Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

泛知識節紀實:全世界最亮的「台灣光子源」是什麼?要幹嘛?

泛知識節
・2017/01/06 ・3490字 ・閱讀時間約 7 分鐘 ・SR值 571 ・九年級

-----廣告,請繼續往下閱讀-----

這一系列文章為 2016 泛知識節「翻牆吧!知識」的活動紀實,我們將當下求知求真地感動盡力留下,想與世界某個角落正在努力翻牆的你分享。

知識不只在學校的黑板、不只在安靜的圖書館,當然 更不只在名為「學校」那棟被牆包圍的建築。2016泛 · 知識節「翻牆吧!知識」承襲著泛科學年會的精神與架構,變的是讓更多的知識在這裏碰撞,不變的是那渴求知識的靈魂。如果知識是一道牆,現在就讓我們用求知慾翻牆吧!

關於本場次【 擁有全世界最亮的「台灣之光—台灣光子源」,是什麼?要幹嘛? 】的活動介紹,請參考這裡

  • 講者/陳家祥|國家同步輻射研究中心助工程師
  • 文字紀錄/廖英凱

「光」是人類觀察物體最常利用的方式,除了可見光外,還有許多肉眼不可見的光,統稱為「電磁波」或是「電磁輻射」。在近代科學的發展中,這些光也成為我們觀測自然的利器,例如波長最長的無線電常用來觀測星球尺度的宇宙世界;波長數十公分微波可以觀測大氣尺度的變化;紫外線可以看到分子尺度的結構;X 光則可以研究更小的蛋白質、脂質分子與晶體結構等。

當光線不足時,東西自然看不清楚,讀書還會傷眼睛。不過,如果照來了一道世界最亮的光時…… 難道就會看得更清楚嗎!?這道世界最亮的光,正是位於新竹「國家同步輻射研究中心」內的「台灣光子源(Taiwan Photon Source, TPS)」。它是世界上首屈一指的粒子加速器,在全世界同級機組中,提供了最亮的光源,自 2004 年開始構想、 2010 年開始動工,至 2014 年末發出第一道光。2016 泛.知識節邀請到同步輻射中心的助研究員陳家祥博士,與我們分享這道台灣之光的奧秘與身世。

同步輻射中心的助研究員陳家祥博士。
同步輻射中心的助研究員陳家祥博士。

電影裡的粒子加速器

台灣光子源,是一種透過加速帶電粒子來得到高同調性輻射的加速器。這樣的加速器早已經廣泛應用到生活中,也常常成為影視娛樂的素材。電影《魔鬼終結者 3》中,主角們在一個環型隧道裡躲避機器人的追殺時,啟動了裝置於加速器上的電磁鐵,而電磁鐵擁有的強大磁場,在關鍵時刻將機器人吸住動彈不得,讓主角們得以脫離險境。電影中的這個設定,正是因為粒子被加速到接近光速行進而有很高的能量,需要強大的磁場才能讓粒子轉彎,而加速器中的電磁鐵提供了這樣的強大磁場。在電影《鋼鐵人 2》裡,主角也蓋了一個環形的裝置,在裝置裡兩道強光的相擊下合成了一個新的元素。事實上,這也是粒子加速器可以用作合成人造元素的應用。

在台灣,其實也是有以同步輻射中心、環狀加速器作為背景題材的電影作品。2006 年的一部驚悚電影《詭絲》,劇中就描述了在同步輻射的環狀中心點,正好是磁場匯集之處而能引發靈異現象。不過陳家祥博士笑稱,其實磁場最強的是加速器上的電磁鐵,環狀中心其實是沒有什麼特別磁場的,但也因為這部電影的原因,民眾對於同步輻射中心的詢問度也突然變高了一陣子……

-----廣告,請繼續往下閱讀-----

生活中的加速器

雖然影視劇本中偶有出現加速器的蹤跡,但將帶電粒子加速來使用這件事,早就是我們生活中常見的技術。例如早期陰極射線管(CRT)螢幕、電視機,就是利用高電壓的電場將電子加速,再通過聚焦線圈與偏向線圈這兩個電磁鐵,讓電子打到玻璃螢幕上指定的區域。而玻璃螢幕的內側塗佈了磷化物,當磷化物分子吸收足夠能量的電子後,就會釋放出螢光產生畫面。再例如機場中常用來掃描行李裡的 X 光機,也是利用加速後的電子,打到鎢、銀 、鉻等金屬製成的靶材上。當電子受到靶材阻擋而減速時,就會以 X 光的形式放出能量。這種 X 光來自於制止電子運動,因此又被稱做制動輻射( bremsstrahlung)。

然而這些常見裝置所產生的 X 光,強度僅有同步輻射中心的十萬分之一至百萬分之一,僅能透視大型物體,並沒有辦法用來看到物體的細微結構,也因此我們需要亮度更強、光束更細、更不易發散,並如同雷射一樣具極佳同調性 (Coherence)的光來作為觀測的媒介。同步輻射加速器所產生的光源,正具有這些特性。

同步輻射光

同步輻射光源,是將帶電粒子(如電子)加速到接近光速,再利用電磁場偏轉其方向,便會產生一道沿原本運動切線方向發生的電磁輻射。輻射的波長取決於磁鐵的強度和帶電粒子的能量。不過一道光的強度不見得足夠,此時可利用一系列磁場交錯排列的插件磁鐵,讓帶電粒子在磁場中如蛇行般不斷交錯改變方向。這種每次改變方向所產生的同步輻射,如雷射般具有同調性高的特性,就可以再被導引到實驗站使用。

將接近光速的帶電粒子利用電磁場偏轉時,就會沿著原運動切線方向產生同步輻射光。圖/By R. Bartolini - John Adams Institute, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=15587607
將接近光速的帶電粒子利用電磁場偏轉時,就會沿著原運動切線方向產生同步輻射光。圖/By R. Bartolini – John Adams Institute, CC BY 3.0, wikimedia commons.

實驗站中的研究人員會再將同步輻射光照射到待測物上。根據待測物的材質、結構、表面特性等,同步輻射光會再經由反射、繞射、散射與穿透等機制而改變特性。同時,待測物也可能會因為吸收了高能量的同步輻射,而激發出電磁波、帶電粒子與中性原子等。研究人員就可藉由測量這些被同步輻射照射後的產物,來回推待測物的結構與成分。

-----廣告,請繼續往下閱讀-----
利用插件磁鐵讓同步輻射光在內部蛇行,就會產生如雷射一般同調性高的光。圖/CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=537945
利用插件磁鐵讓同步輻射光在內部蛇行,就會產生如雷射一般同調性高的光。圖/CC BY-SA 3.0, wikimedia commons.

科學神燈:台灣光子源

1980 年代,時任行政院長孫運璿著手推動新竹科學園區設置與半導體產業發展時,同期也開始規劃同步輻射研究中心。同步輻射研究中心於 1986 年開始動工,至 1993 年 10 月完成了亞洲第一座第三代同步輻射設施「台灣光源(Taiwan Light Source, TLS)」,成為我國在原分子領域、奈米技術、表面與薄膜科技、凝態物理、材料科學、分子生物學…… 等眾多領域的研究關鍵。近年使用人次與計畫數均逐年增加,每年可達一萬人以上的使用人次,然而因使用者眾,且相關技術推陳出新,導致了 TLS 光源不敷使用,亮度也不斷落後其他國家的新建設施。

國家同步輻射中心。圖/By Chang.ms - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41141416
國家同步輻射中心。圖/By Chang.ms – Own work, CC BY-SA 4.0, wikimedia commons.

2001 年起,國家同步輻射研究中心前身「行政院同步輻射研究中心」的指導委員會建議應開始研究新型同步輻射加速器的建造方案。2007 年,行政院同意「台灣光子源同步加速器興建計畫」並在 2009 年正式核定、2010 年開始動土興建、2014 年 12 月 31 日成功發出第一道同步輻射光。

不過,台灣光子源的興建歷程,也讓研究人員們忐忑不安了許久。由於台灣光子源的精準度要求相當高,一圈 518 公尺的軌道,僅能有 25 μm 的誤差。又因腹地不夠寬廣,新舊加速器緊鄰施工導致對工程的要求又更高,陳博士說當時還因此拆了餐廳來取得用地。施工過程中也不安寧,又發現在 14 公尺深處挖到了軟土層,高於法規要求的探測標準10公尺,因而多耗費半年施工,也因此遭監察院糾正。

陳家祥:「在同步輻射領域,台灣可以跟美中歐洲等大國競爭,真的是一個蠻厲害的事情。」
陳家祥:「在同步輻射領域,台灣可以跟美中歐洲等大國競爭,真的是一個蠻厲害的事情。」

到 2014 下半年時,距完工時限還有 3 個月,雖然主要設施都已完成,但研究團隊仍無法把電子有效加速。總主持人陳建德院士曾戲稱:如果計畫失敗,核心團隊只好七條白綾以謝國人…… 還好一名工程主管及時找到不斷失敗的原因,主要是真空腔被磁化而吸引電子,造成電子速度被拖慢。但當他們要將真空腔拆下來退火消磁的時候,又剛好遇到年末的尾牙時節,根本而找不到合作廠商。此時中科院的設備也適逢歲修,另外想送到中國的上海光源處理,又因為電子輻射照射的真空腔是管制品而無法出口。好險最終在一個傳產業者的協助之下,在完工時限截止當天,2014 年的最後一天,成功發出了台灣光子源的第一道光。

-----廣告,請繼續往下閱讀-----

歷經十年規劃、四年建設,耗資將近 70 億元的台灣光子源,是我國規模最大的跨領域科學研究設施,更是全世界同等規模、同樣電子能量下目前能提供最亮光源的同步輻射加速器。它能帶動多項科學研究領域的發展,也能提供工業產品的研發優化。世界第一的條件更能成為開拓國際合作的優勢。相信這座落在新竹的科學神燈,帶來的不是天方夜譚的希望,而是越發清晰的微觀結構,更加接近的宇宙真相。

「我們搞科研的就是要跟其他人殺到頭破血流,沒有人會記得第二名的!」

-----廣告,請繼續往下閱讀-----
文章難易度
泛知識節
24 篇文章 ・ 4 位粉絲
從「科學太重要了,所以不能只交給科學家」,到「科學家太重要了,所以不能只懂科學」,再到「知識太重要了,所以不能讓它關在牆裡」,「泛知識節」為泛科知識召集之年度大型活動,承繼 PanSci 泛科學年會的精神與架構,邀請「科學」「科技」「娛樂」「旅行」四個領域的專家與耕耘者,一同談說、分享、攻錯。 這是一個大型的舞台,我們在此治茶拂席,虛位以待,請你上座。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
尋找小尺度粒子為什麼需要對撞機?跟核融合又有什麼關係?──《科學月刊》
科學月刊_96
・2019/10/18 ・2219字 ・閱讀時間約 4 分鐘 ・SR值 571 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/章文箴,中研院物理所研究員。

物理的發展中,從過去於自然界中的觀測,到今日利用強大能量的對撞機,尋找尺度更小的粒子一直是物理學家的目標。但粒子到底是如何被製造的呢?本文將解開粒子對撞機製造新粒子的機制。

人類為了發現比原子更小的新粒子,早期大多藉由觀察來自於宇宙射線與大氣層作用後的產物,例如渺子、正電子等;而質量較大的粒子,由於它們容易衰變,生命期短,因此不易觀測。

人類為了發現比原子更小的新粒子,早期大多藉由觀察來自於宇宙射線與大氣層作用後的產物。圖/Pixabay

隨著加速器的發明和使用,後續大多利用加速器產生高能量的質子束或電子束。在碰撞的過程中,能量足夠的情況下,透過特定反應產生並觀察新粒子。

質量是基本粒子的特性,也是辨認它們最重要的實驗證據,利用加速器所產生撞擊事件產生新粒子,碰撞過程的質心系能量 (center of mass energy) 必須大於新粒子的質量,才能透過質能互換,產出生成全新粒子。

-----廣告,請繼續往下閱讀-----

因此,在找尋質量更大新粒子的過程中,加速器的能量必須不斷地提升,也由從撞擊固定靶的實驗,轉換成對撞機實驗,達到足夠的質心系能量。

J/Ψ粒子的發現

以 1974 年所發現的 J/Ψ 粒子為例,其質量大約 3 GeV∕c2,由魅夸克 (Charm quark) 和反魅夸克所構成,因為魅夸克的質量遠高於當時已知的上夸克 (up quark)、下夸克 (down quark) 及奇夸克 (strange quark),受限於加速器能量的提升,在搜尋上拖延了一段時間,甚至讓物理學家猜測是否夸克只有以上的三種。

後續由丁肇中先生所領導的團隊,利用當時美國紐約州布魯克黑文國家實驗室 (Brookhaven National Laboratory, BNL) 剛完成全世界最高能量的加速器──交變梯度同步加速器 (Alternating Gradient Synchrotron, AGS) ,將質子束加速到 30 GeV,與固定鈹靶撞擊,此撞擊質心系能量大約為 7.75 GeV,因此得以產生並觀測到質量大約 3.1 GeV∕c的 J/Ψ粒子。

而同一時間,美國加州 SLAC 國家加速器實驗室 (SLAC National Accelerator Laboratory),透過正負電子湮滅反應,由能量直接生成新粒子,找尋 2.6~8 GeV∕c區間的新粒子,也同樣在 3.1 GeV∕c處發現 J/Ψ 粒子。兩團隊在 1974 年 11 月同步宣布發現,確認第四種夸克的發現,這項科學重要里程碑,在兩年後獲得諾貝爾物理學獎的肯定。

-----廣告,請繼續往下閱讀-----

1974 獲得諾貝爾物理學獎的兩人,左為 Sir Martin Ryle,右為Antony Hewish。圖/The Nobel Prize

澄清聳動新聞報導中的兩個專有名詞

在最近國內一則新聞報導提及,有研究人員在重氫與重氫核融合的過程中,宣稱觀察到 W 中間子的生成,並可透過此過程取得穩定能量。

筆者認為在該報導中有兩點需要進一步被澄清:W中間子觀測核融合技術

W 中間子的觀測

核反應後原子核中不穩定的中子可透過弱交互作用力,轉換成質子成為穩定核結構,稱之為 β 衰變(下圖)。而 W 中間子正是弱交互作用力的交換粒子,但此處的 W 中間子在理論架構中只是一個虛粒子 (virtual particle),代表動態量子場中能量和動量的傳遞,該處的質量是變動的而非定值,因此 β 衰變的發生,並不能視為實際發現弱交互作用力中 W 中間子的證據。

-----廣告,請繼續往下閱讀-----

β 衰變示意圖:透過弱交互作用,中子衰變為質子,而 W 中間子為弱交互作用力的交換粒子,釋放出一個電子及一個反電子微中子。

科學界對於 W 中間子的發現與確認,是源於歐洲核子研究組織 (Organisation Européenne pour la Recherche Nucléaire, CERN) 實驗室於 1983 年,在 400 GeV 質子和 400 GeV 反質子對撞後,所產生質心系能量可高達 800 GeV 反應中,觀察到質量大約 80 GeV/c的W玻色子,該研究成果在 1984 年贏得諾貝爾物理學獎,從此 W 粒子的質量測定成為高能物理實驗的量測準確的檢驗方法之一。

人類一直在追尋的技術:核融合

關於核融合反應,事實上是與日常生活息息相關。

在太陽內部,每一秒有 60 億公噸的氫核透過連續核融合反應轉換成氦核,其中的質量虧損轉換成能量形式放出,提供地球上的生物與人類生活上不可或缺的光和熱。

-----廣告,請繼續往下閱讀-----

而太陽內部的核融合反應能夠發生,歸功太陽內部強大的重力場,讓原子核能克服核子間的庫倫斥力,彼此靠近到約 10-15 公尺的距離,讓短距離的核力得以作用。

太陽內部的質子—質子鏈反應:首先由兩個氫原子核融合為氘,一個質子釋放出一個正電子和一個微中子成為中子,氘再和另一個氫原子合成氦同位素氦-3,最後再與另一氦-3形成氦同位素氦-4。

人類為了尋求穩定能量的來源,人造的核融合反應已研究超過 60 年,但是在技術層次上仍面臨重大困難。

過去曾嘗試利用加速器或電漿加熱方式,試圖克服核子間的庫倫斥力,以產生核融合反應,但是整個過程中所投入的能量,卻大於核融合反應後所釋放出的能量,無法達到能量的損益平衡,毫無商業運轉的價值。

-----廣告,請繼續往下閱讀-----

目前位於法國的國際熱核融合實驗反應爐 (International Thermonuclear Experimental Reactor, ITER) 計畫正集合來自全球各地 35 國之力,期望能在 2035 年底前突破此挑戰,讓人造核融合反應成為人類穩定能量的來源。

科學技術的源自於長期累積

科學和相關技術的進展需要長時間、大量人力與物力投入,透過嚴謹討論辯證、量化的測定、可重複的結果逐步累積,絕非一蹴可幾,也因此得以帶來對人類深遠的影響。

筆者期待藉此文提供讀者一些科學基本的知識得以用來判斷相關新聞報導的真假,更期盼臺灣社會大眾,能夠有正確眼光和態度,支持科學長期的發展,多充實科學基本知識,避免只感興趣於聳動性的新聞報導。


〈本文選自《科學月刊》2019 年 10 月號〉

-----廣告,請繼續往下閱讀-----

在這個資訊不被期待的時空裡,卻仍不忘科學事實至上的自由價值。

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
2

文字

分享

0
2
2
把手伸進大型強子對撞機會怎樣?──《然後你就死了》
臉譜出版_96
・2019/02/04 ・2981字 ・閱讀時間約 6 分鐘 ・SR值 511 ・六年級

一九七八年,俄羅斯科學家阿納托利.布戈爾斯基(Anatoli Bugorski)在視察俄羅斯最強的粒子加速器(能把亞原子粒子加速到接近光速的機器)「U–70」時,遭主粒子束打中後腦勺,並從鼻子穿出。他不覺得疼痛,只表示看到「宛如上千個太陽的閃光。」醫生速速把他送去醫院檢查,以為他會死於輻射中毒。不過,除了臉部癱瘓、偶爾癲癇、輕微輻射病及頭上有個小洞之外,布戈爾斯基並無大礙,繼續完成博士學位。

大型強子對撞機。圖/flickr

那強百倍的大型強子對撞機可以嗎?

這是不是表示,你可以把手放進歐洲新的大型強子對撞機(Large Hadron Collider)?你會不會得到一個挺酷的傷疤,除此之外毫髮無傷?不。你和你的手都不會這麼幸運,畢竟俄羅斯 U–70 加速器的威力還不到大型強子對撞機的百分之一。

大型強子對撞機是世上最強大的粒子對撞機,可把在十七哩(二十七公里)圓型隧道內的質子,加速到 0.99999999 c(時速僅比光速少七哩),並在世上最大的撞擊大賽中讓它們相撞。這撞擊威力相當強大,曾引發小社群強烈反彈,擔心會產生足以吞噬地球的黑洞。

-----廣告,請繼續往下閱讀-----

大型強子對撞機可把質子加速至0.99999999 c(時速僅比光速少七哩)。它們相撞的撞擊威力相當強大,曾引發小社群強烈反彈,擔心會產生足以吞噬地球的黑洞。圖/pixabay

這質子束是由一千億個質子構成,若加速到接近光速,會帶有巨大能量,相當於四百噸的列車以時速百哩前進。

質子束的能量很強,可在一毫秒內在銅中鑽一百呎(約三十公尺)深。正因如此,多數加速器都指向地底,以免故障時質子束射向城市,造成傷亡。

震破耳膜的巨響──電子束的第一波衝擊

這樣你該明白,為什麼不能把手伸進質子束了吧?但假設你沒看見警告標誌,仍然把手伸進去。那麼,第一個會出的問題是什麼?你的耳朵。

-----廣告,請繼續往下閱讀-----

在大型強子對撞機中,碳纖維骨架引導質子束的前進。如果質子束偏離,會撞擊到碳纖維,這聲音聽起來就像你站在演唱會的喇叭之前那麼大聲。之後,當科學家做完實驗,這質子束的能量就會被扔進當作質子阱(proton trap)的石墨塊,聽起來像是兩百磅(九十一公斤)的黃色炸藥(TNT)爆炸,足以震破耳膜。

如果質子束偏離,會撞擊到旁邊的碳纖維骨架,而你的耳朵就好像站在演唱會的喇叭之前。當實驗結束,這質子束的能量就會被扔進當作質子阱(proton trap)的石墨塊,聽起來像是兩百磅(九十一公斤)的黃色炸藥(TNT)爆炸,足以震破耳膜。圖/pixabay

因此,你得戴耳塞。但說真的,耳膜震破是最不嚴重的問題。更大的問題在於質子束的力量。

手一動就切兩半──電子束的第二波衝擊

質子會毫無阻礙地通過你的手。質子束很小,寬度只和鉛筆的鉛芯差不多,且移動速度之快,你根本不會覺得痛。質子束很可能錯過你的骨頭,你的手或許能繼續正常運作,但只有手掌在非常非常靜止的時候是如此。

-----廣告,請繼續往下閱讀-----

U–70 俄羅斯反應器不僅力量比大型強子對撞機小得多,而且只打出一發,因此布戈爾斯基頭上只有一個洞。大型強子對撞機比較像質子機關槍,在兩秒內發射將近三千發。如果你在第一發時把手抽離,質子束就會把你的手切成兩半。

萬別這麼做

U–70 俄羅斯反應器只打出一發,因此布戈爾斯基頭上只有一個洞。大型強子對撞機比較像質子機關槍,在兩秒內發射將近三千發。如果你在第一發時把手抽離,質子束就會把你的手切成兩半。圖/pixabay

輻射中毒而死──電子束的第三波衝擊

質子穿過你(但願是)靜止的手時,還會發生另一個更嚴重的問題。移動得這麼快的粒子必定有強烈的輻射。即使你離質子束好幾公尺,得到的輻射量還是會和照完整的胸腔 X 光一樣。

-----廣告,請繼續往下閱讀-----

不過,如果質子束打到你,你究竟會得到多少輻射卻很難說。質子束本身帶有極大量的輻射,殺死你還綽綽有餘,不過大部分的輻射會錯過你。這是因為,雖然你認為你的手是靜止的,但從原子層次來看,其實是很大的空間。

如果你手上的一個原子放大成足球場的規模,那麼原子核就是在五十碼處的一粒彈珠。由於朝你發射的輻射子彈也相當小,多數都會錯過,因此饒了你一命,你不會馬上死。可惜的是,雖然大部分會錯過,但你可能被剛好夠多的輻射量擊中,於是緩慢而痛苦地死去。

質子束本身帶有極大量的輻射,殺死你還綽綽有餘,不過大部分的輻射會錯過你。可惜的是,雖然大部分會錯過,但你可能被剛好夠多的輻射量擊中,於是緩慢而痛苦地死去。圖/pixabay

即使 U–70 加速器不到大型強子碰撞機力量的百分之一,就差點讓布戈爾斯基死於輻射中毒。有鑑於此,我們敢打包票,大型強子碰撞機的質子束必定會奪去你的性命。質子束打到你手部時所產生的粒子,會以至少十西弗的輻射毒害你全身,而你的經歷會像一九九九年日本東海村核燃料製備場的意外中,兩名死亡的工作人員一樣。

-----廣告,請繼續往下閱讀-----

巨量輻射讓你怎麼死?

大內久與篠原理人在製造小批量的核燃料時,因配方計算錯誤,導致混合物發生臨界事故。即使是接觸到致命的輻射量,受害者也不會立刻感到不適。症狀可能要經過幾個小時才會浮現。但是暴露在極端大量的輻射量時(例如你、大內久與篠原理人),症狀卻會馬上出現。

等到質子束穿過你的手,你眼前會馬上出現藍光,這是因為輻射通過你眼球液體的速度比光速還快(光速在水中的速度,比在真空慢三○%),並產生看起來是藍色的電磁波,稱為「契忍可夫輻射」(Cherenkov radiation)。大內久與篠原理人都說看見房間變成藍色,然而安全攝影機卻未顯示任何顏色改變。

質子束穿過你的手,你眼前會馬上出現藍光,稱為「契忍可夫輻射」(Cherenkov radiation)。 圖/wikimedia

質子束的能量會讓你變熱,因此你除了覺得房間顏色變藍之外,也會感覺變得很熱。你也會馬上想吐,因為輻射攻擊胃壁。你的皮膚則嚴重灼傷,此外還呼吸困難,可能失去意識。

-----廣告,請繼續往下閱讀-----

你的白血球數量會降到趨近零,免疫系統無法發揮作用,內臟慢慢受損。醫生能治療你的症狀,卻無法挽回遭到輻射毒害的器官。你會在四到八週內死亡,確切時間取決於你所接收到的輻射量及內臟損壞惡化的速度。

不過,你手上的洞會很小,遲早會癒合,只留下小小的傷疤。

 

 

本文摘自《然後你就死了:被隕石擊中、被鯨魚吃掉、被磁鐵吸住等45種離奇死法的科學詳解》,2018 年 5 月,臉譜出版。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。