顆粒狀的粉末,讓粉末吸附在能顯現指紋形狀的汗水上,才能採得清晰的指紋。」

54
本圖出自《How It Works知識大圖解 國際中文版》第14期(2015年11月號),全見版請點擊圖片放大。

每個人的指紋都不同,因此在門把或屍體上採到指紋,就可被視為某人曾經到過犯罪現場的鐵證。儘管單從指紋本身無法判定遺留時間,凶嫌也可能故佈疑陣來栽贓他人,但指紋在警方欲證明某人曾到過某處時,依舊提供了有力的佐證。

指紋採集之後,會送交給指紋辨識專家,將指紋與電腦中累積數十年的指紋資料庫比對,看是否有符合的檔案。

-----廣告,請繼續往下閱讀-----

指紋辦案的基礎,建立在每根手指上的斗形紋、箕形紋或弧形紋都獨一無二,至今還沒發現有任何兩個人的指紋相同。因此只要指紋符合,就足以作為某人與案情有關的充份證據。

近年來指紋技術的進步,讓鑑識人員甚至能從食物上取得清晰度極高的指紋,這在過去很難辦到。只要用改良過的粉末懸浮液(一種焦油般的物質),就連在光滑表面上也能讓指紋清晰顯露,這也代表鑑識人員又多了一種取得線索的管道。

鑑識調查的另一個主要範疇是DNA比對。這塊領域的發展相對較晚,1980年代才出現,但指認身分的準確度卻高的驚人。DNA比對的辦案方式,是將嫌疑犯身上的DNA與犯罪現場找到的DNA相互比對。DNA可以從現場的血跡、毛髮,甚至是無意間把鼻子靠在窗戶上留下的油脂中取得,只要DNA符合,就能合理推斷某人曾到過某處,不過到達的時間點和原因仍須後續調查。

顯然光是確認某人到過凶案現場並不足以定罪,尤其在先進的鑑識技術經過媒體廣為宣傳後,連罪犯也知道該如何避免留下線索,或故佈疑陣誤導辦案。雖然鑑識證據可以告訴警方誰碰過哪些東西、誰的DNA出現在何處,但它們還是跟鑑識科學以外的證據(例如目擊者說法、不在場證明)一樣,有賴警方正確運用並綜合判斷。

-----廣告,請繼續往下閱讀-----

除此之外,DNA和指紋比對技術的另一個重大限制,是遺留這些跡證的人必須是警方已掌握的涉案人員。雖然這些資料能拿去比對全國性資料庫,但若資料庫裡沒有嫌犯的檔案,調查就會陷入泥淖。警察只有在逮捕嫌犯的時候可以採集DNA和指紋,而英國最近更立法規定,除非嫌犯被判重罪,否則其檔案資料都必須在六個月內銷毀。不過,擁有DNA資料庫的好處是越來越多陳年舊案因此獲得重大突破,不少案例是因為警方取得嫌犯的DNA,送進電腦比對過去曾取得的犯罪現場DNA,才讓舊案得以偵破。單靠鑑識科學本身並無法破案,但多了這個有力的辦案工具,警方確實因此如虎添翼。

若刑案涉及槍枝,彈道分析則是另一個鑑識小組會負責的領域。「我們能從現場推知彈道方向,也就是子彈發射的位置,」奧圖女士說,「若排除槍枝被改造的情形,從子彈回溯擊發槍枝是相當精準的分析方法。槍管的溝紋不只各廠牌不同,甚至每支槍都不同,所以我們可以很明確地指出這顆子彈是從哪支槍射出。至於射擊殘跡就比較缺乏準確性,因為有研究顯示,火藥殘留和煞車粉塵高度相似,所以這方面我們還須進一步研究。」

當然,我們也請教了奧圖女士對CSI影集的看法。過去14年這部電視影集大受歡迎,並衍生出兩個同系列影集:《CSI:邁阿密》和《CSI:紐約》。它們甚至帶動鑑識科學的風潮,催生許多類似的辦案影集。不過對真正的鑑識專家來說,這股風潮到底是帶來正面還是負面效應呢?

「我當然也看CSI影集,因為我必須知道學生都看些什麼。影集本身很吸引人,但它會讓外界對犯罪現場的調查形成錯誤認知。劇中角色幾乎什麼任務都一手包辦,從訊問目擊者、鑑識蒐證,再到化驗分析,全部自己來,但事實上很多工作根本不是我們的工作範圍。所以我在第一堂課都會告訴學生,電視演的幾乎都是騙人的。」

-----廣告,請繼續往下閱讀-----

「此外,這個影集也讓大家對鑑識工作產生誤解。影集裡的DNA比對結果都會馬上出爐,但實際上我們至少要等一至兩個星期才看得到報告。不過,話說回來,鑑識證據用在法庭上確實相當迅捷。由於DNA的獨特性,它可以協助指認兇嫌,過去的判例也證明了DNA的證據效力,所以DNA技術確實讓現今的辦案工作事半功倍。」

指紋辨識過程

1. 採集
指紋採集方式有許多種。如果指紋清晰可見,最簡單的方式就是用相機拍下高解析度的指紋相片。不過若是現場沒有肉眼可見的指紋,調查人員會在物體表面鋪灑像是鋁粉之類的粉末,並在拍下相片之後,用膠帶貼附物體表面,以擷取指紋。多波域光源則能在暗室中讓指紋現形。

2.分析
採得的指紋送進電腦,進行分析並與資料庫內的檔案比對。如果有符合的資料,指紋專家會用肉眼再確認對照。

3.判定
檢驗人員會根據ACE-V法則(包含分析、比較、評估和驗證)進行指紋分析。第一步得先確認採集的指紋就質與量來說是否足以提供判斷。接下來再檢視採集到的指紋和嫌疑犯的指紋相似度有多高。如果判定兩者高度相似,最後一步則是請來第二個檢驗人員,重複進行以上相同的步驟,以確認結果無誤。

-----廣告,請繼續往下閱讀-----

彈道追凶

56

除非槍枝改造過或子彈嚴重毀損,鑑識人員通常都能從子彈回推擊發的槍枝,因為每把槍發射時都會產生獨特的溝紋和膛線。

判斷死亡原因時,彈道專家和法醫會合作解讀槍擊現場,例如從子彈進入和貫穿身體的傷口,來推斷槍擊的距離和角度。

由於彈道鑑識技術的進步,執法人員已能用槍擊快速指認工具,來檢測嫌疑犯手上的火藥殘留,幾分鐘內就能判定他短時間內是否開過槍。

 

 

 

本文節錄自《How It Works知識大圖解 國際中文版》第14期(2015年11月號)

更多精彩內容請上知識大圖解

 

-----廣告,請繼續往下閱讀-----
文章難易度
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

7
1

文字

分享

0
7
1
「痛、很痛、超級痛!」你有多痛?疼痛有客觀標準嗎?哪些因素會影響疼痛感受?——《痛:牛津非常短講》
左岸文化_96
・2024/03/25 ・6573字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

測量疼痛

疼痛程度能被客觀測量嗎?

在二十世紀的前半,設計來檢測人類痛覺的機制主要是呼應從純粹身體觀點量測痛覺組成的需求。痛的主觀特質(或更直接地稱為由受測者本人提供的證據)若是遭到忽視還算最好的情況,在最糟的情況下甚至會遭到貶抑。疼痛程度應該要可以客觀量測出來,或說這就是大家進行相關研究的基本依據;一個人感受自己疼痛的方式與個性、道德觀,或甚至性別及種族有關。

再加上醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點,只被視為反映出「眞正」問題的指標。疼痛的測量及客觀性因此被刻意保持著疏離、冷淡的狀態,與其說是缺乏同情的立論基礎,還不如說是完全置身於同情的範疇之外。

醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點。
圖|pixabay

研究者主要想建立的是痛覺敏感度指數。他們希望知道人體的疼痛要到什麼程度才可以被偵測出來。一般而言,在受控的條件下,不同的疼痛程度顯然可以反映出受試者的文明程度、犯罪傾向,又或者相對「野蠻」的狀態。大家一直都知道,每個人的疼痛閾値——痛無法再被忍受下去的臨界點——差異甚大,不過痛在每個人身上可以被感受出來的最低程度是否具有根本性差異仍是重要議題。

痛的現代史是建立在主張特定「種類」的人不是對痛的刺激更為敏感、就是更難以忍受疼痛的研究之上。這對尋求專業醫療協助的疼痛患者造成了實質上嚴重的後果。他們獲得治療的程度——包括施加的麻醉劑劑量和醫護人員提供的同情心——可能都會跟種族、年紀和性別直接相關。

-----廣告,請繼續往下閱讀-----

疼痛敏感度能成為犯罪證據?忽視痛覺主觀性,能幫助醫生更精準診斷嗎?

相當令人感到奇怪的是,生產可以測量疼痛敏感度的設備——痛覺計(algometer)或測痛儀(dolorimeter)——是心理學家和生理學家範疇內的工作。龍勃羅梭(一八三五─一九○九)因為在著作《犯罪人》(一八七六)中提出了犯罪類型分類而聞名,他採用了德國生理學家杜布瓦-雷蒙(一八一八-一八九六)開發的設備,透過電流刺激測量個體的疼痛敏感度及疼痛閾値。根據他的結論,成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。而疼痛測量儀的數據就可以提供證據。

龍勃羅梭認為成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。
圖|stocksnap

龍勃羅梭的研究是基於犯罪特質可以透過遺傳而來的理論,而且強調相關跡象都可以在人體上發現。他決心要透過比較(無論死活的)罪犯以及非罪犯之間的特質來證明這項理論,而獲得的結果非常驚人、具有高度影響力,但卻又毫無根據可言。不過他的例子可以反映出當時更為廣泛的趨勢。痛覺測量在機械領域的推進讓心理學家不再推敲心靈方面的非物質性運作,而改為追求物質性且具體可測的皮膚敏感度,並藉此探討大腦處理痛覺的各種相關能力(跟心靈完全不同的領域)。

另外在一九四○年的紐約醫院進行了一個計畫,他們將一盞燈的熱度聚焦在患者皮膚的一塊區域,然後記錄患者會開始感到疼痛的溫度,以及此疼痛到什麼程度會變得無法忍受。這是想將痛覺變成客觀可測量性質的一項新嘗試,其中帶有兩層意涵。

首先,痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。擁有機械測量的痛覺數據可以幫助臨床醫生超越(或甚至消滅)痛覺帶有各種隱喻且不甚精確的主觀性質。有些人就是會喜歡高報或低報自己受苦的程度,而這類傾向可以不再對醫療體系處理疼痛的藥物造成影響。

-----廣告,請繼續往下閱讀-----
痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。
圖|stocksnap

可是問題在於這個痛覺量測系統不管用,至少任何一個實驗室的結果都無法在其他實驗室複製出來,因為受測對象可以在受過訓練後忍受不同程度的疼痛。外界刺激在受控條件下首先被人感知到的數値至少算是有找到共同的範圍,但疼痛閾値卻因為各種理由而出現各式各樣的差異,更何況個體實在很少(甚至不知道是否可能有)處於不受任何外在條件影響的「中性」狀態。

各種機械理論

人類的所有特質、體驗都能被測量及量化?

如果說與疼痛相關的機械性研究大多得算是笛卡兒的功勞,那是因為他被認定說過一些話,而那些話又顯然能讓後人從中發現一種透過「疼痛路徑」運作的特定機制。若是遵循這樣的笛卡兒觀點,人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。十九世紀以降的生理學家在勤奮不懈的努力下開始尋找特定的痛覺接收神經,或說所謂的「傷害感受器」(nociceptor)。

人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。
圖|pexels

他們認定所有形式的人類特質及體驗都可以被測量及量化,於是透過大腦秤重的數據建立起以種族、性別為指標的智商系統、透過頭骨的測量顯示文明化的程度,甚至利用各種精良的技巧拍攝臉部後描繪出「犯罪可能性等級」。另外還有一些「疼痛纖維」(pain fibres)被描述成跟特定種類的疼痛有關、又或者跟不同規模的疼痛有關。根據這種方式,大腦只是用來接受特定疼痛輸入訊號的接收器。於是自一九六○年代以來,疼痛量表等級可能跟傷勢程度呈正相關的基本前提已被確信是明顯錯誤的想法。

將疼痛以機械性解釋有哪些侷限?

沒有被這種機械性簡化手段抹消並在當代神經科學中獲得進一步探究的部分,是科學家依據刺激的種類及程度,將受激發的不同神經末梢做出分類。我們現在知道,人的體驗和神經刺激之間沒有絕對的相關性。雖然我們還是會用「傷害感受器」這個詞,但它們發出的訊號在成為痛覺前必須先通過大腦的解讀。機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。

-----廣告,請繼續往下閱讀-----

為了解釋跟初始神經刺激不成比例的巨大疼痛反應,一八八○到一九五○年代出現了各種「(痛覺刺激及反應)模式」理論。有人假設一定是在脊髓中發生了某種反應,而且這個由原本末梢神經接收刺激所啟動的反應可以自我維持或甚至自我加強。隨著神經系統機制愈來愈常使用電機工程學的語言來比喻(而且使用的程度驚人),人們開始可以想像神經元在脊髓的「線路」中產生「反饋迴路」,因而「引起共振」並激發鄰近的其他神經元。正如原本那幅插圖所暗示,這種神經啟動的模式可以永無休止地延續下去,就算接受過治療或甚至原初起因已消失也沒關係(例如幻肢痛)。

機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。
圖|pexels

這個觀點的問題在於,這種帶有反饋迴路的電路板比喻想像起來容易,眞正要在實驗中發現卻有其難度。同樣地,疼痛方面的病變一直以來都被想像成一個「正常」的疼痛「電路系統」出現問題的結果,若要類比,就像是有訊號在特定種類的疼痛纖維中受到增強。在當代神經科學及疼痛管理領域中,這些理論的許多元素後來都證明在建構更全面性的疼痛體驗理論時很有幫助,但同時也必須超越「刺激帶來體驗」這種純然的機械性關係。

機械性關係以外的其他觀點?

直到一九六○年代,科學機構內外才開始出現批評的聲音——最有名的批評者是孔恩(一九二二-一九九六)和之後的拉圖(一九四七-)——這些人指出社會脈絡在科學工作中所扮演的重要角色,以及埋藏在社會脈絡中的各種想法及預設。到了更近期,達斯頓和蓋里森在他們的著作《客觀性》(二○○七)中重建了「客觀性」的概念。現在,所謂的「事實」已會被許多人視為透過特定框架後建構而來的偏頗資訊。這種不確定性為相關研究開展了全新的寬敞大道,但眞正的改變卻很慢才出現。

早在一八九四年,美國心理學家馬歇爾(一八五二-一九二七)曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」,不過就在目睹摩根生產出行為主義式「定律」的這一年,這種全面性的思考觀點卻幾乎沒產生什麼漣漪。當痛的研究在一九七○年代確實開啟了痛覺的情緒及社會組成的相關探討之際,在醫療實務上對於能夠確切測量、判斷並診斷的既存需求,卻讓痛覺和傷害之間的機械關係得以續命。

-----廣告,請繼續往下閱讀-----
馬歇爾曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」。
圖|pexels

傷害的意象

第一份讓患者掌握自身疼痛體驗內涵的醫療評估問卷?

臨床醫生數十年來都帶著對痛的多面向理解在實務現場工作。梅爾扎克(一九二九-)和托格森(一九二四-一九九九)在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。疼痛問卷將痛的形容詞及比喻根據痛的強度進行分組,然後依照「感覺」、「情感」、「評價」和「其他相關」四種項目進行分類,再搭配圖表指出身體上的疼痛位置,另外還會針對其他症狀及一般生活方式進行整體評估。

此問卷的前提在許多案例中獲得證實,也就是受疼痛所苦之人會用類似的詞彙來描述特定的疼痛症候群。因此,疼痛問卷帶來的質化觀點對臨床醫療人員很有幫助,能讓他們在一開始更有機會根據患者對自身疼痛狀況的評估做出正確診斷。

梅爾扎克和托格森在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。
圖|stocksnap

當言語無法精準描述,我們如何形容疼痛感受?

乍看之下,這是將疼痛體驗的情感特質重新導入醫療體系的成功應對方式,並因此讓臨床評估朝新的方向前進,但這種做法還是有其限制。疼痛問卷被翻譯成許多其他語言時使用了同樣的武器修辭,或說同樣有關受傷、割傷、刺傷、射傷、揍傷或壓傷的各種比喻。許多學者都指出,這些用來描述人類疼痛體驗的比喻被使用的時間久得驚人,彷彿我們沒有足以訴說疼痛的直接用詞,所以非得求助於這些傷害意象。

不過,這種顯而易見的限制掩蓋了存在於人們陳述中的驚人豐富性及深度。隨著時間過去,武器的種類當然改變了,描述武器對人類造成的傷害種類也出現了更多具有想像力的比喻性說法。此外,隨著語言的改變,人們會發現無論是問卷中的表達方式、代表意義及所處脈絡,都具有難以將其中分類普遍化的細微差異。翻譯的政治(更別說是做法)總是會引發誰的用語足以建立起基本分類架構的疑慮:我們應該要採用患者、醫生,還是譯者的用語?

-----廣告,請繼續往下閱讀-----
為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。
圖|pexels

一旦語言被認定為一個人描述主觀體驗的重要資訊載體,我們就很難將其限制在事先規範好的定義及分類中。疼痛問卷成功地將許多當時在英文中常用的疼痛描述整理在一起,不過也可能限縮了人們在未來描述疼痛的用詞。當醫療人員把一連串描述性用詞交給患者並要求他們找出「符合」自身痛感的詞彙時,這種做法很可能會被視為一種具有高度暗示性及影響力的策略,因為這份用詞淸單暗示了這些詞彙已捕捉到了疼痛的本質。

這種做法對某些人來說可能有用,但有些人即便感覺不太對勁,仍得努力將這些用詞硬套到自身的感受上。另外還有些人在覺得這些用詞完全無法用來描述自己的狀況時,甚至會開始質疑自己的疼痛是否眞實存在。為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。

說到底,一九七○和八○年代在尋求痛的情感特質時,是放入由固定價値觀所掌控的基模(schema)中,就像身體的疼痛値也是由機械主導的客觀數値來決定。患者的聲音並不是沒被聽見,但也受到既有的量測方式取代。

受教育程度會影響疼痛體驗嗎?疼痛分類因文化不同有所差異?

根據一份由哈里森所進行的研究指出,當麥吉爾疼痛問卷在科威特被翻譯成阿拉伯文時,編纂者非常淸楚意識到,即便是在當地社群內部也出現了溝通上的語言偏差。受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?我們很可能永遠不會知道,因為這類描述被有意識地迴避掉了。

-----廣告,請繼續往下閱讀-----

有意思的是,阿拉伯文譯者也迴避了對慢性疼痛患者伸出援手,因為「他們的痛覺評分標準跟那些……經歷急性疼痛的人相比有系統性的不同」。如果有人記得的話,麥吉爾疼痛問卷一開始的設計是要嘗試深入理解疼痛症候群的疼痛體驗——也就是完全以受到慢性疼痛所苦的人為目標——因此我們可以認定這個翻譯策略反而阻礙了這項量測工具原本的概念性目標。

受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?
圖|unsplash

二十世紀醫學對於調查對象必須在各項數値方面完全中立的需求,阻礙了我們去探索疼痛體驗中的一項核心元素,因為那個核心元素本身就是作為一種情感的主觀値。疼痛情感的語言表述——人們針對自身感受說出的話——本身抗拒任何精確的製表及分類作為。科威特的那些譯者對此擁有第一手體驗,他們發現原本在英文中被歸類為「感覺」的詞彙,在翻譯後更接近「情感」或「評價」的類別。

這些作者後來做出結論,「我們有很充足的理由認定,疼痛分類會因為不同文化而有所差異。」比如他們就找不出翻譯「射傷」(shooting)這種痛覺的詞彙。在此同時,義大利文把「射傷」這種痛覺翻譯成「像是床墊彈簧反彈」的痛。

整體而言,根據二○○九年由雪梨的喬治國際健康研究所做的研究,麥吉爾疼痛問卷被翻譯成了二十六種語言,研究發現這些翻譯後的問卷效力普遍不佳,並建議必須謹愼使用這些「非英語版本」的問卷。這些不同版本的問卷中描述疼痛的詞彙從四十二到一百七十六個不等,反映出了人類口中疼痛體驗的豐富程度。這些疼痛反抗或拒絕被分類列表的特質只顯示了人們不是(或說至少不完全是)機器。

-----廣告,請繼續往下閱讀-----

——本文摘自《:牛津非常短講 012》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。