0

14
5

文字

分享

0
14
5

貓體力學!喵星人的固液態之謎——2017搞笑諾貝爾物理學獎

Rock Sun
・2017/11/15 ・1860字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

前有薛丁格討論貓的生死,現有論文討論貓是否為流體。

就算牠一天到晚鄙視你要你清貓砂,喵星人在科學研究上也貢獻了很多的心力啊~

現在人也討論”貓“是否為流體,圖/by purdypotato@imgur。

一直以來,正常人分辨氣體、液體和固體的方式很簡單 :只要他有固定的體積和形狀,它就是固體;如果他有固定的體積但形狀會隨容器改變,它就是液體;如果它只要可以,就會變形和改變體積,它就是氣體。

根據這個原則,一個論壇(boredpanda.com)中的網友整理出了一系列貓「維持體積,但隨著容器改變形狀」的圖片,欲證明貓其實是液體。這篇論文的作者Marc-Antoine Fardin 在看過這些圖片之後,決定用更科學的方式,來探討喵星人是否真的符合流體的條件。

Image credits: guremike

在這之前,需要先知道一下他判斷的依據——底波拉數。

底波拉數(De)是假設在時間足夠的條件下,即使是最堅硬的物體(例如山)也會流動,因此流動特性不是一個材料本身的絕對屬性,而是一種相對屬性,底波拉數中整合了材料的彈性粘滯度。若底波拉數越小,材料特性越接近流體,底波拉數非常高時,則越接近固體。

底波拉數我們可以用 De= t/T,來表示,其中 t 為馳豫時間,而 T 為觀測時間尺度的比值。馳豫時間表示一材料反應施力或形變時所需要的時間,熱力學上就是達成熱平衡的時間;而觀測時間尺度是指探索材料反應的實驗(或電腦模擬)的時間尺度,後者是接下來判斷的重要依據,因為如果貓在達成平衡狀態、反應施力的時間都差不多的話,與底波拉數最有關係的就是觀測到這個行為的時間究竟是長是短。

簡單的說~我們只需要看到貓的行為表現,就可以用底波拉數來定義「貓是否為液體」。

所以這位作者做的事情很簡單~ 他從那位網友提出的圖片中挑了幾個具有代表性的,並從這些圖片檢測貓貓的流體性質,如以下:

(a.)  這隻跳起來在空中旋轉的貓符合底波拉數上「固體」的定義。因為牠在極短的觀測時間中發生了旋轉、彈跳、型變,因為整個過程發生的時間極短,所以De>1。

(b.)  當貓再慢慢地發生形變、把杯子填滿的的時候,我們就需要把觀測時間拉長一點,因此De<1,較符合液體的定義。但和(a)綜合下來,儘管是不同一隻貓,我們還是可以先把馳豫時間t定為1秒~1分鐘之間。

(c,d)  如果是老一點的貓,可能會有更長的延展時間(T)來發生同樣程度的型變、反應、熱平衡,所以會更接近液體,甚至趨近於氣體,理論上打破我們「貓是不可壓縮」的解設;而年輕的貓更好動,不只可以用更少的延展時間T來達到平衡,整個馳豫時間t持續的時間可能會更長 (因為停不下來),所以更接近固體。

當然這些只是少數的喵體表現,要試證明牠們是液體,就需要看到一些液體(或是類似液體的東西)才會有的特性:

(a.)當貓咪對物體的附著力大於內聚力的時候,也能進行液體獨有的毛細現象。貓體沿著身體軸心型變的時候,牠們比較習慣呈現鬆弛的狀態,所以比起側向他們更容易前後延展;再來,大部分的時候貓都是呈現表面流(有任何一面是接觸空氣,而非如下水道般的管流),所以比起貓本身的物理特性,牠與接觸面的物理性質之間的關係更加重要,才會產生這個現象。

(b.)貓體與某些物體接觸,會呈現一個極大接觸角,產生杯子表面的水會因為表面張力形成弧形的現象一樣,展現出貓也能承受剪力。

(c.)就像瓶子中的番茄醬一樣,如果貓體的狀態低於自己的屈服應力,就不會流動,看起來像固定在罐子底部一樣。

(d.)當貓體散佈在不平整結構上的時候,就會發生這樣的情況,看似黏滯性極大的液體。

(e.)有時候貓體又據有疏水性。

(f.)光滑地板上貓體會產生的反應,牠們和硬質木板間的相對速度及剪應力、黏滯性表現,很像把水倒在地板上的行為。

(g.)貓體在垂直牆壁上也會因為重力產生黏稠度。

以上就是作者整理出來,貓作為液體(更精確一點是流體)應該會產生的現象,而我們的喵星人都發生了…….所以牠們到底是流體還是固體呢?

從排水孔流走了(來源:giphy)

原始文獻:Rheology of……. Cats

文章難易度
Rock Sun
64 篇文章 ・ 815 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

0
1

文字

分享

0
0
1
貓奴注意!喵星人石化開關的秘密——《真的假的!奇怪知識又增加了》
晴好出版_96
・2023/07/31 ・1499字 ・閱讀時間約 3 分鐘

石化的貓咪

如果我們想要驗證「掐住貓的後脖頸,貓就會乖乖石化」這件事,我們會試著掐掐自己養的貓,頂多再去掐掐朋友家養的貓。

但科學家找來了 31 隻喵星人,為牠們分組進行實驗,分析實驗資料,再進一步找出原因。布芬頓就是這樣的科學家。布芬頓認為,如果夾住後脖頸是「裝死開關」,那麼年齡、性別對喵星人這種反應的影響應該不大;相反,如果反應與年齡、性別有相關性,那麼這大概就不是裝死開關。

在他找來的 31 隻貓中,有 13 隻貓年齡在 5 歲以內,包括 5 隻雄性,8 隻雌性;還有 18 隻貓年齡介於5∼10 歲,包括 11 隻雄性和 7 隻雌性。布芬頓用壓力同樣為 140 毫米汞柱的夾子夾住牠們的後脖頸,觀察這些貓的反應。

實驗結果顯示,第一組的 13 隻貓中 12 隻有反應;第二組的所有貓都有反應。看起來,這的確是個與性別、年齡無關的「裝死開關」。

然而,布芬頓發現,這些貓被夾起來以後,儘管會出現軀體靜止、脊柱捲曲拱起、尾巴夾在兩腿之間等舉動,但並沒有出現瞳孔渙散、體溫下降、心跳減慢等典型的裝死行為,有些貓甚至還會發出很享受的呼嚕聲。也就是說,這些貓產生的很可能並不是所謂的緊張性靜止行為,而是一種掐捏誘導的行為抑制(pinch induced behavioral inhibition,簡稱 IBI)

來自演化的行為抑制

一個月之後,布芬頓用這 31 隻貓重複進行了實驗。他發現,隨著時間推移,年齡比較大的貓對夾子的反應會變弱。到了第三個月重複實驗的時候,只有大約三分之二的貓還會對夾子有明顯反應,主要是年齡偏小的貓。

最後,布芬頓得出結論,貓被掐住後脖頸的行為是一種緊迫反應,來自進化,可能與母貓搬運小貓有關。

在進化過程中,那些被媽媽咬住後脖頸時還瘋狂亂動的小貓很容易被摔死,自然選擇(編按:也就達爾文所提出的 Natural Select)讓那些擁有「媽媽咬住後脖頸就要變乖」基因記憶的小貓存活了下來。

貓媽媽叼住小貓的後脖頸。圖/《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想

我們可以想像這樣的場景:在野外,帶著小貓的貓媽媽突然遭遇捕食者的襲擊,準備一口叼起自己的寶寶撒腿就跑,這時亂動亂叫的小貓就很難存活下來。也就導致了現存的所有貓科動物的基因中都寫了這樣一條紀律:被抓住後脖頸,就要老實點。甚至不管你是貓、獅子,還是老虎。

布芬頓在實驗中還發現了一個現象:基本上每隻貓,不管年齡、性別,在第一次被夾住後脖頸時,都會產生行為抑制的反應。但隨著頻繁被夾,年齡較大的貓的反應會慢慢減弱。

這也正符合「小貓基因記憶更強,更需要有強烈反應」的邏輯。更進一步,布芬頓還從狐狸、浣熊、老鼠等動物身上找到了支持這個理論的依據。

後來,布芬頓教授根據這個理論, 設計了一款「Clipnosis」的擼貓神器,賣得相當好。Clipnosis 這個詞來自clip+hypnosis,正是「夾子」+「催眠」的意思。

當然,大家在家完全可以用文件長尾夾或者晾衣服的夾子來嘗試這種「擼貓黑科技」。但夾子的力度一定要掌握好,如果壓力太大了,貓疼,你也要做好被貓爪神功襲擊的準備。

——本文摘自《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想》,2023 年 7 月,好出版,未經同意請勿轉載。

晴好出版_96
3 篇文章 ・ 2 位粉絲
晴方好,雨亦奇,換個角度都是「晴好」

3

5
2

文字

分享

3
5
2
貓的痛,AI懂?——貓臉疼痛辨識技術
胡中行_96
・2022/07/18 ・3111字 ・閱讀時間約 6 分鐘

人類必恭必敬稱家貓為「主子」,並自貶為「奴才」。陛下身體微恙,一團絨毛癱軟,表情內斂,叫貓奴如何揣測上意?懷疑牠受苦,便心急如焚。幾乎上演《還珠格格》裡,人家紫薇說沒事,爾康卻捨不得的虐心互動。貓咪說不定覺得:「……有這麼多人關心我,我已經不痛了……」人類仍在一邊:「可是,我好痛!」[1]

給人類用的「視覺類比量表」(上)和「臉譜疼痛量表」(下)。圖/Yale University

在治療人類時,醫護人員會用視覺類比量表(Visual Analogue Scale)、臉譜疼痛量表(Wong-Baker faces pain scale)或 FLACC 量表[註] 等工具,來評估患者疼痛的狀況。前二者靠病人自我評估,以數字或表情,象徵由舒適無恙,漸進到痛徹心扉的程度差異。 FLACC 則是醫護觀察嬰幼兒或無法言語溝通者,就其身體不適產生的行為變化來計分。[2] 儘管每個人敏感的程度不同,至少單一病患前後的得分,能相互對照出疼痛是否得到緩解,或者更加惡化。因此,這些量表均可視為有效測量疼痛的方法。

問題是有口難言,又行徑鬼祟的貓咪怎麼辦?人貓猜心的瓊瑤戲碼,自古不斷重演,沒完沒了。

直到有天,獸醫們看不下去了…

  

「貓咪苦臉量表」介紹影片。來源:Research Square on YouTube

  

貓咪苦臉量表

2017 年的時候,加拿大蒙特婁大學 Paulo Steagall 副教授以及他的團隊,招募了一票被送急診的病貓。在得到飼主同意後,他們比較疼痛的病貓、服用止痛藥的病貓,還有健康貓咪的表情舉止,研發出「貓咪苦臉量表」(Feline Grimace Scale),並將結果發表於 2019 年的《科學報告》(Scientific Reports)。[3, 4] 其中列出幾個徵兆,可依級別給分,就此將貓咪的疼痛量化:

耳朵姿態(ear position):貓耳的尖角向外分開,並略為朝後旋轉。[3, 5]

圖/參考資料 5

瞇眼程度(orbital tightening):上下眼瞼之間的空隙,小於眼睛的寬度,或是完全緊閉。[3, 5]

圖/參考資料 5

口鼻緊繃(muzzle tension):口鼻(即臺語所謂「喙管」的部位)由圓轉扁,而呈橢圓形。[3, 5]

圖/參考資料 5

觸鬚變化(whiskers change):觸鬚從平常放鬆的圓弧,撐直且稍微向前。[3, 5]

圖/參考資料 5

頭部位置(head position):原本處於全身最高處的貓頭,降至低於肩膀,並往下垂。[3, 5]

圖/參考資料 5

  

貓臉疼痛辨識技術

目前受惠於物種專屬苦臉量表的,除了貓,還有鼠、兔、馬、羊、豬和貂等動物。受過訓練的獸醫,能精準判讀牠們的表情,用這些工具,來評估牠們的疼痛指數。隨著科技的進步,到了 2022 年《科學報告》期刊再次關懷貓咪的痛楚時,另一群科學家拿出「貓臉辨識技術」,試圖取代專業的肉眼觀察。[6]

  

臉部辨識技術:照片>以眼睛為基準,進行臉部校正>調整尺寸。
圖/Serhan YH, HAKAN Ç, and RİFAT E. (2016) ’A comprehensive comparison of features and embedding methods for face recognition.’ Turkish Journal of Electrical Engineering and Computer Sciences, 24, 1, 24.

  

臉部校正

臉部校正是建立辨識系統的要務。先調整貓臉的特徵(landmarks,即照片上標有號碼的黑點),讓它們在空間中對齊,減少幾何上的變異,方便接下來的步驟進行。原則上,校正後的貓臉必須:[6]

  1. 在畫面正中央;
  2. 旋轉直到雙眼的連線呈水平;
  3. 尺寸都約略相同。

圖/參考資料 6 ,figure 1

  

模型1:特徵基準(landmark-based)

在找到貓臉的特徵後,依據「貓咪苦臉量表」的觀察部位,將貓臉特徵(黑點)分為:左眼右眼額頭與耳朵,以及口鼻和觸鬚,四個區塊向量。然後,多加一些貓鼻子的照片,進行「資料擴增」(data augmentation),[6] 彌補原始資料的不足,以強化機器學習。[7] 不過,團隊事後發現,這次的資料擴增,成效不彰。[6]

圖/參考資料 6 ,figure 3

處理這些照片的計算模型,是一種叫做「多層感知器」(Multi-Layer Perceptron)的人工神經網路(artificial neural network)。[6] 就像人的神經系統,有好多神經元相互連結,將輸入的資料從上一層送到下一層,經過多層運算後再輸出。[8, 9]

  

模型2:深度學習(deep learning)

研究團隊把大量沒有標註特徵的貓照,在校正角度和尺寸後,餵給 ResNet50[6] 這是一種有五十層的深度學習模型,早已預先訓練好怎麼逐層辨識貓咪的輪廓、曲線及其它識別特徵。[10] 套用該模型的同時,還要進行實驗需要的特定調整,例如:加上「痛」與「不痛」的分類標籤。[6]

  

貓的痛,AI 有多懂?

上述兩個模型的實測,在判讀貓咪是否疼痛時,都有超過 72% 的準確率,算是相當不錯的成果。不過,在完全替代人工判讀之前,可能還要擴建訓練辨識系統的資料庫。因為當初請來的照片模特兒,是 29 隻準備接受卵巢子宮切除術的短毛母貓,年紀約幾個月到一歲多。拿牠們術前、術後,以及使用止痛劑前後的照片來訓練 AI ,雖然是個不錯的點子,但無法代表多元的貓咪社群。[6] 將來的實驗,若能涵蓋其他性別、年齡和品種,相信貓咪們會覺得更加窩心。

  

備註

FLACC 量表: FLACC 是臉(face)、腿(legs)、活動(activity)、哭(cry)與  安撫(consolability)的縮寫。每個項目依觀察到的狀態,給 0 到 2 分,總分最高 10 分。[2]

  

參考資料

  1. 瓊瑤經典台詞》小時候看超感動,長大看卻啼笑皆非的 7 大經典場景(風傳媒,2020)
  2. Pain assessment and measurement (The Royal Children’s Hospital Melbourne, 2019)
  3. Evangelista MC, Watanabe R, Leung VSY, et al. (2019) ‘Facial expressions of pain in cats: the development and validation of a Feline Grimace Scale’. Scientific Reports, 9, 19128.
  4. Me-owch — could resting cat face tell us about kitty’s pain? (CBC, 2020)
  5. Feline Grimace Scale – Practice your pain assessment skills using the FGS! (Université de Montréal, 2019)
  6. Feighelstein M, Shimshoni I, Finka LR, et al. (2022) ‘Automated recognition of pain in cats’. Scientific Reports, 12: 9575.
  7. 2021 iThome 鐵人賽-DAY21 資料正規化與資料增強(Data Normalization & Data Augmentation)(IT邦幫忙,2021)
  8. 2019 iT 邦幫忙鐵人賽-06. 深度學習的架構分析:多層感知器(IT邦幫忙,2019)
  9. 神經網路(IBM,2020)
  10. 何謂遷移學習?(NVIDIA,2019)
所有討論 3
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

5
0

文字

分享

0
5
0
製作完美可麗餅的終極物理廚技
胡中行_96
・2022/07/04 ・1882字 ・閱讀時間約 3 分鐘

《論語》〈鄉黨〉裡,關於吃飯的規定,超—級—多—!!「食不厭精,膾不厭細。食饐而餲,魚餒而肉敗,不食。色惡不食,臭惡不食。失飪不食,不時不食。割不正不食,不得其醬不食。肉雖多,不使勝食氣。唯酒無量,不及亂。沽酒市脯不食。不撤薑食,不多食。祭於公,不宿肉。祭肉不出三日,出三日,不食之矣。食不語,寢不言。雖疏食菜羹瓜祭,必齊如也。」[1]吼~這麼囉嗦,有本事自己來啊!

有些男人激不得。

  

為了吃,您願意付出多少努力?圖/Monika Grabkowska

  

物理學家 Mathieu SellierEdouard Boujo 就因為前者的妻子提出挑戰,而用電腦運算出最佳烹調模型,還在 2019 年的《物理評論流體》(Physical Review Fluids)期刊上,分享成果,造福饕客。[2, 3, 4]全文第一句話,是這麼說的:「本論文研究固化流體薄膜,受制於複雜的運動學,在固體表面的流動…」,[5, 6]意思是「我們要教大家做可麗餅。

  

完美可麗餅的定義

撇開二位科學家基於品味差異,而無法達成共識的餡料不談,[2]這個研究中,可麗餅的最高境界,被定義為「厚度均勻,無孔洞,且呈現完美圓形」。[6, 7]要在自家廚房,達成此終極目標,通常會遇上難題:當麵糊在鍋底鋪開,同時也會逐漸被煮熟。如果水平放置鍋子,麵糊便在平均地觸及鍋緣之前固化。為避免這個問題,一般有兩種常見的解決辦法:第一種是用刀具迫使麵糊在鍋中散開,類似刮刀塗層的動作;另個做法則是將鍋子傾斜旋轉,令麵糊往低處流動。[6]

  

運算製作可麗餅的模型

二位科學家採用「伴隨優化」(adjoint optimisation)的數學方法,描述流體在活動容器中的運動,模擬以最小施力,鋪出最平坦的可麗餅。[7, 8]其中考慮的因素,包含:以通過鍋子圓心的縱軸為中心運動;藉重力鋪開麵糊;以及隨溫度改變濃度的麵糊與旋轉中的鍋子的互動。[3]經過一番(讓人反胃的)計算過程,他們找到最佳的做法:先快速翻動鍋子,然後在煮的過程中,緩慢旋轉。[7]

詳細的技巧,如下:一倒入麵糊,就馬上以陡峭的角度傾斜鍋子,把液體逼到邊緣。接著,手腕輕扭,轉鍋子一圈,確保麵糊完整鋪滿底部。在轉動的時候,傾斜的角度得逐漸縮小,轉速也隨著麵糊固化而趨緩。當覆蓋動作完成,鍋子也恢復水平狀態。[4, 7, 8]

圖中,深紅處麵糊最厚,深藍則最薄。可麗餅的製作流程,由左上開始,先向下,再依序往中、右二欄進行。[7]

起初濃厚的(紅色)麵糊被推向鍋子的右上緣,把稀薄的(淺藍)剩料拋在後頭。然而隨著順時鐘的轉動,麵糊逐漸勻稱地分佈於整個鍋底。[7]

圖/參考資料 6,figure 6

  

製作鬆餅的技巧,也受到科學家的重視。來源:參考資料 9

  

做鬆餅救眼疾

科學家們之所以對餅皮類食物的製作如此著迷,是因為類似的手法不僅能生產巧克力,幫智慧型手機螢幕鍍膜,[4]還可以懸壺濟世。2016 年倫敦大學學院(University College London)在 YouTube 上,也發佈了一個看似玩物喪志的作品。全長約 5 五分鐘的影片裡,前 4 分鐘幾乎都在以嚴謹的態度,講述鬆餅(此指 pancake,而非 waffle)的製作。到了最後卻話鋒一轉,道出製餅技術與眼疾治療的關係。原來手術中控制眼睛內部液體外流的皮瓣(surgical flaps),就要倚靠類似的原理來研發。[9]

救世的精神,於是賦予了科學家一個精進廚藝的學術使命。

  

參考資料

  1. 論語/鄉黨第十(維基文庫)
  2. Making the Perfect Crêpe (APS Physics, 2019)
  3. The hard-hitting science behind crepes and beauty pageants (Chemical & Engineering News, 2019)
  4. Using fluid dynamics to perfect crêpe cooking techniques (Phys.org, 2019)
  5. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. Physical Review Fluids, 4, 064802.
  6. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. arXiv
  7. Physicists Think They’ve Finally Found the Trick to Making Perfect Crepes (Science Alert, 2019)
  8. A computer model explains how to make perfectly smooth crepes (Science News, 2019)
  9. Understanding the physics of pancakes to save sight (University College Lodon on YouTube, 2016)
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。