網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

世上最小的磁性資料儲存單元

only-perception
・2012/01/21 ・1235字 ・閱讀時間約 2 分鐘 ・SR值 523 ・七年級

來自 IBM 與德國 Center for Free-Electron Laser Science(CFEL,自由電子雷射科學中心)的科學家,建構出世上最小的磁性資料儲存單元。每 bit(資訊基本單位)只用到 12 個原子,並將完整的一個 byte(8 bit)壓縮到只要 96 個原子這麼少。相較之下,現代硬碟每 byte 仍需超過 5 億個原子。

這款奈米資料儲存單元是在 IBM 的 Almaden 研究中心(加州 San Jose)裡,在 STM 的幫助下一個一個原子建造而成。研究者們建構鐵原子的規律圖案,每六個原子排成一列。二列就足以儲存一 bit。一個 byte 則據此由八對原子列構成。它只用到 4 x 16 奈米的面積。”其儲存密度比現代的硬碟要高出幾百倍,” CELF 的 Sebastian Loth 表示,這篇 Science 論文的第一作者。

資料在 STM 的幫助下從奈米儲存單元寫入與讀出。成對的原子列有二種可能的磁性狀態,代表古典 bit 的 “0” 與 “1”。一道來自 STM 尖端的電脈衝從這個到那個翻轉了磁性設置(magnetic configuration)。一道較弱的脈衝則允許將設置讀出,儘管這種奈米磁鐵目前只有在攝氏負 268 度(5 Kelvin)的極寒溫度下,才會穩定。 “我們的研究遠遠超過當前的資料儲存技術,” Loth 表示。研究者們預期約需 200 個原子組成陣列,才能在室溫下維持穩定。然而在原子的磁性能被用於資料貯存前,仍需要花一段時間。

這是研究者首度為了資料儲存的目的而設法使用一種特殊形態的磁性,稱為反鐵磁性(antiferromagnetism)。不同於鐵磁性,那被用在傳統的硬碟中,在反鐵磁性材料內,鄰近原子的自旋相對排列(oppositely aligned),在很大的程度上那使材料呈現磁中性。這意味著反鐵磁性原子列可更加靠近而不會在磁性上彼此相互干涉。因此,科學家設法使每個 bit 僅間隔 1 奈米。

“在看待電子元件的縮小時,我們想知道這是否能深入到單個原子的領域,” Loth 解釋。但該團隊並非將現有元件縮小,而是選了一條相反的途徑:”從最小的東西開始 — 一個原子 — 我們一次用一個原子來建立資料儲存裝置,” IBM 研究成員 Andreas Heinrich 表示。所需要的精確度在世上只有少數幾個研究團體在行。

“我們測試過我們的單元要造多大才能達到古典物理學的領域,” Loth 解釋,他在四個月前從 IBM 搬到 CFEL。將所用元素最小化之後,十二個原子浮現了。”低於這個閾值,量子效應會使儲存的資訊模糊。” 這些量子效應是否能透過某種方式,當成一種更加稠密的資料儲存來用,目前是一個密集研究的主題。

在他們的實驗裡,這個團隊不僅建立迄今最小的磁性資料儲存單元,也為古典物理到量子物理的轉變創造出一個理想的測試平台。”我們已學會透過鐵原子列的形狀與大小來控制量子效應,” Loth 解釋,Max Planck 在 CFEL 的研究小組 — dynamics of nanoelectric systems(奈米電子系統動力學)– 的領導者,以在德國 Stuttgart,Max-Planck-Institute for Solid State Research 的領導者。”我們現在使用這種能力來研究量子力學如何起作用。量子磁性材料與古典磁性材料有何不同?磁鐵在這二個世界的邊界間如何表現?這些令人振奮的問題很快就能被回答了。”

一間為這項研究提供理想條件的新 CFEL 實驗室將使 Loth 能追擊這些問題。”在 Sebastian Loth,時間解析掃描穿隧顯微術(time-resolved scanning tunneling microscopy)領域中的世界領導性科學家,加入 CFEL之後,” CFEL 研究協調者 Ralf Kohn 強調。”完美地補足我們研究原子與分子系統動態的現有專業知識。”

資料來源:PHYSORG:The world’s smallest magnetic data storage unit[January 12, 2012]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D


0

11
5

文字

分享

0
11
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》