0

2
0

文字

分享

0
2
0

p 值的陷阱(上):p 值是什麼?又不是什麼?

tml_96
・2017/01/07 ・9004字 ・閱讀時間約 18 分鐘 ・SR值 578 ・九年級

編按:本文係林澤民老師在2016年中進行的相關系列演講之一的逐字稿修訂版,本場次為2016/6/6在政大社科院的演講,題目為《看電影學統計:p 值的陷阱》。原文刊於《社會科學論叢》2016年10月第十卷第二期。

 

院長、陳老師,各位老師、各位同學,今天很榮幸能夠到政大來,和大家分享一個十分重要的課題。我今年回來,今天是第六個演講,六月中之前還有兩個,一共八個,其中四個是談賽局理論,四個是談 p 值的問題。

賽局理論的部分,題目都不一樣,譬如我在政大公行系講賽局理論在公行方面的應用,而我第一個演講在台大地理系,談賽局理論在電影裏的應用。我在台大總共講了三部電影,一部是《史密斯任務》,講男女關係、夫妻關係;第二部是《少年 pi 的奇幻漂流》,講少年和老虎對峙的重覆性賽局;第三部電影是最新的電影:《刺客聶隱娘》,講國際關係賽局。

今天談的當然是不一樣的題目,雖然它是一個很重要、很嚴肅的題目,但我希望大家可以輕鬆一點,所以也要放兩部電影片段給大家看,一部是《玉蘭花》,另一部則是《班傑明的奇幻旅程》,這兩部電影都有助於我們來瞭解今天要談論的主題:p 值的陷阱。

source:Christos Tsoumplekas
source:Christos Tsoumplekas

科學的統計學危機:p 值有什麼問題?

為什麼要談論 p 值的問題?因為在近十多年來,不只是政治學界,而是很多學門,特別是在科學領域,有很多文章討論傳統統計檢定方法、尤其是 p 值統計檢定的問題,甚至有位很有名的統計學者,Andrew Gelman 寫了篇文章,叫作〈科學的統計學危機〉(The Statistical Crisis in Science),說是危機一點都不言過其實。這就是為何我說:今天要討論的其實是很嚴肅的問題。

投影片上這些論點,大部分是說我們在傳統統計檢定的執行上,對 p 值有各種誤解跟誤用。現在很多人談到「p 值的危險」、「p 值的陷阱」、「p 值的誤用」、還有「p 值的誤解」。甚至有些學術期刊,也開始改變他們的編輯政策。像這本叫作 Basic and Applied Social Psychology 的心理學期刊,已經決定以後文章都不能使用 p 值,大家能夠想像嗎?我們作計量研究,都是用 p 值,各位一直用,在學界用了將近一百年,現在卻說不能用。甚至有些文章,說從前根據 p 值檢定做出來的研究成果都是錯的,有人更宣告 p 值已經死了。

所以這是一個很嚴重的問題。在這本期刊做出此決定後,美國統計學會(ASA)有一個回應,表示對於 p 值的問題,其實也沒這麼嚴重,大部分是誤解跟誤用所造成,只要避免誤解與誤用就好。可是在今年,ASA 真的就發表了正式聲明,聲明裡面提出幾點,也是我今天要討論的主要內容,包括 p 值的真正的意義,以及大家如何誤用,換句話說就是:p 值到底是什麼?它又不是什麼?(圖一) 今天除了會深入探討這些議題之外,也請特別注意聲明的第三點提到:科學的結論,還有在商業上、政策上的決策,不應只靠 p 值來決定。大家就應該了解這問題影響有多大、多嚴重!

f_19859736_1
圖一

我舉個例子,在台灣大家都知道我們中研院翁院長涉入了浩鼎案,浩鼎案之所以出問題,就是因為解盲以後,發現實驗的結果不顯著。我今天不想評論浩鼎案,但就我的了解,食藥署、或者美國的 FDA,他們在批准一項新藥時,一定要看實驗的結果,而且實驗結果必須在統計上要顯著。可是 ASA 卻告訴我們說,決策不該只根據統計的顯著性,大家就可想像這影響會有多大。甚至有其他這裡沒有列出來的文章,提到為何我們使用的各種藥物,都是經過這麼嚴格的 p 值檢定出來、具有顯著性,可是在真正臨床上,卻不見得很有用。其實很多對 p 值的質疑,都是從這裡出來的。

有關 p 值的討論,其實並非由政治學門,而是從生命科學、例如醫學等領域所產生的。ASA 聲明的第四點說:正確的統計推論,必須要「full reporting and transparency」,這是什麼意思呢?這是說:不但要報告 p 值顯著的研究結果,也要報告 p 值不顯著的研究結果。

但傳統方法最大的問題是:研究結果不顯著,通通都沒有報告。在英文有個詞叫 ,摘櫻桃。什麼叫摘櫻桃?摘水果,水果熟的才摘,把熟的水果送到水果攤上,大家在水果攤上看到的水果,都是漂亮的水果,其實有很多糟糕的水果都不見了。我們在統計上也是,大家看到的都是顯著的結果,不顯著的結果沒有人看到。

摘櫻桃(cherry picking):只有好的水果(顯著的統計結果)會挑選被大家看到,不好的/不顯著的則被忽略。圖/Oregon Department of Agriculture @ Flickr
摘櫻桃(cherry picking):只有好的水果(顯著的統計結果)會挑選被大家看到,不好的/不顯著的則被忽略。圖/Oregon Department of Agriculture @ Flickr

可是在過程中,研究者因為結果必須顯著,期刊才會刊登、新藥才會被批准,所以盡量想要擠出顯著的結果,這之中會出現一個很重大的問題:如果我們作了 20 個研究,這 20 個研究裡面,虛無假設都是對的,單獨的研究結果應該是不顯著。可是當我們作了 20 個統計檢定時,最少有一個結果顯著的或然率其實很高。雖然犯第一類型錯誤的或然率都控制在 0.05,可是 20 個裡面最少有一個顯著的,或然率就不是 0.05,大概是 0.64。如果就報告這個顯著結果,這就是 cherry-picking。

ASA 給的建議是:實驗者必須要 full reporting and transparency,就是一個研究假如作了 20 個模型的檢定,最好 20 個模型通通報告,不能只報告顯著的模型。ASA 這個聲明是今天要討論的主要內容。

p 值是什麼?

p 值是什麼?我想在座有很多專家比我都懂,但是也有一些同學在場,所以還是稍微解釋一下。p 值是由 Ronald Fisher 在 1920 年代發展出來的,已將近一百年。p 值檢定最開始,是檢定在一個 model 之下,實驗出來的 data 跟 model 到底吻合不吻合。這個被檢定的 model,我們把它叫做虛無假設(null hypothesis),一般情況下,這個被檢定的 model,是假設實驗並無系統性效應的,即效應是零,或是隨機狀態。在這個虛無假設之下,得到一個統計值,然後要算獲得這麼大(或這麼小)的統計值的機率有多少,這個或機率就是 p 值。

舉一個例子,比如說研究 ESP (超感官知覺)時會用到比例(proportion)這個統計值。我們用大寫的 P 來代表比例,不要跟小寫的「p 值」的 p 混淆。在 p 值的爭論裡,有一篇研究 ESP 的心理學文章被批評得很厲害。文章中提到了一個實驗,讓各種圖片隨機出現在螢幕的左邊或者右邊,然後讓受測者來猜圖片會出現在哪邊。我們知道如果受測者的猜測也是隨機的,也就是沒有 ESP 的效應,則猜對的或然率應該是一半一半,算比例應該是差不多 P = 0.5,這裡比例 P = 0.5 就是我們的虛無假設。但這個實驗,實驗者是一位知名心理學教授,他讓受測者用各種意志集中、力量集中的辦法,仔細地猜會出現在左邊還是右邊。結果發現,對於某種類型的圖片——不是所有圖片,而是對於某些類型的圖片,特別是色情圖片——受測者猜對的比例,高達 53.1 %,而且在統計上是顯著的。所以結論就是:有 ESP,有超感官知覺。

source:Wikimedia
圖/Wikimedia

這裡 p 值可以這樣算:就是先做一個比例 P 的 sampling distribution(抽樣分配)。如果虛無假設是對的,平均來講,P = 0.5。0.5 就是 P 的抽樣分配中間這一點,這個比例就是我們的虛無假設。在受測者隨機猜測的情況之下,P 應該大約是 0.5 的。可是假如真正得到的 P 是 0.531,抽樣分配告訴我們:如果虛無假設是對的,亦即如果沒有任何超自然的力量,沒有 ESP 存在,大家只是這樣隨機猜測的話,則猜對的比例大於或者等於 0.531 的機率,可以由抽樣分配右尾的這個面積來算。作單尾檢定,這面積就是所謂的 p 值。如果作雙尾檢定的話,這值還要乘以 2。以上就是我們傳統講的 p 值的概念。

我們得到 p 值以後,要作統計檢定。我們相約成俗地設定一個顯著水準,叫做 α,α 通常都是 0.05,有時候大家會嚴格一點用 0.01,比較不嚴格則用 0.10。如果我們的 α = 0.05,則若 p < 0.05,我們就可以拒絕虛無假設,並宣稱這個檢定在統計上是顯著的,否則檢定就不顯著,這是傳統的 p 值檢定方法。如果統計上顯著的話,我們就認為得到實驗結果的機會很小,所以就不接受虛無假設。

為什麼說 p 值很小,就不接受虛無假設?我個人的猜想,這是依據命題邏輯中,以否定後件來否定前件的推論,拉丁文稱作 modus tollens,意思是以否定來否定的方法,也就是從「若 P 則 Q」和「非 Q」導出「非 P」的推論,這相信大家都知道。p 值檢定的邏輯是一種有或然性的 modus tollens,是 probabilistic modus tollens。「若 H0 為真,則 p 值檢定顯著的機率很小,只有 0.05」,現在 p 值檢定顯著了,所以我們否定 H0。但是命題邏輯的 modus tollens,「若 P 則 Q」是沒有或然性、沒有任何誤差的餘地的。「若 H為真,則 p 值檢定不可能顯著」,這樣 p 值檢定顯著時,你可以否定 H0,大家對此都不會有爭議。

問題是假如容許或然性,這樣的推論方法還是對的嗎?舉一個例子:「若大樂透的開獎機制是完全隨機的,則每注中頭獎的機率很小,只有 1 / 13,980,000」,現在你中獎了,你能推論說大樂透開獎的機制不是隨機的嗎?p 值的問題,便是在於我們能不能夠因為 p 值很小,小到可能性很低,我們就用否定後件的方法來否定前件。我們用命題邏輯來作統計推論,但其實我們的推論方法跟命題邏輯卻不完全一樣,因為我們的 α 絕對不可能是零,如果 α 是零的話,就不是統計了。

再來就是看電影時間,電影很有趣,可以幫助我們了解什麼是 p 值,也可以再接著討論為什麼用 p 值來作統計推論會有錯。這部電影叫做「玉蘭花」,是 1999 年的電影,已經很舊了,可能在座年輕的朋友就沒看過。網路上在 Youtube有這一段,請大家觀賞。

相信大家應該都看得懂這短片的用意。玉蘭花這部電影,雖然裡面有講一些髒話,但是其實是一部傳教的影片。它的推論方式,其實就是我剛剛講的 p 值的推論方式,它有一個虛無假設,就是說事情發生沒有什麼超自然的力量在作用,都是隨機發生的,是 by chance,不是 by design,可是它發生了,竟然有這麼巧合的事情。大家可以想一下,如果事情的發生都是 by chance,都是隨機的,那麼像這種事件發生的機率有多少?很小很小,0.0…01,幾乎不可能發生。所以假如是隨機發生的,就幾乎不可能發生,可是它發生了,我們就以否定後件來否定前件,推論虛無假設-by chance 的這個假設-是不對的。

既然不是 by chance,它是什麼?就是 by design,是設計出來的。這是基督教的一種論證上帝創造世界的方法。在美國,有些學區還在爭論,生物是創造的還是進化的?創造論的主張者都會用這樣的論證,說你看我們人體,它是這麼複雜的一個系統,這種系統可能是隨機發生的嗎?若是隨機發生,機率有多少?是 0.0…01,所以它不可能是隨機發生,因此是創造的。這個理論叫做 intelligent design(智慧的設計)即我們這個世界都是上帝創造、是上帝很有智慧地依照藍圖設計出來的。我今天也不想爭辯這種推論對不對,我只是舉例來說明這種推論的邏輯。

p 值不是什麼?

我本來放這部電影都是為了在教學上解釋 p 值的概念,可是後來當我注意到對於 p 值的爭議之後,覺得其實這一部電影也可以用來幫我們了解為什麼用 p 值來做統計推論有可能是錯的。

下面這個表是大家都熟悉的。(圖二) 我們可以用這個表來呈現有關虛無假設是對或者不對,是被拒絕或者被接受的四種可能性,其中兩種是作出錯誤統計推論的情況。第一個情況,虛無假設是對的,但統計檢定是顯著的,因此虛無假設被推翻了。這種情況叫做 Type I error,我們保留了 α = 0.05 的機率容許它存在。第二個情況,如果虛無假設是錯誤的,但統計檢定不顯著,所以它沒有被推翻,這個情況叫做 Type II error。Type II error 剛學統計的同學可能不太了解,因為我們通常都不會很清楚地去計算它的機率——所謂 β。這個 β 跟 α 不一樣,不是你可以用相約成俗的方法來訂定,而是會受到若干因素的影響。

f_19859765_1
圖二

我們可以開始討論:傳統用 p 值來作統計檢定方式,為什麼有問題?剛剛 ASA 的聲明說:p 值 do not measure the probability that the studied hypothesis is true。p 值告訴你:如果虛無假設是對的,你「觀察到資料」的機率有多少,但它並沒有告訴你「虛無假設是對的」的機率有多少,或「研究假設是對的」的機率有多少。這是很不一樣的:前者是 data 的機率,後者是 model 的機率。進一步說明,p 值是在虛無假設為真的條件之下,你觀察到和你所觀察到的統計值一般大小(或更大/更小)的機率。但我們作檢定的時候,我們是看 p 值是不是小於你的統計水準 α,如果 p < α,我們就說統計是顯著的。

換句話說,如果虛無假設為真,那麼你的檢定是顯著的機率是 α = 0.05。但這其實不是我們作研究最想回答的問題;這個機率只告訴我們,如果你的虛無假設為真,有百分之五的機率,data 會跟它不合,但它沒有告訴我們虛無假設這個 model 為真的機率有多少,而這才是我們應該問的問題。所以我們應該反過來問,如果你統計檢定是顯著的,在此條件之下,「虛無假設是對的」的機率有多少?如果我們把關於 data 這個偽陽性的機率記作 α = Pr(Test=+|H0),大家可以看出這個關於 model 的機率其實是它倒反過來的:Pr(H0| Test=+),所以我把它稱作「偽陽性的反機率」。這兩個機率原則上不會相等;只有在 α = 0 的時候,兩者才都是零而相等。

譬如今天你去健康檢查,醫生給你做很多篩檢,如果篩檢結果是陽性,其實先不要怕,因為你應該要問,如果篩檢出來是陽性,那麼你真正並沒有病的機率是多少?也就是偽陽性的反機率有多少?大家可能會很驚訝,偽陽性的反機率通常都很高,但是這個機率,p 值並沒有告訴你。所以必須要去算在檢定是陽性的條件下,結果是一種偽陽性的反機率;這就必須要用「貝式定理」來算。

當醫生替你診斷出陽性反應時先別緊張,也許偽陽性的反機率(也就是其實你沒病的機率)比你想像中的高。圖/wiki
當醫生替你診斷出陽性反應時先別緊張,也許偽陽性的反機率(也就是其實你沒病的機率)比你想像中的高。圖/wiki

雖然在座有很多可能比我更高明的貝氏統計學家,但我還是要說明一下貝式定理。先舉一個我終身難忘的例子,剛剛陳老師說我是台大電機系畢業的,我在電機系的時候修過機率這一門課。我記得當時的期中考,老師出了一個題目,說我口袋裡面有三個銅板,其中有一個銅板是有偏差的銅板,偏差的銅板它得到正面的機率是 1/3 ——不是 1/2——而得到反面的機率是 2/3。考題問:現在我隨機從口袋裡面掏出一個銅板,這個銅板是那個偏差銅板的機率是多少?很簡單大家不要想太多,1/3 嘛。可是我現在拿銅板丟了一下,出現的是正面,我再問你這個銅板是那個偏差銅板的機率是多少?我不期望大家立刻回答,因為要用貝式定理來算,當你獲得新的資訊的時候,新的資訊會更新原來的機率。這裡我也沒有時間詳細告訴大家怎麼算,但是可以告訴大家,結果是 1/4。

如果我丟擲銅板,它得到了正面,它是偏差銅板的機率變成只有 1/4。這是因為偏差銅板出現正面的機率,比正常銅板要小,所以出現正面的話,它相對來講就比較不太可能是偏差的銅板,所以機率會比原來的 1/3 小些,只有 1/4。(大家可以想像如果偏差銅板出現正面的機率是 0,而丟擲得到正面,則此銅板是偏差銅板的機率當然是 0。)原來所知的「1/3 的機率是偏差銅板、2/3 的機率是正常銅板」這個機率分配在貝氏定理中叫做先驗機率(prior probability)。大家要建立這個概念,即是還沒觀察到數據之前,對於模型的機率有一些估計,這些估計就叫做先驗機率。至於觀察到數據之後所更新的模型機率,1/4 和 3/4,這個機率分配叫做後驗機率(posterior probability),也就是前面所說的反機率(inverse probability)。

從擲銅板的例子來看貝式定理,當你獲得新的資訊的時候,新的資訊會更新原來的機率。圖/Jimmie @ Flickr
從擲銅板的例子來看貝式定理,當你獲得新的資訊的時候,新的資訊會更新原來的機率。圖/Jimmie @ Flickr

我們再來看另外一個跟統計檢定問題非常接近的例子。可以用剛剛身體檢查的例子,但我這裡用美國職棒大聯盟對球員的藥物檢查為例,也許比較有趣。這裡假設大約有 6 % 的美國 MLB 的球員使用 PED(performance enhancing drugs),這是一種可以增強體能表現的藥物,是類固醇之類的藥物。這個估計數字可能是真的,是我從網頁上抓下來的。這邊的 6 % 即為我前面說的先驗機率:隨機選出一個球員,則他有使用 PED 的機率是 0.06,沒有使用 PED 的機率是 0.94。現在大聯盟的球員都要經過藥檢;舉大家熟知的火箭人 Roger Clemens 為例。他也是我心目中的棒球英雄,他被檢定有陽性的反應。

為了方便起見,假設藥檢的準確度是 95 %。所謂準確度 95 %的定義是:如果一個球員有使用藥物,他被檢定出來呈陽性反應的機率是 0.95;如果一個球員沒有使用藥物,他被檢定出來呈陰性反應的機率也是 0.95。也就是我假設兩種誤差類型的機率 α 跟 β 都是 0.05。在這假設之下,使用貝式定理來計算,當球員被篩檢得到的結果是陽性,但他並不是 PED 使用者的後驗機率或反機率,其實高達 0.45。大家可以從圖三看到貝氏定理如何可以算出這個機率。(圖三)

f_19859782_1
圖三

使用貝式定理算出來的結果大家應該會覺得很詫異,因為我們藥物篩檢的工具應該是很準確的,0.95 在我們想像中應該是很準確的,我們認為說我們錯誤的可能性只有 5 %,其實不然。檢定是陽性,但其實偽陽性的反機率可以高達45 %!所以雖然我不是醫學專家,不過大家健康檢查,如果醫生說,你的檢查結果呈現陽性反應,大家先不要慌張,你要先問一下醫生檢驗的準確度大概有多少,如果一個真正有這種病的人來檢定,呈現偽陽性的機率有多少?如果一個沒有病的人來檢定,呈現偽陰性的機率有多少,然後再問他先驗機率大概有多少?然後自己用貝氏定理去算一下偽陽性的反機率。醫學上很多疾病,在所有人口裡面,得病的比例通常很小的。也就是說,得病的先驗機率通常都很小,所以偽陽性的反機率會很大。

現在換成了統計檢定,看下圖的表格。(圖四)這表格跟圖三的表格很像,只是把內容改成了圖二的內容:虛無假設是真的、或是假的,然後統計檢定是顯著、或是不顯著的。然後再加上一行先驗機率,就是「虛無假設是對的」的先驗機率有多少、「虛無假設是錯的」的先驗機率有多少,都用符號來代替數目。我們可以用貝式理得到一個公式,顯示偽陽性的反機率是統計水準 α、檢定強度(power = 1 – β)、和研究假設之先驗機率(P(HA))的函數。α 跟檢定強度都沒問題,但公式裡頭用到先驗機率。你會問:在統計檢定裡面,先驗機率是什麼?

f_19859798_1
圖四

在此我必須要稍微說明一下,先驗機率,以淺白的話來講,跟你的理論有關係,怎麼說呢?如同剛剛提到 ESP 的實驗,好像只要就這樣用力去猜,你猜對的可能性就會比較高。發表這樣子的實驗報告,我們有沒有辦法告訴讀者,當受測者這樣皺著眉頭去想的時候,到底是什麼樣的一個因果機制,能夠去猜到圖片是出現在左邊還是右邊。

一般來說這種 ESP 的實驗,是沒有這種理論的,是在完全沒有理論的條件之下來做實驗。在此情況之下,我們可以說,此研究假設的先驗機率很小很小。當然我們作政治學的研究就不一樣,我們可能引用很多前人的著作,都有一個文獻回顧,我們也引用很多理論,然後我們說:我們的研究假設是很有可能展的。假如你有很好的理論,你的研究假設的先驗機率就會比較高,在這種情況之下,問題會比較小。但是還有一個問題,就是如果從文獻裡面來建立理論,來判定你的研究假設的先驗機率有多少,問題出在於:通常文獻回顧是從學術期刊裡面得來,而現在所有的學術期刊,發表的都是顯著的結果,不顯著的結果通通都沒有發表,從學術期刊上來判斷研究假設的先驗機率有多少,這樣的判斷是有偏差的。這是我今天要講的第二個問題,現在先繼續討論偽陽性反機率的問題。

現在要詳細討論影響偽陽性反機率的因素,就是影響到「統計檢定是顯著的條件之下,虛無假設為真」這一個機率的因素。這裡再重覆一下,我們一般了解的統計推論,奠基於虛無假設為真時,p 值顯著的機率,也就是偽陽性的機率被控制在 α 之內:Pr(Test=+|H0)= Pr(p<α|H0) = α。但我們現在要反過來問的是:統計檢定是顯著的情況下,H為真的機率,也就是偽陽性的反機率:Pr(H0| Test=+)= Pr(H0| p<α),這好比篩檢結果為陽性、但其實球員並未使用 PED、患者其實無病的機率。如果 α 等於零,可以很清楚的發現,這兩個機率是一樣的,都是零;但 α 不等於零的時候,它們就不一樣。由下圖來看,偽陽性的反機率跟先驗機率-研究假設的先驗機率-以及檢驗的強度有關。(圖五、六)看圖可以得知,power 越大,還有先驗機率越大的話,偽陽性的反機率就越小。可是當 power 越小的時候,還有先驗機率越小的時候,偽陽性的反機率就越大。

f_19859819_1
圖五
f_19859834_1
圖六

我做了一個表,列出研究假設的先驗機率,從最小排列到最大,可以看到在不同檢定強度之下,偽陽性的反機率是多少。(圖七)它可以高到近乎 1.00。換句話說,研究假設的先驗機率如果很小很小,則即使 p 值檢定顯著,但虛無假設仍然為真的機率其實還是很大很大的。如果研究假設的先驗機率是 0.5 ——你事先也許不知道哪一個是對的,你假設是 0.5,就像丟銅板一樣,此時,偽陽性的反機率才是 0.05,才跟 α 一樣。也就是說,研究假設的先驗機率必須要高於 0.5,偽陽性的反機率才會小於 0.05。可是假如你的研究假設,譬如剛剛提到的 ESP 研究,這種實驗沒有什麼理論、沒有什麼因果關係,然後你就去做了一個統計分析。換句話說這個研究假設的先驗機率可能很低,此時偽陽性的反機率其實是很高的。圖七第一欄是假設 power 為 0.95,如果 power 低一點到 0.75 呢?如果是 0.50 呢?我們可以看到其實結果差不多。當然 power 越低,問題會越嚴重,但其實差不多,當你的先驗機率是 0.5 的時候,原來是 0.05,現在是 0.09,所以差別不是特別大。原則上,power 對於偽陽性反機率的作用不是那麼強,作用強的是 prior,即是研究假設的先驗機率。

f_19859845_1
圖七

小結:當檢定強度或研究假設的先驗機率甚低的時候,α = 0.05 可能嚴重低估了偽陽性之反機率,也就是在 p 值檢定顯著的情況下,虛無假設 H仍然極有可能為真,而其為真的條件機率可能甚大於 α。此時如果我們拒絕虛無假設,便作出了錯誤的統計推論。

請繼續閱讀下篇:p 值的陷阱(下):「摘櫻桃」問題

本文《看電影學統計:p 值的陷阱》轉載自 Tse-min Lin 的部落格


數感宇宙探索課程,現正募資中!

文章難易度
tml_96
34 篇文章 ・ 222 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。


2

11
3

文字

分享

2
11
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 17 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook