本文由 民視 科學再發現 委託,泛科學企劃執行。
y 編、S 編、U 編一行人趁著假期到海邊出遊,結果卻發現可憐的寄居蟹沒有家惹 QQ
到底有沒有什麼方法能夠救救無家可居的牠呢?
*喜歡圖又喜歡文的你,有福啦!《請支援編輯》系列透過簡單的漫畫,帶你了解有趣的科學知識,也帶你一窺泛科學編輯部的日常 ^o^
本文與 BRITA 合作,泛科學企劃執行。
你確定你喝的水真的乾淨嗎?
如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。
幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?
濾水技術:從霍亂危機到高效濾芯
19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。
1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。
19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。
進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:
• 活性碳吸附:去除氯氣、異味與部分有機污染物
• 離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢
• 微濾技術、逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等
這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?
濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。
然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。
辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。
不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。
為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:
1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。
2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。
3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。
在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。
濾水技術:不僅是進步,更是守護未來
人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。
今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。
然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。
*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞
討論功能關閉中。
「那無疑是我從沒嚐過的味道」,論文的第一兼通訊作者 Jonathan David Blutinger 回想起初期的失敗,委婉地承認:「其實不難吃,只是與眾不同。我們畢竟不是米其林大廚。」[1]所幸皇天不負苦心人,在多次修正後,美國哥倫比亞大學的團隊,終於做出原料一樣,但是不再坍塌的蛋糕,並於 2023 年 3 月的《npj 食品科學》(npj Science of Food)期刊上分享食譜。[2]
研究團隊的終極目標,是希望將來任何人均能用簡單的軟體烹飪,3D 列印再雷射加熱,創造經濟、健康且美味的餐點。他們選擇的食材相當普遍,全部都從美國紐約的 Appletree Market 超商購買。[2]
Skippy 花生醬、J.M. Smucker 草莓果醬、Nutella 榛果巧克力醬、Betty Crocker 糖霜、Krasdale櫻桃淋醬、拿叉子搗爛的香蕉泥;以及用食物調理機攪 2 分鐘製成的全麥餅乾糊(8 塊全麥餅乾、2 湯匙的牛油和 4 茶匙的水)。[2]
(1)冷藏材料,使其變得濃稠,以穩定結構。[2]
(2)把各種材料灌入分別的 7 支針筒(30ml;14 gauge)。[2]
(3)將針筒裝進特製的 3D 食物印表機。[2]
(4)把壓克力餐盤擺在 3D 印表機下,盛接針筒擠出的條狀物。其直徑約 1.5 毫米,會逐漸累積出蛋糕的半成品。[2]
(5)論文有寫到運用藍光和紅外線,為蛋糕加熱。不過,實驗方法的段落,僅提及 3D 印表機附設的藍光雷射二極體(blue laser diode),也就是下圖中黑色的長方體。[2]
從上面的影片,可見早期幾個版本的蛋糕,非常容易崩垮。[2]研究團隊於是依據物質受力變形時,展現的黏性和彈性特質,即黏彈性(viscoelasticity),將食材分為「結構」與「填料」兩類,並在軟體中改變設計:[2, 3]用結構性強的全麥餅乾糊,作為蛋糕各層的形狀基礎,又以花生醬和榛果巧克力醬輔助支撐,再填入其他相對柔軟的原料。最後,他們調整 3D 印表機的針筒高度,並減緩列印的速度。如此擠出來的流體,尾端便不會蜷曲。能避免繩捲效應(coiling effect或rope-coil effect),破壞蛋糕表面的平整。要不然有時會出現本文開頭的圖組中,最末一塊蛋糕那種毛躁的外貌。[2]
目前 3D 列印食物尚未普及,此蛋糕的成形有如曇花一現。這一方面是基於科技新穎,懂得操作的人還少;另方面則因為這種印表機索價不菲,不是誰都玩得起。如果要商業化,研究團隊認為得採取 Gillette 刮鬍刀和 Nespresso 咖啡機的經營模式:壓低主要產品本身的價格,後續再從耗材獲利。換句話說,廠商賣出廉價的 3D 食物印表機,之後消費者就會以零買或長期訂購的模式,購買列印用的食譜和食物匣。食物匣的內容物,發展空間多元。除了碎肉和花生醬等泥狀物;也能推出醬油、橄欖油等液體;食鹽與胡椒之類的顆粒;還有百里香或香芹這類碎片等,任何可食用的東西。[2]
此外,在薄利多銷和產品開發的同時,也要提升大眾的接受度。偏好天然食材,或是不信任食品產業,都是對 3D 食物列印存有疑慮的原因。研究團隊提出的解方,是宣傳它的好處,例如:精準調配營養,不浪費材料;降低能源耗損;以及客製化的食譜等。[2]當然,似乎也就避而不談犧牲纖維質,以求列印順暢等問題。[1]總之,他們描繪出科技烹飪的美好願景,並且排除萬難,要讓飲食邁向全新時代。倘若有天上述的市場成熟,產品賣相比論文中的蛋糕誘人,您會願意品嚐嗎?
特別感謝許凱勝先生協助確認技術細節。
以往病媒蚊研究中,人類志願者及受試動物,得犧牲小我以造福蒼生。活生生地,讓蚊子叮咬並吸食他們的血液。現在,美國科學家用充滿動物血液的水凝膠餵蚊子;將來或許還能改為填充蛋白質營養液。[1]從此以後,科學家便能像主持以酒代血的天主教感恩祭,慷慨地對蚊子說:「你們大家拿去喝,這一杯就是我的血,新而永久的盟約之血,將為你們和眾人傾流,以赦免罪惡。」[2]
1944 年科學家 Samuel Gertler 合成的化合物 DEET(中譯「待乙妥」或「敵避」),在二戰期間被美軍用來驅蚊。[3]之後各種防蚊成份的研究過程,仍免不了仰賴人類和動物的活體貢獻。隨著近年 3D 列印與生物相容水凝膠的技術發展,開發替代品的時機逐漸成熟。理想上,餵食蚊子的水凝膠製品,要具備高解析度的 3D 列印血管、擴散於組織中的血液、對多種蚊子的吸引力、低廉的成本,以及較少的動物實驗倫理問題。此外,最好還能搭配一組攝影器材,與相應的數據運算模型。[1]
2023 年 2 月,美國研究團隊於《前沿生物工程與生物科技》(Frontiers Bioengineering and Biotechnology)期刊上,介紹他們一體成形的嘗試成果。[1]
類似於做捲心酥,要先調配麵糊,烘烤定型,才能在裡面填充內餡。此實驗的第一個步驟,是製作稍後能注入血液,或者其他液體的水凝膠。研究團隊先把適當比例的聚乙二醇二丙烯酸酯(PEGDA)、明膠甲基丙烯(GelMA)、甘油(glycerol)、LAP 光敏劑與檸檬黃食用色素(tartrazine),混合在一起。[1]透過數位光源處理(digital light processing),使原料遇光固化,將內有曲折空管的水凝膠薄片,3D 列印出來。[1, 4]每批產出3份水凝膠,費時約 23 分鐘。[1]
接著,成形的水凝膠,被丟進磷酸鹽緩衝生理食鹽水(phosphate buffered saline),浸泡至少 2 天。這段期間內,多餘的色素會不斷流出,所以要勤換水,直到水質清淨。上述從頭到尾的程序,一旦商業量產,成本即可降低。如果在無菌環境中製造,還能冷藏儲存數月。[1]
再來,就要幫捲心酥灌多元口味的內餡了。科學家購買了雞、羊和牛,已經去除凝血功能的研究級脫纖血(defibrinated blood)。[1, 5]依照要進行的實驗,將這些血液或是其他液體,裝進針筒。接著,用注射泵浦(syringe pump)和管路,將針筒裡的內容物以 100 μL/min的速率,推進水凝膠裡。此實驗過程中,一支針筒透過管路,最多連接 6 份水凝膠。[1]
美國科學家將多塊水凝膠,分別放置於幾個玻璃罩內。每個罩子裡,引進 20 至 30 隻母蚊子,當作主要的觀察對象。[1]由於母蚊子吸血是為了產卵,所以裏頭還加上幾隻公蚊子作陪,來促進其食慾。[1, 6]攝影機全程對準水凝膠,記錄蚊子的活動,時間總長約 30 至 45 分鐘。[1]基於個別實驗的目的,方法設計上稍有差別:
餵食觀察的錄像,歷經截圖、挑選、標註和校正等程序,成果被拿來訓練電腦找蚊子。於嘗試及調整後,此運算模型不僅能辨識影片中的蚊子,還會分別「未進食」與「進食中或吸飽血」的腹部形狀,平均準確率高達 92.5%。這個模型,馬上被運用在後面的實驗裡。[1]
在選擇食物時,紅墨水和磷酸鹽緩衝生理食鹽水,顯然騙不過受試的蚊子;牠們唯獨吸食有動物血液的水凝膠。未來研發蛋白質營養液時,也可以用雷同的方式,評估蚊子的接受程度。為了引誘牠們,以後也能加碼在水凝膠上,塗抹真實皮膚會有的化學物質,並且在附近散佈二氧化碳。若是成功了,成品就能在其他病媒蚊實驗中,替代動物血液。如此便減少血液傳播疾病的風險,[1]以及使用動物血液的倫理問題。
另一個實驗的 DEET 和檸檬尤加利油萃取物,一如預期地令蚊子完全不想靠近。倒是沒塗料的對照組,卻意外只有 13.8% 的低餵食率。科學家覺得應該歸咎於水凝膠太小,有些蚊子擠不進去。將來製作時,得加大表面積。[1]
整體而言,論文的第一作者 Kevin Janson 博士,很滿意這個自動分析功能,迅速又穩定的運算模型。在研究驅蚊效果方面,身為論文作者之一的 Omid Veiseh 教授,則認為他們的設計,未來也可以用於測試其他化合物。至於病媒蚊的品種,此實驗主要採用的,是會傳播黃熱病(yellow fever)、登革熱(dengue fever)和茲卡熱(Zika fever)的埃及斑蚊(Aedes aegypti)。另一位作者 Dawn Wesson 教授表示,假使想套用此模型跟設備,在習性迥異的野生品種上,就得再花時間研究。[7]