本文由 民視 科學再發現 委託,泛科學企劃執行。
y 編、S 編、U 編一行人趁著假期到海邊出遊,結果卻發現可憐的寄居蟹沒有家惹 QQ
到底有沒有什麼方法能夠救救無家可居的牠呢?
*喜歡圖又喜歡文的你,有福啦!《請支援編輯》系列透過簡單的漫畫,帶你了解有趣的科學知識,也帶你一窺泛科學編輯部的日常 ^o^
本文與 研華科技 合作,泛科學企劃執行。
每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?
想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。
這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。
邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?
第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。
所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。
你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。
但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。
模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思!
然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!
你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!
二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。
三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。
無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。
台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。
如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!
👉 更多研華Edge AI解決方案
👉 立即申請Server租借
討論功能關閉中。
「那無疑是我從沒嚐過的味道」,論文的第一兼通訊作者 Jonathan David Blutinger 回想起初期的失敗,委婉地承認:「其實不難吃,只是與眾不同。我們畢竟不是米其林大廚。」[1]所幸皇天不負苦心人,在多次修正後,美國哥倫比亞大學的團隊,終於做出原料一樣,但是不再坍塌的蛋糕,並於 2023 年 3 月的《npj 食品科學》(npj Science of Food)期刊上分享食譜。[2]
研究團隊的終極目標,是希望將來任何人均能用簡單的軟體烹飪,3D 列印再雷射加熱,創造經濟、健康且美味的餐點。他們選擇的食材相當普遍,全部都從美國紐約的 Appletree Market 超商購買。[2]
Skippy 花生醬、J.M. Smucker 草莓果醬、Nutella 榛果巧克力醬、Betty Crocker 糖霜、Krasdale櫻桃淋醬、拿叉子搗爛的香蕉泥;以及用食物調理機攪 2 分鐘製成的全麥餅乾糊(8 塊全麥餅乾、2 湯匙的牛油和 4 茶匙的水)。[2]
(1)冷藏材料,使其變得濃稠,以穩定結構。[2]
(2)把各種材料灌入分別的 7 支針筒(30ml;14 gauge)。[2]
(3)將針筒裝進特製的 3D 食物印表機。[2]
(4)把壓克力餐盤擺在 3D 印表機下,盛接針筒擠出的條狀物。其直徑約 1.5 毫米,會逐漸累積出蛋糕的半成品。[2]
(5)論文有寫到運用藍光和紅外線,為蛋糕加熱。不過,實驗方法的段落,僅提及 3D 印表機附設的藍光雷射二極體(blue laser diode),也就是下圖中黑色的長方體。[2]
從上面的影片,可見早期幾個版本的蛋糕,非常容易崩垮。[2]研究團隊於是依據物質受力變形時,展現的黏性和彈性特質,即黏彈性(viscoelasticity),將食材分為「結構」與「填料」兩類,並在軟體中改變設計:[2, 3]用結構性強的全麥餅乾糊,作為蛋糕各層的形狀基礎,又以花生醬和榛果巧克力醬輔助支撐,再填入其他相對柔軟的原料。最後,他們調整 3D 印表機的針筒高度,並減緩列印的速度。如此擠出來的流體,尾端便不會蜷曲。能避免繩捲效應(coiling effect或rope-coil effect),破壞蛋糕表面的平整。要不然有時會出現本文開頭的圖組中,最末一塊蛋糕那種毛躁的外貌。[2]
目前 3D 列印食物尚未普及,此蛋糕的成形有如曇花一現。這一方面是基於科技新穎,懂得操作的人還少;另方面則因為這種印表機索價不菲,不是誰都玩得起。如果要商業化,研究團隊認為得採取 Gillette 刮鬍刀和 Nespresso 咖啡機的經營模式:壓低主要產品本身的價格,後續再從耗材獲利。換句話說,廠商賣出廉價的 3D 食物印表機,之後消費者就會以零買或長期訂購的模式,購買列印用的食譜和食物匣。食物匣的內容物,發展空間多元。除了碎肉和花生醬等泥狀物;也能推出醬油、橄欖油等液體;食鹽與胡椒之類的顆粒;還有百里香或香芹這類碎片等,任何可食用的東西。[2]
此外,在薄利多銷和產品開發的同時,也要提升大眾的接受度。偏好天然食材,或是不信任食品產業,都是對 3D 食物列印存有疑慮的原因。研究團隊提出的解方,是宣傳它的好處,例如:精準調配營養,不浪費材料;降低能源耗損;以及客製化的食譜等。[2]當然,似乎也就避而不談犧牲纖維質,以求列印順暢等問題。[1]總之,他們描繪出科技烹飪的美好願景,並且排除萬難,要讓飲食邁向全新時代。倘若有天上述的市場成熟,產品賣相比論文中的蛋糕誘人,您會願意品嚐嗎?
特別感謝許凱勝先生協助確認技術細節。
以往病媒蚊研究中,人類志願者及受試動物,得犧牲小我以造福蒼生。活生生地,讓蚊子叮咬並吸食他們的血液。現在,美國科學家用充滿動物血液的水凝膠餵蚊子;將來或許還能改為填充蛋白質營養液。[1]從此以後,科學家便能像主持以酒代血的天主教感恩祭,慷慨地對蚊子說:「你們大家拿去喝,這一杯就是我的血,新而永久的盟約之血,將為你們和眾人傾流,以赦免罪惡。」[2]
1944 年科學家 Samuel Gertler 合成的化合物 DEET(中譯「待乙妥」或「敵避」),在二戰期間被美軍用來驅蚊。[3]之後各種防蚊成份的研究過程,仍免不了仰賴人類和動物的活體貢獻。隨著近年 3D 列印與生物相容水凝膠的技術發展,開發替代品的時機逐漸成熟。理想上,餵食蚊子的水凝膠製品,要具備高解析度的 3D 列印血管、擴散於組織中的血液、對多種蚊子的吸引力、低廉的成本,以及較少的動物實驗倫理問題。此外,最好還能搭配一組攝影器材,與相應的數據運算模型。[1]
2023 年 2 月,美國研究團隊於《前沿生物工程與生物科技》(Frontiers Bioengineering and Biotechnology)期刊上,介紹他們一體成形的嘗試成果。[1]
類似於做捲心酥,要先調配麵糊,烘烤定型,才能在裡面填充內餡。此實驗的第一個步驟,是製作稍後能注入血液,或者其他液體的水凝膠。研究團隊先把適當比例的聚乙二醇二丙烯酸酯(PEGDA)、明膠甲基丙烯(GelMA)、甘油(glycerol)、LAP 光敏劑與檸檬黃食用色素(tartrazine),混合在一起。[1]透過數位光源處理(digital light processing),使原料遇光固化,將內有曲折空管的水凝膠薄片,3D 列印出來。[1, 4]每批產出3份水凝膠,費時約 23 分鐘。[1]
接著,成形的水凝膠,被丟進磷酸鹽緩衝生理食鹽水(phosphate buffered saline),浸泡至少 2 天。這段期間內,多餘的色素會不斷流出,所以要勤換水,直到水質清淨。上述從頭到尾的程序,一旦商業量產,成本即可降低。如果在無菌環境中製造,還能冷藏儲存數月。[1]
再來,就要幫捲心酥灌多元口味的內餡了。科學家購買了雞、羊和牛,已經去除凝血功能的研究級脫纖血(defibrinated blood)。[1, 5]依照要進行的實驗,將這些血液或是其他液體,裝進針筒。接著,用注射泵浦(syringe pump)和管路,將針筒裡的內容物以 100 μL/min的速率,推進水凝膠裡。此實驗過程中,一支針筒透過管路,最多連接 6 份水凝膠。[1]
美國科學家將多塊水凝膠,分別放置於幾個玻璃罩內。每個罩子裡,引進 20 至 30 隻母蚊子,當作主要的觀察對象。[1]由於母蚊子吸血是為了產卵,所以裏頭還加上幾隻公蚊子作陪,來促進其食慾。[1, 6]攝影機全程對準水凝膠,記錄蚊子的活動,時間總長約 30 至 45 分鐘。[1]基於個別實驗的目的,方法設計上稍有差別:
餵食觀察的錄像,歷經截圖、挑選、標註和校正等程序,成果被拿來訓練電腦找蚊子。於嘗試及調整後,此運算模型不僅能辨識影片中的蚊子,還會分別「未進食」與「進食中或吸飽血」的腹部形狀,平均準確率高達 92.5%。這個模型,馬上被運用在後面的實驗裡。[1]
在選擇食物時,紅墨水和磷酸鹽緩衝生理食鹽水,顯然騙不過受試的蚊子;牠們唯獨吸食有動物血液的水凝膠。未來研發蛋白質營養液時,也可以用雷同的方式,評估蚊子的接受程度。為了引誘牠們,以後也能加碼在水凝膠上,塗抹真實皮膚會有的化學物質,並且在附近散佈二氧化碳。若是成功了,成品就能在其他病媒蚊實驗中,替代動物血液。如此便減少血液傳播疾病的風險,[1]以及使用動物血液的倫理問題。
另一個實驗的 DEET 和檸檬尤加利油萃取物,一如預期地令蚊子完全不想靠近。倒是沒塗料的對照組,卻意外只有 13.8% 的低餵食率。科學家覺得應該歸咎於水凝膠太小,有些蚊子擠不進去。將來製作時,得加大表面積。[1]
整體而言,論文的第一作者 Kevin Janson 博士,很滿意這個自動分析功能,迅速又穩定的運算模型。在研究驅蚊效果方面,身為論文作者之一的 Omid Veiseh 教授,則認為他們的設計,未來也可以用於測試其他化合物。至於病媒蚊的品種,此實驗主要採用的,是會傳播黃熱病(yellow fever)、登革熱(dengue fever)和茲卡熱(Zika fever)的埃及斑蚊(Aedes aegypti)。另一位作者 Dawn Wesson 教授表示,假使想套用此模型跟設備,在習性迥異的野生品種上,就得再花時間研究。[7]