0

0
0

文字

分享

0
0
0

「把太空人安全帶回來!」《關鍵少數》隔熱板研發大作戰

Rock Sun
・2017/01/19 ・4116字 ・閱讀時間約 8 分鐘 ・SR值 520 ・七年級
太空人格蘭進入友誼七號太空艙中。圖/By NASA - Great Images in NASA Description, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6449513
太空人葛倫進入友誼七號太空艙中。圖/By NASA – Great Images in NASA Description, Public Domain, wikimedia commons.

==========暴雷警告:若不想被劇透,請自行迴避==========

 

 

1962 年 2 月 20 日,「友誼 7 號」(Friendship 7)太空船在地球軌道上持續飛行了將近 5 個小時之後,約翰.葛倫(John Glenn)成功回到了地球,成了第一個不只是在太空中沾沾醬油,還繞行了地球軌道的太空人。美國航太總署(NASA)這次「水星計畫」(Project Mercury)的成功,不只證明長時間太空飛行技術可行,人類也可以良好適應。在第一個衛星、第一隻上太空的動物、第一位上太空的人類等頭銜都被蘇聯搶先後,這項紀錄讓美國稍微鬆了一口氣。

「水星計畫」也是電影《關鍵少數》(Hidden Figures)中的主軸,帶大家穿越時空,告訴大家這場任務背後的隱藏功臣。

電影一開始,把我們帶回到 1961 年,這時水星計畫進行到一半,友誼 7 號太空艙正在試驗中。

隔熱板出頭天

不久,測試太空艙隔熱板時出現了大問題,隔熱板脫落甚至彈了出來,這個問題困擾著研究單位,他們該怎麼解決這個問題,讓葛倫可以順利、安全完成任務呢?此時,主角之一瑪莉.傑克森(Mary Jackson)因此接到了這個支線任務。

_DSC7257.ARW
1953 年,當瑪莉傑克森為超音速風洞實驗室工作時,她的確有一位鼓勵她成為工程師的上司兼導師名為 Kazimierz “Kaz” Czarnecki,但電影中名字並不同。而且現實中瑪莉傑克森在 1958 年時就升格,成為NASA第一位非裔女性工程師。(圖/福斯)

其實,這種隔熱板一開始並不在水星計畫的原始設計中。

時間回朔 3 年,我們來到 1959 年 1 月,美國正式公布水星計畫的一個月後,這時整個水星計畫的飛行器承包商已經確定為麥可唐納飛行器公司。

當時的太空艙設計處理高溫的方式,是透過裝在一般隔熱板下的(Beryllium, Be)金屬風扇散熱;在此同時,另一種科技——燒蝕隔熱板(ablative heat shield)的開發也同時在進行。

燒蝕隔熱板的發想源於一個物質特性:當一個物體接觸到高溫的時候,本身會有溫度上升和物質型態改變兩種反應,這之中又屬改變物質型態最容易達成,需要的熱比單純升高溫度更少。舉個例子,當你把冰塊放在室溫中,再變成 25℃ 的冰塊之前,它會先融化。在接觸到高熱時,部分隔熱板會先融化甚至汽化,在高熱空氣和太空艙之間產生一個隔熱的邊界層(Boundary Layer),以保護後者,相關的原理被稱作莱頓佛羅斯特現象

但在 1959 年,燒蝕隔熱板還是一個研發中的技術。大家要知道的是,儘管當時美國全力在拚太空,但資金仍然有限,所以沒有人想要花錢、花時間在研究沒用的東西上,例如承受高強度 G 力的椅墊(參照以下圖片)。

mercury1
友誼 7 號內裝設計圖,附加看不懂的鬼畫符。前述打消的計畫,有一個是給太空人的超合身記憶椅墊,這個椅墊的設計是要讓太空人承受超過 20G 的加速度,但問題是整個過程是並沒有這麼大的 G 力需要承受。圖/NASA Space History Office

當時 NASA 太空載人計畫的主導者喬治.落(George M. Low)也發現了這個情況,所以 1959 年 1 月 16 日,在蘭里研究中心(電影中的主要場景)一場與麥可唐諾公司的會議中,他要求設計出一個可以彈性使用風扇及燒蝕隔熱板的太空艙,後來更演變成一定要具備同時安裝這兩個零件的能力。

當時還沒確定太空艙是要降落在海上還是陸上,所以這個設計的用意是防止太空艙過熱的情況,因為隔熱板或許能讓船體安全穿越大氣層,但如果撞在陸地上便沒有功用可言;而風扇則是能夠在這種情況下增加太空人存活率,並在大氣層中調節溫度。

在麥可唐諾公司重新設計之後,工程便被發包下去,包含:6 片安裝了散熱風扇的一般隔熱板,以及 12 片燒蝕隔熱板,整個開發過程在當時被視為最高機密。

但監督這項工程的梅爾(Andre J. Meyer, Jr)很快就發現了瓶頸:鈹材料不夠。鈹是一個貴金屬,熱導率、穩定性很優秀,密度又很低,是當時太空科技的常用材料,但稀少價格昂貴,在太空艙底部用上許多鈹,就像貼滿寶石一樣(鈹是祖母綠、海藍寶石的成分之一)。而當時美國境內只有兩家金屬鈹的供應商,但只有一家能夠生產出符合標準的鈹,所以產生了供不應求的情況。另外,友誼 7 號太空艙將會以很小的角度進入大氣層,承受高熱的時間將會很久,如果風扇有所瑕疵,太空人就會被活生生烤熟。

在鈹風扇可能會很貴又可能不安全的情況下,燒蝕隔熱板反而成了應該要立刻仔細研究的東西。

mercury6
水星-紅石火箭設計圖。最上面的是逃生系統(Escape Rocket and Tower),當發射時出什麼狀況,這個火箭能連著太空艙一起脫離;往下便是人員搭乘的太空艙,以下的全是火箭本體,包括壓密艙、測量和紀錄儀器設備等……和很多很多的燃料。火箭外部原本也有安裝儀器的計畫,但是也被取消了,只剩天線留著。(圖/NASA Space History Office)

幸好梅爾本身擁有材料工程的背景,對於製作瓦片型的隔熱材料有所研究。在做足功課之後,他找上了當時試飛用火箭「大喬伊」的工程師們商量,想要將玻璃纖維材質的燒蝕隔熱板改為主要的隔熱措施,並在當年 9 月的實驗飛行中驗證這個技術。

儘管玻璃纖維燒蝕隔熱板還沒完全成功,但隨著研發問題逐漸被克服、友誼 7 號在當年 3 月確定在海中降落等因素,當時的 NASA老大格列南( Thomas Keith Glennan)和火箭設計要人席維斯坦博士(Abe Silverstein)正式將風扇改為後備方案。一直到當年 6 月,距離測試 3 個月,辛辛那提實驗室(Cincinnati Testing Laboratory)總算完成了第一片玻璃纖維隔熱板,在重兵看守下交付給 NASA。

這時還衍生了一個問題:隔熱板到底要不要設計成可脫落呢?

如果是鈹金屬風扇的話,這個問題的答案就是「是」,因為一旦太空艙進入更低層大氣,風扇核心可能會過熱,繼續留在太空船上會危及太空人。而且如果最後選擇著陸在陸地上,也可能因為附近有易燃物釀成火災。不過如果是使用燒蝕隔熱板的話,又是另一回事了,因為可脫離的隔熱板不只徒增操作難度,還有可能在起飛時就掉落,或是在過程中傷到太空艙。

最後的決定,其實就像電影中的劇情一樣:在任務過程中,隔熱板要黏的緊緊的,完全不能脫落。

在短短一年內,為了解絕太空艙散熱的問題,NASA 被迫不斷更改計畫,直到年尾才確立燒蝕隔熱板的地位。即使如此,直到友誼 7 號真正發射之時,NASA 工程師其實還是非常擔心隔熱板出問題。

mercury8
友誼 7 號太空艙著陸後回收人員 SOP(圖/NASA Space History Office)

葛倫真實的任務執行過程,跟電影演得有什麼不同?

電影中我們看到葛倫坐上友誼 7 號,許多人圍在電視前屏氣凝神看發射過程的畫面,以及整個任務過程中葛倫與地面控制中心緊張的氛圍。我好奇的是,實際在這次任務過程,除了發生隔熱板故障的意外插曲,還發生了什麼事?

幸好 NASA 早期的太空任務都有留下太空人與控制中心的錄音檔和逐字稿,而且現在絕大多數能在網路上找到。有興趣的人可以看看這兩個版本,一個來自於美國官方的 Internet Archive;另一個是甘迺迪太空中心的網路資源

在 Internet Archive 的錄音檔(691AAE~715AAE)中,可以聽到葛倫與控制中心的對話,還包括控制中心各部門彼此間的通訊,但音質並不好。在 691AAE 紀錄中,我們是甚至可以聽到發射前的通話(17 分 30 秒前)。

甘迺迪太空中心的網路資源的檔案則是太空艙中的通話紀錄,所以大家可以很清楚地聽到葛倫的聲音。他與地面的通訊有幾度中斷,但整個任務過程的通話有很明確的逐字稿。

"The view is tremendous"(圖/NASA)
Glenn: “The view is tremendous!”(圖/NASA)

友誼 7 號升空之後,電影中沒有演出來的部分其實相當枯燥乏味。葛倫每半小時會對控制中心做固定報告,包括溫度、氧氣、燃料……等。我們可以知道在太空飛行中,艙內溫度絕大部分是 100℉(38℃),而濕度只有 25%,不過太空人的太空衣內會比較涼一點。

錄音檔 5 分 18 秒,葛倫第一次讚嘆了地球上的景觀(The view is tremendous!),之後他會開始報告他看到的地球景象,包括非洲海岸、美國領土、各種打雷天象、日昇日落等,全部逃不過他的眼睛。在 50 分左右,葛倫向地面報告星象,表示看到昴宿星團,比他在非洲服役時看到的星空更清楚,控制中心還回應他不久後就能看到獵戶座。

準備進入大氣層前,也進入了整個錄音檔的重頭戲,整個過程光是用聽的也非常驚險。途中不只是隔熱板發出警報,其實燃料純度警示燈也有響,葛倫還回報艙外內有不明的光點。在錄音檔 4 小時 7 分鐘時,聽到自動駕駛系統的按鈕出現斷裂聲的訊息。4 小時 30 分鐘左右友誼 7 號進入大氣層,4 小時 43 分鐘時,葛倫回報艙外有巨大的火球,在之後 3 分鐘多沒有控制中心的回應。這沒有回應的 3 分鐘,可能就是相對應電影中控制中心無法聯繫上葛倫那段可怕的沉默。

space-rocket-history
圖/Space Rocket History

葛倫真的有要求凱薩琳重算嗎?

我想除了關鍵 3 分鐘沉默之外,大家應該也很想知道,葛倫真的有在發射前夕,要求 NASA 研究數學家、也是電影中女主角凱薩琳.強生(Katherine Johnson)重算降落軌道嗎?

他真的有,但是很遺憾的是並沒有錄音記錄。事實上,這件事情發生在發射前好一段時間,強生花了超過一天做這個計算,她由 11 個參數成功推算出了完全符合 IBM 電腦的數據,讓葛倫能夠安心,火箭可以順利發射。

美蘇太空競賽是一個科學技術的搖籃,也是人類爭相證明自己的過程,電影中的 3 位女主角帶給太空任務一個圓滿的成果和動人的故事,而整個歷史、太空團隊,不管美國還是蘇聯,帶來的是更多的驚喜和智慧。

「我們要不一起攻頂,要不回家吃自己。」(If we don’t get there together, we don’t get there at all)——《關鍵少數》

參考資料

  1. Kennedy Space Center – Project Mercury
  2. This New Ocean: A History of Project Mercury
  3. US Internet Archive – Mercury 6
  4. Mercury Archive
  5. Modern Figures: Frequently Ask Question 

數感宇宙探索課程,現正募資中!

文章難易度
Rock Sun
62 篇文章 ・ 428 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者


0

22
2

文字

分享

0
22
2

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
9 篇文章 ・ 7 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。