0

1
0

文字

分享

0
1
0

《關鍵少數》裡的計算員為何都是女性?「人肉計算機」是在算什麼?

火星軍情局
・2017/01/19 ・2059字 ・閱讀時間約 4 分鐘 ・SR值 541 ・八年級

三位不起眼的非裔婦女,本來不過是美國太空總署 NASA 找來分擔工程師苦力的人力計算機,到後來卻變成幫助美國在太空競賽中後來居上的推手。看似柔弱無力,實際上卻是堅忍自信而能改變歷史,這就是《關鍵少數》這部勵志電影的正解!

3062845-inline-i-1-hidden-figures-trailer-reveals-nasa-women-of-color-saved-america-in-the-space-race
女主角凱薩琳為 NASA 解決了太空船軌道的難題, 她的貢獻遠超過一般的計算員。

說到「正解」,不禁回想起小時候數學考題的解答都超乾淨的,要嘛是整數,要不然就是漂亮簡潔的分數,如果需要算到小數點後第三位,那就要怪這出題老師太無良了。但是學校裡的數學碰到現實問題就見光死,老師常教的邊長 5:4:3 的直角三角形在日常生活中怎麼都不見了!

這些例子只是數字複雜,靠計算機還是可以算出正解,或應該說「解析解」的。碰到更複雜的問題,就要使用無窮級數,或是不斷迭代的數值分析法,理論上這是可以算到地老天荒也得不到正解,最多只有非常接近正解而已。

在沒有電腦的時代這些問題該怎麼解決呢?沒有捷徑,只有下苦工慢慢算,這種繁重的腦力活就要靠「Computer」。今天英文中的「Computer」在 1613 年首次出現,當然指的不是電腦,而是「人力計算機」——負責數學運算粗活的人,中文應該翻成「計算員」吧。這些人要的算得快、算得準,為了增加效率,通常會有很多計算員一同平行運算,也需要彼此驗算以防止錯誤。

這些計算員的地位雖然比不上科學家或工程師,卻也臥虎藏龍,歷史上不乏有重要貢獻的計算員。例如 20 世紀初哈佛天文台的女計算員勒維特(Henrietta Leavitt)本來只是負責分析星體的亮度,但細心的她發現可以用一些星體光度變化周期,量測它們與地球的距離(造父變星的周光關係),這等於給天文學家一把丈量宇宙的尺。她的發現間接讓後來的哈伯發現宇宙不斷在膨脹,若非她早過世,也許有機會拿到一個諾貝爾獎。

(Leavitt henrietta)photo source:Wikimedia
勒維特(Leavitt henrietta)photo source:Wikimedia

後來的美國為了發展新興的航空工業,成立「國家航空諮詢委員會」(NACA),也就是美國太空總署 NASA 的前身。他們整理了大量的空氣動力數據,即使是今天的航空工程師也得參考 NACA 幾十年前測試的機翼剖面形,龐大的實驗數據讓工程師忙得喘不過氣,因此 NACA 進了越來越多的計算員來幫忙,而且多為女性。為什麼他們偏愛女性呢?好聽的原因是她們細心較不易出錯,但是真正的原因是當時女性的薪水低,又不能升遷為地位較高的工程師,慣老闆們當然最愛。

二次大戰期間男性短缺,NACA 引進了更多女性計算員。太空時代來臨改組成 NASA 業務量大增,正好羅斯福總統開放黑人進入政府工作,就聘用了許多非裔女性擔任計算員,全盛時期有數百,甚至上千位,這就是《關鍵少數》這部電影的背景。

關鍵少數電影片段。Photo source:福斯
關鍵少數電影片段。Photo source:福斯

她們都在做什麼?以今天的眼光來看,那些都是簡單的算術和整理實驗數據,或在方格紙上慢慢描出函數的曲線,絕對還沒有複雜到解 Navier–Stokes equations 之類的偏微分方程來模擬流場,連早期的電腦也不太敢碰這類問題。

電影中的女主角凱薩琳為了計算太空船返回地球的軌道,必須要使用「歐拉法」(Euler method)。這是一種數值方法,利用重複運算斜率來求出常微分方程的解。這個方法現在是理工生學數值分析的第一課,幾行程式就可以解決,但是在沒有電腦的時代可是要算到手指磨出繭的!

糟糕,國中老師沒有教sin(21.8269° )怎麼算! 在沒有電腦的時代, 有這種厚的像枕頭一樣的書, 裡面列出幾百頁三角函數的表, 讓你自己查。 書名:LOGARITHMIC TRIGONOMETRICAL TABLES TO EIGHT DECIMAL PLACES, 3RD EDITION, 1958
糟糕,國中老師沒有教 sin(12.8269° ) 怎麼算! 在沒有電腦的時代, 有這種厚的像枕頭一樣的書, 列有幾百頁三角函數的數表, 讓你自己查。 書名:LOGARITHMIC TRIGONOMETRICAL TABLES TO EIGHT DECIMAL PLACES, 3RD EDITION, 1958。

不過她們也並不是完全單靠人力,這些計算員還有計算尺,更有當時最強大的機械式計算機,凱薩琳在電影接近尾聲時要緊急為太空人約翰葛倫驗算返回地球的軌道,就有短短照到她使用機械式計算機的一幕。

位於矽谷的電腦史博物館內展出的計算機演化史, 中間那幾台長得像收銀機的就是機械式計算機,按下數字按鍵再用手搖旁邊的搖桿,就可以得到答案。 ( 還有,千萬不要丟掉爸爸的老計算機,或許有一天可以賣給博物館。)

隨著電腦的普及,這些計算員也漸漸被歷史遺忘,再不會有人把「computer」這個字當成一種職業,甚至連手算技術也不再受到重視。不過會不會有那麼一天,金小胖發動的全球核戰產生的電磁脈衝毀了所有電腦,或者是強烈的太陽風暴燒掉了一切的電子電路,那時候大家都得重新拾起紙筆,慢慢推導式子,重新開始人力計算機的時代。

NASA 後來引進了照片中的大型電腦 IBM 700 系列, 計算性能遠超過人腦,很快地取代了計算員。

喜歡這文章嗎?趕快追蹤火星人!
火星軍情局


數感宇宙探索課程,現正募資中!

文章難易度

0

22
2

文字

分享

0
22
2

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
9 篇文章 ・ 7 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。