分享本文至 E-mail 信箱

學術引用格式

MLA (點一下全選)

APA (點一下全選)

EndNote(.enw)

重力會說話

電影《星際大戰》中的歐比王講過一句可能是電影史上最經典的台詞,形容原力是「由所有生物創造的能量場,它環繞在我們周圍、滲透進我們體內,而且凝聚了整個星系。」這句話很快就在流行文化中流傳開來,因為大家發現歐比王說的一定是萬用膠帶!畢竟萬用膠帶也有光亮面和黑暗面,還可以把東西黏捆聚集在一起……

歐比王解釋原力的著名台詞 (出自電影《星際大戰》)。

歐比王解釋原力的著名台詞 (出自電影《星際大戰》)。

但是身為宇宙的一份子,頭腦機靈的你可能會對歐比王這番話感到好奇,進而提出疑問:「到底是什麼讓星系凝聚在一起?」事實證明,宇宙結構中確實有一股無所不在的力量,而這股力量的存在,也正代表宇宙的結構本身,我們稱之為「重力」。

許多人都聽過自然界存在四種基本力的概念,這四種基本力分別是:重力、電磁力、弱核力以及色力 (我們在實驗中偵測到從原子核中「滲漏」出來的微弱色力,就是「強核力」)。那為什麼原力指的是重力,而不是其他的力?

自然界中的四種基本力是宇宙大爆炸之後,在宇宙冷卻、擴張時出現的。

自然界中的四種基本力是宇宙大爆炸之後,在宇宙冷卻、擴張時出現的。

一種力若要填滿宇宙,必須是長程力──畢竟宇宙可是個很大的空間!弱核力和色力是短程力,這兩種力可以在極小的距離下、原子核內以及組成原子核的核粒子中,產生非常強烈的作用。電磁力雖然是長程力,但它是作用於存在帶電粒子的情況下;帶電粒子分為兩種,也就是帶正電 (+) 與帶負電 (-)。要分別製造出正電荷和負電荷,或者在特定位置製造出強烈的電磁力,都不是什麼難事 (閃電就是自然界中最主要的例子);但是原則上,宇宙是呈現電中性的──相反的電荷會互相吸引,很快就會達到中和、相互抵銷,也就不會剩下自由電荷。重力同樣是長程力,但它的「電荷」只有一種,我們稱之為「質量」。質量不會是負的,所以沒有什麼能阻擋或是抵銷重力,而且重力能作用於非常廣闊的距離。

如果說有什麼力產生的作用能夠擴及整個宇宙,那就非重力莫屬了,雖然重力微弱得不得了。喔喔喔,我看到你現在臉上寫滿了懷疑!我前一秒才說重力可以凝聚整個星系,下一秒又說它微弱得不得了,到底是想怎樣?

我拼盡了吃奶的力氣想把蘋果掰成兩半!

我拼盡了吃奶的力氣想把蘋果掰成兩半!

我要說的是,重力和自然界中其他的力相比之下很弱。關於這一點,你在自家廚房就可以輕輕鬆鬆地做實驗證明。請把一顆蘋果拿起來看看,是什麼維繫住蘋果的結構?讓蘋果結構得以維繫的,大部分是存在於分子之間的分子間力,而這種力屬於自然界中的電磁力。現在,請你試試看徒手將蘋果分成兩半。不太容易對吧?

現在呢,請站起來,然後往上跳,你能跳多高?就算跳不了多高也沒關係,請想想:你是可以暫時克服重力的。這只需要一點點化學能量就能做到了,即使是你中午啃的那些生菜 (或是那顆蘋果),也足夠讓你克服整個地球的引力!所以,重力是很微弱的 (而你強壯的很)。

喝點氣泡飲料就可以讓我有足夠的能量克服整個地球的引力!

喝點氣泡飲料就可以讓我有足夠的能量克服整個地球的引力!

這些一本正經的論證,都是在闡述大自然的基本性質,雖然是很有趣的問題,不過你可能抓破頭也還是想不明白,瞭解這種知識到底有什麼用?第一個廣為人知的重力定律,就是艾薩克·牛頓 (Isaac Newton) 在 1687 年提出的牛頓重力說。這個學說幾乎是立刻就被科學家用來解釋天體的運動,但是基本上,世人照常度日,渾然不覺這是多麼驚人的成就。直到 270 年後,牛頓重力說才終於實際應用於人類建造或使用的事物上:1957 年,蘇聯發射了史普尼克號 (Sputnik),這需要深入研究軌道動力學才能實現,而軌道動力學就是從牛頓重力說衍生而來。阿爾伯特·愛因斯坦 (Albert Einstein) 在 1915 年寫出了現代物理學描述重力的理論,也就是廣義相對論,情況亦十分類似。當時,廣義相對論馬上就被應用於天體物理學 (對這個學科的研究風潮當時才剛興起沒多久),但直到二十世紀晚期,才真正開始有人將廣義相對論實際應用在人類事務上。就讓我來講幾個故事,告訴你重力或者廣義相對論是如何改變我們的世界。

首先是「GRACE」。現在社會大眾所關注的,多半是關於地球氣候變遷的爭議和討論,但大多數的科學家仍然進行著他們最擅長的事情──埋首工作、收集數據、然後找出數據所代表的意涵。對於氣候研究來說,地球的水文循環別具意義。水和地球上同等質量的其他物質相較,在熱力學上扮演的角色更為重要,因為水可以極為有效地冷卻或加熱,這也就是為什麼夏天你會拿水來降溫,冬天又用水取暖!水的移動,不論是在地表、海洋、雲層、河川還是大氣層中,都對全球氣候有巨大的影響。但是水圈的範圍畢竟太廣大了,如果要監測地球的水位,還有全球湖泊、河川和海洋中的水流,我們不可能透過到處裝設感測器來達成。所以,我們要如何瞭解地球上的水,還有水的移動與變化呢?答案就是:靠重力。

(左) 衛星大地測量可以監測衛星軌道,藉此瞭解重力的根本來源。(左) GRACE 大地測量系統會使用兩個衛星,衛星之間透過微波鏈路彼此追蹤。

(左) 衛星大地測量可以監測衛星軌道,藉此瞭解重力的根本來源。(左) GRACE 大地測量系統會使用兩個衛星,衛星之間透過微波鏈路彼此追蹤。

衛星大地測量可以精準地測量地球的重力場。當衛星在地球上空飛行時,衛星下方的質量變化會使得重力的強度改變,進而使得衛星軌道的軌跡改變。我們觀察軌道就可以瞭解重力 (還有製造出重力的質量) 是如何改變的!在 2002 年,美國太空總署 (NASA) 啟動了一個稱為「GRACE」 (Gravity Recovery and Climate Experiment,意即「重力回溯與氣候實驗」) 的任務,內容是讓兩個相距大約 220 公里飛行的衛星透過微波信號監測彼此的軌道。GRACE 在五年多期間持續監測地球的重力場,並且觀察出重力場是如何隨著地球上的水和冰層移動而變化。下面就有一個例子,這張圖表顯示出亞馬遜盆地的重力會隨著雨季來臨和結束而增減。其他類似的觀察結果也說明了地球上的冰層正在發生變化,尤其是在北極圈和南極圈。

GRACE 大地測量系統十分敏銳,能夠偵測到亞馬遜盆地的重力會隨著雨季來臨和結束而改變。

GRACE 大地測量系統十分敏銳,能夠偵測到亞馬遜盆地的重力會隨著雨季來臨和結束而改變。

phonegps第二個故事是 GPS。重力在你的日常生活中最普遍的應用方式,或許就是全球定位系統了。在 GPS 轉為運用於飛機和車輛的導航之後,接著又出現內建 GPS 的智慧型手機,從此掀起一股定位服務的熱潮;透過定位服務,你可以找尋朋友、當地的餐廳和租書店,也能在陌生城市裡找到演唱會的會場。

基本上,GPS 是透過三角測量運作的。衛星會送出定時信號,由你的智慧型手機或是 GPS 導航裝置接收。衛星每次發送的信號都會與其他衛星的信號同步,也就是說,如果你和兩顆衛星之間的距離相等且固定,你會接收到兩邊發出的相同定時信號 (就像使用耳機一樣,左右兩邊的音訊是同步的,所以你的雙耳會同時聽到歌曲中正確對應的部分!)。如果你比較靠近某顆衛星,那麼你從這顆衛星接收到定時信號的時間會比其他較遠的衛星更早 (就像是在運動場上看田徑比賽,賽跑選手會比你先聽到起跑槍響,因為他們的位置比較接近)。導航裝置會將你的當地時間跟從衛星接收到的時間做比較,藉此判斷你和各個衛星之間的距離。由於已經掌握各個衛星的位置,導航裝置就可以計算出你的位置了。

GPS 會比較從不同衛星接收到的時間,透過三角測量算出你的位置。

GPS 會比較從不同衛星接收到的時間,透過三角測量算出你的位置。

衛星定時信號必須經過修正,所運用的就是廣義相對論。為什麼呢?因為在地球的重力場中,衛星所在的位置比你高得多,而廣義相對論告訴我們,時鐘在衛星上行走的速度是不一樣的。有多不一樣呢?廣義相對論對時鐘時間的修正,在一天內大約是 38 微秒──也就是百萬分之38秒!你可能會想:「可是這差別很小嘛!」沒錯,差別確實是很小,但是 GPS 的運作,是根據光在一定時間內所行進的距離。在 38 微秒內,光行進的距離是 11.4 公里 (約 7 英里)!當你想找一家壽司店,或是要找你家小孩接下來要比賽的足球場,11 公里可是一段漫漫長路!

ein_1920第三個故事是關於重力波,這是最後一個故事了,但我要講的不是重力的實際運用,而是關於我們人類利用重力揭開宇宙奧秘的夢想。1918 年,愛因斯坦在探索廣義相對論的意義時,發現一種重力輻射的存在;這種帶有能量的重力是從星體或星系發出,朝著遙遠的宇宙邊際輻射出去。愛因斯坦計算了這種輻射的強度,很快就認定要進行實驗測量就算不是完全不可能,也會是極度困難的。

不過快轉畫面回到現在,我們可以運用的科技已經完全超出愛因斯坦的想像了──我們有精確度極高的高功率雷射、可準確定位地球上任何物體的 GPS 定位系統、每秒能進行幾億個運算作業的高效能電腦,此外還有遍佈全球的網路,即使跨海傳遞資訊,也像你對著走廊上的同事大喊一樣容易;最重要的是,我們擁有眾多的科學家,他們不但經過良好訓練,更精通揭開自然奧秘的方法,這就是地球栽培出來最優秀的人才。綜合以上各種利器,我們就有能力將愛因斯坦渴盼的夢想化作現實,測量那股來自宇宙遙遠彼端、籠罩地球的微弱重力回波。

對於重力輻射的探討歷時將近一個世紀,集大成的是一台壯觀宏偉的機器,稱為雷射干涉重力波天文台 (LIGO, Laser Interferometer Gravitational-wave Observatory)。新一代的天文學者,也就是所謂的「重力波天文學家」,會以雷射照射這台機器長達 4 公里的雙臂,希望藉此探測到中子星和黑洞趨向塌縮的螺旋之舞,還有年輕的脈衝星不斷自旋直到終於化為宇宙星塵期間發出的低吟;如果夠幸運的話,或許還能探測到恆星死亡時產生激烈的超新星爆炸,在這過程中會產生許多原子,包括組成我們的大部分原子在內。

位於美國路易西安納州利文斯頓 (Livingston) 的雷射干涉重力波天文台;在華盛頓漢福頓 (Hanford),還有另一座與它成對的天文台。

位於美國路易西安納州利文斯頓 (Livingston) 的雷射干涉重力波天文台;在華盛頓漢福頓 (Hanford),還有另一座與它成對的天文台。

重力波天文學讓我們能以全新的角度,重新探究我們的起源和地球在宇宙中的定位,再一次盡情發揮我們與生俱來的天賦──那無窮無盡、永不饜足的好奇心和求知慾。雖然人類的想像力帶來了這樣的創舉,但是,這真的能有什麼實際的成果嗎?成果或許並非顯而易見,因為進行這項實驗的最初動機,並不是為了要有什麼實用成果;然而,從曼哈頓計畫 (Manhattan Projec)、阿波羅太空船到雷射干涉重力波天文台,這些科學與工程技術的結晶,終究會為人類帶來福祉。雷射干涉重力波天文台的科技,已經讓許多研究有所拓展,像是光學和雷射技術、環境監測以及電腦網路連線能力。但是要在你家客廳看到這項科技帶來的改變,恐怕還要等上 7 年、70 年,甚至是 270 年。

重力的科學發展向來如此,要花多少時間,就看我們的工程師和科學家如何突破舊思維、發揮創造力了!

作者:Shane L. Larson

翻譯:Ankh Huang 黃于薇,現為兼職譯者(ankhmeow@gmail.com

本文原發表於Write Science

關於作者

Write Science

A collaborative project to practice the craft of communicating scientific ideas.