這是研究者首度為了資料儲存的目的而設法使用一種特殊形態的磁性,稱為反鐵磁性(antiferromagnetism)。不同於鐵磁性,那被用在傳統的硬碟中,在反鐵磁性材料內,鄰近原子的自旋相對排列(oppositely aligned),在很大的程度上那使材料呈現磁中性。這意味著反鐵磁性原子列可更加靠近而不會在磁性上彼此相互干涉。因此,科學家設法使每個 bit 僅間隔 1 奈米。
“在看待電子元件的縮小時,我們想知道這是否能深入到單個原子的領域,” Loth 解釋。但該團隊並非將現有元件縮小,而是選了一條相反的途徑:”從最小的東西開始 — 一個原子 — 我們一次用一個原子來建立資料儲存裝置,” IBM 研究成員 Andreas Heinrich 表示。所需要的精確度在世上只有少數幾個研究團體在行。
“我們測試過我們的單元要造多大才能達到古典物理學的領域,” Loth 解釋,他在四個月前從 IBM 搬到 CFEL。將所用元素最小化之後,十二個原子浮現了。”低於這個閾值,量子效應會使儲存的資訊模糊。” 這些量子效應是否能透過某種方式,當成一種更加稠密的資料儲存來用,目前是一個密集研究的主題。
在他們的實驗裡,這個團隊不僅建立迄今最小的磁性資料儲存單元,也為古典物理到量子物理的轉變創造出一個理想的測試平台。”我們已學會透過鐵原子列的形狀與大小來控制量子效應,” Loth 解釋,Max Planck 在 CFEL 的研究小組 — dynamics of nanoelectric systems(奈米電子系統動力學)– 的領導者,以在德國 Stuttgart,Max-Planck-Institute for Solid State Research 的領導者。”我們現在使用這種能力來研究量子力學如何起作用。量子磁性材料與古典磁性材料有何不同?磁鐵在這二個世界的邊界間如何表現?這些令人振奮的問題很快就能被回答了。”
‘Pulsed Power’. The University of Queensland, Australia. (Accessed on 19 NOV 2023)
Bub EL, Schneider K, Carr C, et al. (22 JAN 2019) ‘Food Processing: The Meat We Eat’. Institute of Food and Agricultural Sciences, University of Florida, U.S.
至於臺灣的中華民國政府, 自然也明白核武的重要性。1963年,當時的蔣介石總統,和以色列核武計畫之父伯格曼(Ernst David Bergmann)私下會面,表達研發核武的決心。在伯格曼的支持與建議下,1968年「新竹計畫」啟動,以清華大學為中心,重點工作項目在培養人才,並建立研發原子彈所需的相關硬體設施。只不過,包括當時國家科學委員會主委吳大猷,以及曾參與美國曼哈頓計畫的女性核物理學家吳健雄,都對臺灣發展核武表達反對意見。在各方壓力之下,蔣介石最後不得不將新竹計畫束之高閣。
然而,臺灣的核武研發並未因此中止。蔣介石政府在吸取新竹計畫的教訓之後,規劃了以和平研究用途做包裝的「桃園計畫」。1969年,中山科學研究院正式成立,原子能委員會則與加拿大簽約,在桃園龍潭的中科院核能研究所興建重水式核子反應爐,稱為台灣研究用反應器(Taiwan Research Reactor,簡稱TRR)。