0

1
1

文字

分享

0
1
1

化學家的繩結挑戰!合成出最緊的分子結

活躍星系核_96
・2017/02/08 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 555 ・八年級

文/林宇軒

分子結的合成,可以說是獲得 2016 諾貝爾化學獎分子機械合成領域的濫觴,不過至今二十八年間,化學家總共只合成出三種分子結。曼徹斯特大學化學系教授大衛·雷伊(David Leigh)團隊,在今(2017)年一月於《科學》(Science)期刊上,發表目前為止交錯次數最多、最緊的分子結,可進一步研究其結構強弱,未來有機會開發出更堅韌或更柔軟的絲線。

為什麼化學家要打「分子結」?

編織與繩結技術在人類歷史上,一直都扮演著很重要的角色,知曉如何操作這些技術有助於製作出堅韌的船纜、拔河繩,或是保暖衣物。而隨著科技的進展,科學家們也不斷研究如何製作出更強韌、更柔軟的絲線,以滿足現代各式各樣的需求。

若能在分子尺度強化纖維,例如將分子互相纏繞或打結,必然會是非常有力的策略。事實上,分子尺度的結(molecular knot)在自然界中就找得到,像是在生物體內,可發現一些由 DNA 形成的分子結(例如原核生物環狀 DNA 複製後,形成的結),或是在某些蛋白質的結構中也能發現其蹤跡。

-----廣告,請繼續往下閱讀-----

至今最緊、最複雜!交叉八次的分子結

化學家因此利用化學合成的知識與技術,嘗試人工合成分子結。第一個成功的便是最簡單的三葉結(trefoil knot),這是由 2016 諾貝爾化學獎得主索瓦(Sauvage)所帶領的團隊,於 1989 年合成出來的(延伸閱讀:2016諾貝爾化學獎)。不過,在拓樸學上,目前已知無法再被分解的基本結(prime knot)有六十億種,然而化學家從合成三葉結至今二十八年了,卻只合成出三葉結、八字結(eight-figure knot)、五葉結(pentafoil knot)。

目前已經成功合成的三種分子結,由左而右為:三葉結、八字結和五葉結。圖/取自 Science 期刊研究介紹影片
目前已經成功合成的三種分子結,由左而右為:三葉結、八字結和五葉結。圖/取自 Science 期刊研究介紹影片

曼徹斯特大學化學學院大衛·雷伊(David Leigh)教授所帶領的團隊,於今(2017)年一月在《科學》(Science)期刊上發表分子結合成的新進展,他們成功利用化學合成的方式,將四條分子鍊互相交錯,打出了一個在拓樸學上稱為 819 的分子結(如下圖),也就是繩子交錯八次的第十九號基本結。該結總共用了 192 個原子,形成了八個交叉的分子結,但整條分子鏈的長度僅有20奈米,是目前化學家所能合成的最複雜、也最緊的一種。

819 分子結的示意圖。
819 分子結的示意圖。

利用自組裝方法合成分子結

這麼微小的分子結當然很難用一般的方法繫出來,因此在合成方法的設計上,需要想辦法讓分子鏈能自行聚集、自己打結。

一般而言,如果化學家要將兩個分子拉近距離或是連接起來,要讓連接處的原子共享電子,也就是要讓兩個分子形成穩定的共價鍵,使彼此無法分離。不過分子無法控制自己的方向,而是隨意碰撞,使得只要遇到另一個分子上能分享電子的原子,就會發生反應,有機會產生錯誤構型、但相當穩定不會消失的分子,造成反應效率低落。

-----廣告,請繼續往下閱讀-----

化學家為了要有效合成分子結,又不希望有太多不必要的副產物,因此改變策略,利用吸引力較弱的分子間作用力,例如凡德瓦力或氫鍵,來連接兩分子。好處是,因為這些作用力比共價鍵弱,即使在碰撞過程中,反應出一個不希望出現的產物時,錯誤構型的分子仍有機會斷開連結,變回原本的兩個分子。利用這樣的特性,設計出來的分子能夠在碰撞的過程中,不斷吸引、折疊,或是連接起來,等於是讓分子自動去找最穩定的結構,這種方法稱為「自組裝(self-assembly)」。

這樣的方法廣泛的應用於獲得 2016 諾貝爾化學獎的分子機械領域中,當然,也用於合成分子結。雷伊教授的團隊使用於合成分子結的基本單位(building block)是一條分子鏈,他們利用金屬離子吸引分子鏈中帶有孤對電子的氮,把分子鏈都吸引在一起,再啟動第二步反應連結四條分子鏈,最後移除所有的離子,便完成分子結的合成(如下圖)。

改自David Leigh 實驗室網站的實驗示意圖。
改自David Leigh 實驗室網站的實驗示意圖。

事實上,雷伊教授的團隊在 2012 年時,便以完全相同的方法合成出五個交錯的星狀分子結(發表於《自然》(Nature)期刊,相關介紹點此)。與此篇文獻不同之處在於,他們稍微修改分子鏈末端的結構以及反應物的比例,產物即變成 819 分子結。

  • 819 分子結的 X 光晶體結構圖,有八個交錯處,總共有 192 個原子,包含四個亞鐵離子(Fe2+,紫色)、位於正中心的氯離子(Cl,綠色)以及形成分子主要骨架的碳(銀灰色)、氧(紅色)、氮(藍色)。結構中淺藍色長鏈狀分子為形成一個分子結的基礎單位,科學家利用自組裝(self-assembly)的方式將四長鏈組成分子結的結構,再將長鏈分子末端互相接合,即完成合成反應。

分子結的未來

雷伊教授在接受 RearchGate 的訪問中提到:「下一步的研究方向是將分子打成結的技術套用到紡織技術上,例如去研究在一條分子長鏈打了個結後,是否會影響這條分子鏈的強度?」化學家也可以利用新的合成方法試著做出其他種分子結,並研究它們結構上的結弱,以及打結如何影響一條分子長鏈的性質。

-----廣告,請繼續往下閱讀-----

就像當年由杜邦公司研發的 Kevlar 合成纖維,廣泛應用於許多以強韌性為重的物品,如軍用頭盔或防彈背心等;或是像極具發展潛力的強韌蜘蛛絲,科學家至今仍在研究是否能利用其強韌的特性,製作出更強的絲線,未來,或許有機會利用分子結的技術,開發出新式材料,製作出超柔韌聚合物絲線,使得紡織技術能有重大大進展。

 

原始研究:

參考資料:

※感謝臺灣大學化學研究所詹益慈老師實驗室程凱煜同學於原理部分提供的協助。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
非牛頓流體的火蟻群
小斑
・2013/12/24 ・606字 ・閱讀時間約 1 分鐘 ・SR值 546 ・八年級

本文由民視《科學再發現》贊助,泛科學獨立製作

科學家長期關心火蟻這種會螫傷人、使人中毒,令人頭痛的入侵外來種,多半是在討論如何防止有劇毒的火蟻擴散,或是探討為什麼火蟻的螫傷會這麼痛。

看起來似乎沒有物理學家的事。不過,喬治亞理工學院的物理學家Zhongyang Liu和David Hu,對於一大群火蟻可以視情況而表現得像流體或是固體的現象很有興趣,是第一次在生物體上看到這種群體行為的二象性。

在11月美國物理學會的一場會議上,他們展示了上面的影片中的火蟻。一團火蟻可以像是糖漿一樣從管子中流出來,或是像一顆球一樣被壓下去還會彈回來。他們使用物理實驗用的流變儀精確測量蟻群作為流體的黏度和作為固體在不同壓力下的彈性,也同時發現在不同的狀態下,螞蟻的行為模式不同。

-----廣告,請繼續往下閱讀-----

蟻群若需要流動時,螞蟻會不斷移動,調整自己待在群體內,就像是很黏稠的液體。

當蟻群要保持形狀時,螞蟻就會緊緊地互相抱住,整個蟻群就會表現得像是橡膠一樣有彈性的固體。甚至形成「救生艇」躲避洪水

胡博士表示,這個研究結果可能可以應用於製造出自組裝機器人和可自我修補的材料,例如:用可以自動修補裂縫的材料建一座橋。畢竟螞蟻可是維持這種結構的箇中翹楚,當牠們互相搭在對方身上形成一座橋並通過時,牠們可是很快地補上結構上的任何缺口。

編譯自紐約時報 12月17日 Science Take

-----廣告,請繼續往下閱讀-----

該研究研討會摘要

-----廣告,請繼續往下閱讀-----
小斑
16 篇文章 ・ 1 位粉絲
PanSci實習編輯。 一顆在各個學科間漂流的腦袋~

0

0
0

文字

分享

0
0
0
「4D列印」讓設計自己組裝起來!
dr. i
・2013/04/20 ・671字 ・閱讀時間約 1 分鐘 ・SR值 516 ・六年級

http://www.youtube.com/watch?v=w98IWWugcVw

就當你覺得 3D 列印正夯的時候,「4D 列印」又逐漸浮上了台面。經過這個方法製作出來的零件,經過一段時間會自行組裝成為想要的物體!

根據麻省理工學院MIT Media Lab 的研究員提比斯(Skylar Tibbit)指出,所謂的「4D」是指 3D之外又多了一個在時間上的變化。

那麼什麼是「4D列印」呢?要解釋它就不得不先來講「自組裝(self-assembly)」。

-----廣告,請繼續往下閱讀-----

自組裝是指一個物體會自行由分開來的零件部位,組成一個特定的形體。這在自然領域中也會發生,好比說細胞分裂時DNA的自我複製的過程,或是植物生長時的向光性,非常有效率而且不容易出錯,只要把環境控制好。

而最近幾年,研究人員想要把這個概念應用在人造的複合式材料上,讓建築師和設計師等等,都可以利用這樣的材料做出能夠自我組裝的生活用品。

讓材料自組的方法都不一樣,以本文開頭影片中的長條狀的管子為例,當它被放在透明的液體中時(水?),某些部份就開始膨脹或收縮,造成整個形體的彎曲,最後組成一個固定且事先設計好的形狀。那麼這個管子是如何製作的呢?就是利用 3D列印的技術,將多種特性的材質組合在一起,在要彎曲的部份用不同的材質,就可以到達局部彎曲的效果!

以後會不會IKEA買回來的傢俱不用動手就可以自行組裝了呢?好期待呀!!

-----廣告,請繼續往下閱讀-----

(資料來源:sjet.usThe Guardian、TED)

延伸閱讀:
巨觀自組裝材料的設計 

轉載自 :: dr. i ::  新發現 | 新科技 |  新生活 |  新藝術 欲轉貼請註明文章出處

-----廣告,請繼續往下閱讀-----
dr. i
33 篇文章 ・ 0 位粉絲
小時候的啓蒙師父是小叮噹,偶像是馬蓋先,並崇拜發明燈泡的愛迪生,當時志向是發明會飛的車。在歐洲旅居十二年後回台灣,目前投身科技與藝術的跨界整合以及科學教育和傳播,現任國立台灣師範大學科技與文創講座兼任助理教授。dr. i 一輩子最大的幻想,是能夠使用時光機和隱形風衣。如果您恰巧擁有其中一項,請拜託用以下的連絡方式連絡!http://facebook.com/newartandscience