0

8
3

文字

分享

0
8
3

貓體力學!喵星人的固液態之謎——2017搞笑諾貝爾物理學獎

Rock Sun
・2017/11/15 ・1860字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

前有薛丁格討論貓的生死,現有論文討論貓是否為流體。

就算牠一天到晚鄙視你要你清貓砂,喵星人在科學研究上也貢獻了很多的心力啊~

現在人也討論”貓“是否為流體,圖/by purdypotato@imgur。

一直以來,正常人分辨氣體、液體和固體的方式很簡單 :只要他有固定的體積和形狀,它就是固體;如果他有固定的體積但形狀會隨容器改變,它就是液體;如果它只要可以,就會變形和改變體積,它就是氣體。

根據這個原則,一個論壇(boredpanda.com)中的網友整理出了一系列貓「維持體積,但隨著容器改變形狀」的圖片,欲證明貓其實是液體。這篇論文的作者Marc-Antoine Fardin 在看過這些圖片之後,決定用更科學的方式,來探討喵星人是否真的符合流體的條件。

Image credits: guremike

在這之前,需要先知道一下他判斷的依據——底波拉數。

底波拉數(De)是假設在時間足夠的條件下,即使是最堅硬的物體(例如山)也會流動,因此流動特性不是一個材料本身的絕對屬性,而是一種相對屬性,底波拉數中整合了材料的彈性粘滯度。若底波拉數越小,材料特性越接近流體,底波拉數非常高時,則越接近固體。

底波拉數我們可以用 De= t/T,來表示,其中 t 為馳豫時間,而 T 為觀測時間尺度的比值。馳豫時間表示一材料反應施力或形變時所需要的時間,熱力學上就是達成熱平衡的時間;而觀測時間尺度是指探索材料反應的實驗(或電腦模擬)的時間尺度,後者是接下來判斷的重要依據,因為如果貓在達成平衡狀態、反應施力的時間都差不多的話,與底波拉數最有關係的就是觀測到這個行為的時間究竟是長是短。

簡單的說~我們只需要看到貓的行為表現,就可以用底波拉數來定義「貓是否為液體」。

所以這位作者做的事情很簡單~ 他從那位網友提出的圖片中挑了幾個具有代表性的,並從這些圖片檢測貓貓的流體性質,如以下:

(a.)  這隻跳起來在空中旋轉的貓符合底波拉數上「固體」的定義。因為牠在極短的觀測時間中發生了旋轉、彈跳、型變,因為整個過程發生的時間極短,所以De>1。

(b.)  當貓再慢慢地發生形變、把杯子填滿的的時候,我們就需要把觀測時間拉長一點,因此De<1,較符合液體的定義。但和(a)綜合下來,儘管是不同一隻貓,我們還是可以先把馳豫時間t定為1秒~1分鐘之間。

(c,d)  如果是老一點的貓,可能會有更長的延展時間(T)來發生同樣程度的型變、反應、熱平衡,所以會更接近液體,甚至趨近於氣體,理論上打破我們「貓是不可壓縮」的解設;而年輕的貓更好動,不只可以用更少的延展時間T來達到平衡,整個馳豫時間t持續的時間可能會更長 (因為停不下來),所以更接近固體。

當然這些只是少數的喵體表現,要試證明牠們是液體,就需要看到一些液體(或是類似液體的東西)才會有的特性:

(a.)當貓咪對物體的附著力大於內聚力的時候,也能進行液體獨有的毛細現象。貓體沿著身體軸心型變的時候,牠們比較習慣呈現鬆弛的狀態,所以比起側向他們更容易前後延展;再來,大部分的時候貓都是呈現表面流(有任何一面是接觸空氣,而非如下水道般的管流),所以比起貓本身的物理特性,牠與接觸面的物理性質之間的關係更加重要,才會產生這個現象。

(b.)貓體與某些物體接觸,會呈現一個極大接觸角,產生杯子表面的水會因為表面張力形成弧形的現象一樣,展現出貓也能承受剪力。

(c.)就像瓶子中的番茄醬一樣,如果貓體的狀態低於自己的屈服應力,就不會流動,看起來像固定在罐子底部一樣。

(d.)當貓體散佈在不平整結構上的時候,就會發生這樣的情況,看似黏滯性極大的液體。

(e.)有時候貓體又據有疏水性。

(f.)光滑地板上貓體會產生的反應,牠們和硬質木板間的相對速度及剪應力、黏滯性表現,很像把水倒在地板上的行為。

(g.)貓體在垂直牆壁上也會因為重力產生黏稠度。

以上就是作者整理出來,貓作為液體(更精確一點是流體)應該會產生的現象,而我們的喵星人都發生了…….所以牠們到底是流體還是固體呢?

從排水孔流走了(來源:giphy)

原始文獻:Rheology of……. Cats

文章難易度
Rock Sun
62 篇文章 ・ 592 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2221 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

3

4
0

文字

分享

3
4
0
貓的痛,AI懂?——貓臉疼痛辨識技術
胡中行_96
・2022/07/18 ・3111字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

人類必恭必敬稱家貓為「主子」,並自貶為「奴才」。陛下身體微恙,一團絨毛癱軟,表情內斂,叫貓奴如何揣測上意?懷疑牠受苦,便心急如焚。幾乎上演《還珠格格》裡,人家紫薇說沒事,爾康卻捨不得的虐心互動。貓咪說不定覺得:「……有這麼多人關心我,我已經不痛了……」人類仍在一邊:「可是,我好痛!」[1]

給人類用的「視覺類比量表」(上)和「臉譜疼痛量表」(下)。圖/Yale University

在治療人類時,醫護人員會用視覺類比量表(Visual Analogue Scale)、臉譜疼痛量表(Wong-Baker faces pain scale)或 FLACC 量表[註] 等工具,來評估患者疼痛的狀況。前二者靠病人自我評估,以數字或表情,象徵由舒適無恙,漸進到痛徹心扉的程度差異。 FLACC 則是醫護觀察嬰幼兒或無法言語溝通者,就其身體不適產生的行為變化來計分。[2] 儘管每個人敏感的程度不同,至少單一病患前後的得分,能相互對照出疼痛是否得到緩解,或者更加惡化。因此,這些量表均可視為有效測量疼痛的方法。

問題是有口難言,又行徑鬼祟的貓咪怎麼辦?人貓猜心的瓊瑤戲碼,自古不斷重演,沒完沒了。

直到有天,獸醫們看不下去了…

  

「貓咪苦臉量表」介紹影片。來源:Research Square on YouTube

  

貓咪苦臉量表

2017 年的時候,加拿大蒙特婁大學 Paulo Steagall 副教授以及他的團隊,招募了一票被送急診的病貓。在得到飼主同意後,他們比較疼痛的病貓、服用止痛藥的病貓,還有健康貓咪的表情舉止,研發出「貓咪苦臉量表」(Feline Grimace Scale),並將結果發表於 2019 年的《科學報告》(Scientific Reports)。[3, 4] 其中列出幾個徵兆,可依級別給分,就此將貓咪的疼痛量化:

耳朵姿態(ear position):貓耳的尖角向外分開,並略為朝後旋轉。[3, 5]

圖/參考資料 5

瞇眼程度(orbital tightening):上下眼瞼之間的空隙,小於眼睛的寬度,或是完全緊閉。[3, 5]

圖/參考資料 5

口鼻緊繃(muzzle tension):口鼻(即臺語所謂「喙管」的部位)由圓轉扁,而呈橢圓形。[3, 5]

圖/參考資料 5

觸鬚變化(whiskers change):觸鬚從平常放鬆的圓弧,撐直且稍微向前。[3, 5]

圖/參考資料 5

頭部位置(head position):原本處於全身最高處的貓頭,降至低於肩膀,並往下垂。[3, 5]

圖/參考資料 5

  

貓臉疼痛辨識技術

目前受惠於物種專屬苦臉量表的,除了貓,還有鼠、兔、馬、羊、豬和貂等動物。受過訓練的獸醫,能精準判讀牠們的表情,用這些工具,來評估牠們的疼痛指數。隨著科技的進步,到了 2022 年《科學報告》期刊再次關懷貓咪的痛楚時,另一群科學家拿出「貓臉辨識技術」,試圖取代專業的肉眼觀察。[6]

  

臉部辨識技術:照片>以眼睛為基準,進行臉部校正>調整尺寸。
圖/Serhan YH, HAKAN Ç, and RİFAT E. (2016) ’A comprehensive comparison of features and embedding methods for face recognition.’ Turkish Journal of Electrical Engineering and Computer Sciences, 24, 1, 24.

  

臉部校正

臉部校正是建立辨識系統的要務。先調整貓臉的特徵(landmarks,即照片上標有號碼的黑點),讓它們在空間中對齊,減少幾何上的變異,方便接下來的步驟進行。原則上,校正後的貓臉必須:[6]

  1. 在畫面正中央;
  2. 旋轉直到雙眼的連線呈水平;
  3. 尺寸都約略相同。

圖/參考資料 6 ,figure 1

  

模型1:特徵基準(landmark-based)

在找到貓臉的特徵後,依據「貓咪苦臉量表」的觀察部位,將貓臉特徵(黑點)分為:左眼右眼額頭與耳朵,以及口鼻和觸鬚,四個區塊向量。然後,多加一些貓鼻子的照片,進行「資料擴增」(data augmentation),[6] 彌補原始資料的不足,以強化機器學習。[7] 不過,團隊事後發現,這次的資料擴增,成效不彰。[6]

圖/參考資料 6 ,figure 3

處理這些照片的計算模型,是一種叫做「多層感知器」(Multi-Layer Perceptron)的人工神經網路(artificial neural network)。[6] 就像人的神經系統,有好多神經元相互連結,將輸入的資料從上一層送到下一層,經過多層運算後再輸出。[8, 9]

  

模型2:深度學習(deep learning)

研究團隊把大量沒有標註特徵的貓照,在校正角度和尺寸後,餵給 ResNet50[6] 這是一種有五十層的深度學習模型,早已預先訓練好怎麼逐層辨識貓咪的輪廓、曲線及其它識別特徵。[10] 套用該模型的同時,還要進行實驗需要的特定調整,例如:加上「痛」與「不痛」的分類標籤。[6]

  

貓的痛,AI 有多懂?

上述兩個模型的實測,在判讀貓咪是否疼痛時,都有超過 72% 的準確率,算是相當不錯的成果。不過,在完全替代人工判讀之前,可能還要擴建訓練辨識系統的資料庫。因為當初請來的照片模特兒,是 29 隻準備接受卵巢子宮切除術的短毛母貓,年紀約幾個月到一歲多。拿牠們術前、術後,以及使用止痛劑前後的照片來訓練 AI ,雖然是個不錯的點子,但無法代表多元的貓咪社群。[6] 將來的實驗,若能涵蓋其他性別、年齡和品種,相信貓咪們會覺得更加窩心。

  

備註

FLACC 量表: FLACC 是臉(face)、腿(legs)、活動(activity)、哭(cry)與  安撫(consolability)的縮寫。每個項目依觀察到的狀態,給 0 到 2 分,總分最高 10 分。[2]

  

參考資料

  1. 瓊瑤經典台詞》小時候看超感動,長大看卻啼笑皆非的 7 大經典場景(風傳媒,2020)
  2. Pain assessment and measurement (The Royal Children’s Hospital Melbourne, 2019)
  3. Evangelista MC, Watanabe R, Leung VSY, et al. (2019) ‘Facial expressions of pain in cats: the development and validation of a Feline Grimace Scale’. Scientific Reports, 9, 19128.
  4. Me-owch — could resting cat face tell us about kitty’s pain? (CBC, 2020)
  5. Feline Grimace Scale – Practice your pain assessment skills using the FGS! (Université de Montréal, 2019)
  6. Feighelstein M, Shimshoni I, Finka LR, et al. (2022) ‘Automated recognition of pain in cats’. Scientific Reports, 12: 9575.
  7. 2021 iThome 鐵人賽-DAY21 資料正規化與資料增強(Data Normalization & Data Augmentation)(IT邦幫忙,2021)
  8. 2019 iT 邦幫忙鐵人賽-06. 深度學習的架構分析:多層感知器(IT邦幫忙,2019)
  9. 神經網路(IBM,2020)
  10. 何謂遷移學習?(NVIDIA,2019)
所有討論 3

0

5
0

文字

分享

0
5
0
製作完美可麗餅的終極物理廚技
胡中行_96
・2022/07/04 ・1882字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

《論語》〈鄉黨〉裡,關於吃飯的規定,超—級—多—!!「食不厭精,膾不厭細。食饐而餲,魚餒而肉敗,不食。色惡不食,臭惡不食。失飪不食,不時不食。割不正不食,不得其醬不食。肉雖多,不使勝食氣。唯酒無量,不及亂。沽酒市脯不食。不撤薑食,不多食。祭於公,不宿肉。祭肉不出三日,出三日,不食之矣。食不語,寢不言。雖疏食菜羹瓜祭,必齊如也。」[1]吼~這麼囉嗦,有本事自己來啊!

有些男人激不得。

  

為了吃,您願意付出多少努力?圖/Monika Grabkowska

  

物理學家 Mathieu SellierEdouard Boujo 就因為前者的妻子提出挑戰,而用電腦運算出最佳烹調模型,還在 2019 年的《物理評論流體》(Physical Review Fluids)期刊上,分享成果,造福饕客。[2, 3, 4]全文第一句話,是這麼說的:「本論文研究固化流體薄膜,受制於複雜的運動學,在固體表面的流動…」,[5, 6]意思是「我們要教大家做可麗餅。

  

完美可麗餅的定義

撇開二位科學家基於品味差異,而無法達成共識的餡料不談,[2]這個研究中,可麗餅的最高境界,被定義為「厚度均勻,無孔洞,且呈現完美圓形」。[6, 7]要在自家廚房,達成此終極目標,通常會遇上難題:當麵糊在鍋底鋪開,同時也會逐漸被煮熟。如果水平放置鍋子,麵糊便在平均地觸及鍋緣之前固化。為避免這個問題,一般有兩種常見的解決辦法:第一種是用刀具迫使麵糊在鍋中散開,類似刮刀塗層的動作;另個做法則是將鍋子傾斜旋轉,令麵糊往低處流動。[6]

  

運算製作可麗餅的模型

二位科學家採用「伴隨優化」(adjoint optimisation)的數學方法,描述流體在活動容器中的運動,模擬以最小施力,鋪出最平坦的可麗餅。[7, 8]其中考慮的因素,包含:以通過鍋子圓心的縱軸為中心運動;藉重力鋪開麵糊;以及隨溫度改變濃度的麵糊與旋轉中的鍋子的互動。[3]經過一番(讓人反胃的)計算過程,他們找到最佳的做法:先快速翻動鍋子,然後在煮的過程中,緩慢旋轉。[7]

詳細的技巧,如下:一倒入麵糊,就馬上以陡峭的角度傾斜鍋子,把液體逼到邊緣。接著,手腕輕扭,轉鍋子一圈,確保麵糊完整鋪滿底部。在轉動的時候,傾斜的角度得逐漸縮小,轉速也隨著麵糊固化而趨緩。當覆蓋動作完成,鍋子也恢復水平狀態。[4, 7, 8]

圖中,深紅處麵糊最厚,深藍則最薄。可麗餅的製作流程,由左上開始,先向下,再依序往中、右二欄進行。[7]

起初濃厚的(紅色)麵糊被推向鍋子的右上緣,把稀薄的(淺藍)剩料拋在後頭。然而隨著順時鐘的轉動,麵糊逐漸勻稱地分佈於整個鍋底。[7]

圖/參考資料 6,figure 6

  

製作鬆餅的技巧,也受到科學家的重視。來源:參考資料 9

  

做鬆餅救眼疾

科學家們之所以對餅皮類食物的製作如此著迷,是因為類似的手法不僅能生產巧克力,幫智慧型手機螢幕鍍膜,[4]還可以懸壺濟世。2016 年倫敦大學學院(University College London)在 YouTube 上,也發佈了一個看似玩物喪志的作品。全長約 5 五分鐘的影片裡,前 4 分鐘幾乎都在以嚴謹的態度,講述鬆餅(此指 pancake,而非 waffle)的製作。到了最後卻話鋒一轉,道出製餅技術與眼疾治療的關係。原來手術中控制眼睛內部液體外流的皮瓣(surgical flaps),就要倚靠類似的原理來研發。[9]

救世的精神,於是賦予了科學家一個精進廚藝的學術使命。

  

參考資料

  1. 論語/鄉黨第十(維基文庫)
  2. Making the Perfect Crêpe (APS Physics, 2019)
  3. The hard-hitting science behind crepes and beauty pageants (Chemical & Engineering News, 2019)
  4. Using fluid dynamics to perfect crêpe cooking techniques (Phys.org, 2019)
  5. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. Physical Review Fluids, 4, 064802.
  6. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. arXiv
  7. Physicists Think They’ve Finally Found the Trick to Making Perfect Crepes (Science Alert, 2019)
  8. A computer model explains how to make perfectly smooth crepes (Science News, 2019)
  9. Understanding the physics of pancakes to save sight (University College Lodon on YouTube, 2016)