0

1
1

文字

分享

0
1
1

電玩遊戲是強力的抗焦慮藥物—《超級好!用遊戲打倒生命裡的壞東西》

PanSci_96
・2016/12/28 ・4036字 ・閱讀時間約 8 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

  • 編按:想像一下打電玩的情景:全神貫注、想方設法,一切只為打倒大魔王。等贏得了寶物,已是半夜三點,而你已迫不及待下一場挑戰……打電玩的你可以為了達成遊戲目標,而專注跨越困難,但如果可以將這樣的精神發揮在現實生活,我們是否能達成更多「不可能的任務」?本文摘自《超級好!用遊戲打倒生命裡的壞東西》一書,電玩遊戲可以幫我們抗焦慮嗎?

手術令人恐懼,對小孩來說尤其如此。過去 25 年,醫師想過各種辦法,減輕孩童在手術房中的焦慮感。他們試過強效的藥物,也曾讓家長在孩子進入麻醉狀態前和麻藥退去醒來時,握住孩子的手。甚至還有醫師把小丑請來手術房,希望能逗小孩笑。

什麼方法最管用?如你所料,不是小丑,也不是家長的陪伴或任何藥物。研究人員發現,《超級瑪利歐兄弟》才是一帖良藥。這些玩掌上型電動遊戲機的小孩,在手術前幾乎沒有任何焦慮感。手術結束後,當他們從麻醉狀態甦醒時,他們的焦慮程度也只有用藥組的一半不到,而且不必承受任何藥物的副作用。

超級瑪利歐是幫助孩子對抗術前焦慮的最強武器!圖/MATTEO BITTANTI @ Flickr
超級瑪利歐是幫助孩子對抗術前焦慮的最強武器!圖/MATTEO BITTANTI @ Flickr

這是另一項值得登上頭條的科學研究結果:「電玩遊戲比最強力的抗焦慮藥物,更能有效避免焦慮。」但遊戲為何比較有效?紐澤西大學醫學院麻醉學系的研究團隊主張,箇中關鍵正是「認知專注」,就和《冰雪世界》和《俄羅斯方塊》一樣。這些小病人因為全神貫注在電玩遊戲,不太把心思放在手術上,所以不會感到不安或恐慌。

這項理論很有道理,正如注意力的探照燈理論所述,焦慮感就像疼痛、創傷記憶,以及對某事物的渴望一樣,占據了注意力,才會形成發展出來。不斷想到可能出錯的事,則會一再加重人的焦慮感。「恐懼」是對實際出錯的反應,但「焦慮」卻是預期出錯的心理狀態。我們越生動地想像事情出錯的畫面,越是焦慮。

-----廣告,請繼續往下閱讀-----

生理知覺也可能會引發我們的焦慮感,舉例而言,咖啡因會引起心跳加快及掌心冒汗,突然被嚇一跳也會引起腎上腺素激升。一旦我們注意到這些身體知覺,就會絞盡腦汁想自己緊張的緣由,結果爆發焦慮感,甚至導致恐慌發作。然而,這些症狀都只是「身體知覺」罷了。只有當我們想像未來會發生什麼可怕之事時,這些症狀才會變成焦慮的「情緒感受」。這些想像可能會引發更多生理變化,腎上腺素分泌更多,或是心跳速率更快,然後又被我們解讀成有更多要擔心的理由,就此開啟焦慮的惡性循環。

但玩遊戲能打破注意力的惡性循環,讓我們不再預想出錯的情境。即使我們在玩遊戲時出現焦慮的身體症狀,我們也因為專心投入遊戲,而無暇想像最糟的狀況,焦慮感也跟著消失無蹤了。

在某些情況下,焦慮感對我們有益,能警惕我們發現潛在問題,提前採取行動,避免問題發生。舉例而言,如果你對考試或口頭報告感到焦慮,焦慮感將督促你加緊練習,只不過對大部分人來說,焦慮並不會引發建設性的行動,往往只是帶來不必要的痛苦,妨礙我們採取行動。那麼,何時才是利用遊戲來阻斷焦慮的適當時機呢?不妨依循以下法則:如果焦慮讓你無法找出具體的解決步驟,只是徒增你的煩惱不安,就去玩個遊戲吧。同樣地,如果焦慮讓你無法從事真正想做或需要做的事(例如坐飛機、做口頭報告,或參加社交活動),也請你花幾分鐘玩個遊戲,來阻隔不必要的焦慮。

如果焦慮讓你無法從事真正需要做的事,試試也花幾分鐘玩個遊戲,來阻隔不必要的焦慮。圖/Miguel Angel @ Flickr
如果焦慮讓你無法從事真正需要做的事,試試也花幾分鐘玩個遊戲,來阻隔不必要的焦慮。圖/Miguel Angel @ Flickr

抗焦慮,你需要全神貫注地轉移注意力

看漫畫、聽音樂、看卡通,為何這些有趣的活動,遠遠不及讓病童打電玩,可有效打斷焦慮循環呢?因為這些活動無法讓孩子像打電玩時一樣專注。玩遊戲時,我們不僅將注意力集中在眼前的遊戲,更是「全神貫注」地投入遊戲之中。這種特殊的心理狀態,科學家稱為「心流」(flow)。

-----廣告,請繼續往下閱讀-----

「心流」是指全副心神專注投入某活動的狀態,而且是完全「沉迷」其中。心流經驗令人沉醉忘我,因為眼前的挑戰而大感振奮。在心流狀態中,不僅時間不知不覺地流逝,連自我意識都跟著消失了。你全神貫注於眼前的活動,而覺察不到其他任何思緒或情緒。

美國心理學家契克森特米海伊(Mihaly Csikszentmihalyi)於 70 年代首次發現心流現象。一般認為「心流」是一種極為正向、也是最理想的心理狀態。我們能以許多方式達到心流狀態,只要目標清晰,任務具挑戰性,並具備足夠技能,便不難產生「心流經驗」,以激勵我們精益求精。心理學家初次描述心流現象時,提到遊戲及玩樂正是典型的心流活動。彈吉他、料理、跑步、園藝、做高階數學,或是跳舞……等,這些活動也都能促成心流。然而,與打電玩遊戲相比,這些活動較難在高壓情境中進行(更別說是手術前的開刀房了)。

意外的是,一般認為容易轉移注意力的休閒活動,往往無法引發心流狀態,例如看電視或電影、聽音樂,甚至是閱讀。雖然這些愉快的活動能讓我們暫時忘卻眼前的問題,但缺乏挑戰和互動,因此不符合引發心流現象的條件。這一點很重要,因為許多人會尋求輕鬆愉快的活動,作為應付個人壓力、焦慮或痛苦的方式。但心流研究顯示,挑戰性、互動性強的活動,其實比被動的休閒活動,更能幫助我們掌控自己的思緒和感受。

正是因為心流,電玩遊戲更能有效控制焦慮及其他情緒。遊戲給我們明確的目標,需要我們專注及努力,才能成功達標。數位遊戲更經常提供即時回饋,讓我們的表現更加進步。往往只要我們的技能一精進,遊戲難度就會加深,以確保玩家不斷向上挑戰。因此,要達到心流狀態,電玩遊戲可說是最可靠、有效率的方式。一旦進入心流狀態,我們便能完全掌控自己的注意力焦點。

-----廣告,請繼續往下閱讀-----

研究人員建議:電玩遊戲可列為治療方法之一

若能為自己創造心流,那麼你不只能阻斷痛苦和焦慮等負面感受,還能積極促進自己的身心健康。

東卡羅萊納大學心理生理學實驗室的科學家最近完成了一系列研究,測量電玩遊戲對個人身心的影響。這些科學家主要探討休閒類電玩,例如《憤怒鳥》《寶石方塊》與紙牌接龍。這些遊戲可快速學會,要停下來或重新開始也很容易。這類遊戲與心流經驗具有高度相關性,而且相較於《魔獸世界》及《勁爆美式足球》等複雜的遊戲,玩休閒類電玩不需要具備特殊的遊戲技能或專門知識,也不必投入一定的時間。

玩完一場憤努鳥,壓力好像減輕了一些~圖/youtube
玩完一場憤努鳥,壓力好像減輕了一些~圖/youtube

引起科學家研究興趣的是寶開遊戲公司的一份調查報告,寶開是全球最大遊戲開發商之一,他們發現 77% 的玩家在玩休閒類電玩時,其實也在尋求情緒健康的益處,而不只是娛樂。這些玩家表示,他們利用休閒類電玩遊戲改善心情、停止焦慮、減輕壓力,有些甚至作為某種「自我治療」之用。

「遊戲能促進玩家的精神健康」這一點究竟是事實,還是玩家自己的一廂情願?這正是寶開想解開的疑問。因此,這家遊戲商與東卡羅萊納大學共同成立研究計畫,借重東卡羅萊納先進的「生物回饋」(biofeedback)研究。他們的研究目標是要測量遊戲玩家腦波、心跳速率及呼吸模式的變化,看看這些變化是否符合心情改善、憂鬱減輕,以及抗壓性提高等生理徵象。

-----廣告,請繼續往下閱讀-----

科學家在玩家身上貼附了監控裝置,以追蹤情緒及身體韌性的兩項特定指標:一項是 α 腦波中的腦電圖變化,顯示玩家是否感到痛苦、憂鬱,或愉悅;另一項是心率變異度,這項指標可反映身體從情緒或身體壓力中恢復的速度。

第一項隨機對照試驗發現,玩休閒類遊戲 20 分鐘可降低左前額 α 腦波,顯示個人的心情提升,α 腦波降低的遊戲玩家也的確表示心情變好了。這些受試者的憤怒、憂鬱及緊繃情緒顯著減少,能量明顯提高。至於單純上網 20 分鐘的對照組,則未出現明顯的腦電圖變化,受試者也未感到心情變好或能量提升。此外,遊戲玩家的心率變異度亦顯著提高。玩遊戲僅僅 20 分鐘後,他們的心臟已能承受更多壓力,並復原得更快。

由於初步的研究結果相當正面,研究團隊決定針對休閒類電玩遊戲,進行為期更長的研究。在這次試驗中,他們研究了一週玩 3 次、一次玩 30 分鐘遊戲,對受試者的心情感受,以及對腦電圖及心率變異度的影響。受試者在研究一開始都有焦慮或憂鬱症狀,依上述頻率玩遊戲一個月後,這群受試者的憂鬱、焦慮,以及壓力程度皆顯著減輕。他們的腦電圖及心率變異度皆顯著提升,進一步從生理面證實上述的情緒變化。基於以上重大發現,研究人員甚至建議醫師可將電玩遊戲列為治療方法之一。

不久後的將來,心理學家或心理醫師很可能會開立《憤怒鳥》的處方以減輕患者的焦慮症狀、用《幻幻球》來治療憂鬱症,或是用《決勝時刻》以控制憤怒情緒。事實上,已有心理治療師及諮商師這麼做,而且受到越來越多科學實證的支持。2012 年,曾有學者針對發表於《美國預防醫學期刊》的 38 項關於電玩遊戲的隨機對照試驗,進行統合分析。該研究發現,電玩遊戲極可能幫助人們提升精神健康。(論文也鼓勵相關研究人員及遊戲產業進行為期較長的必要試驗,以進一步探索這個新興的研究領域。)

-----廣告,請繼續往下閱讀-----

「遊戲療法」未必與傳統的藥物治療有所衝突,在東卡羅萊納大學的休閒類遊戲試驗中,23% 的受試者服用抗憂鬱藥物。我們目前才剛開始研究遊戲對精神健康有何正面影響,以及影響的廣度及深度。就現階段或更長期而言,我們應該將電玩遊戲視為「輔助」療法,而非「另類」療法。


《超級好!用遊戲打倒生命裡的壞東西》書封

 

本文摘自《 超級好!用遊戲打倒生命裡的壞東西:50 萬人親身見證的心理奇蹟 》先覺出版

文章難易度
PanSci_96
1238 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
高端玩家必看!顯示器的反應時間是怎麼定義?最新推出的 VESA ClearMR 認證,重新定義電競螢幕動態顯示規格
宜特科技_96
・2023/08/30 ・4272字 ・閱讀時間約 8 分鐘

玩家使用電競螢幕玩遊戲
圖/宜特科技

電競顯示器五花八門,但你了解廠商主打 1ms 反應時間的意思嗎? 而 2022 年推出的 VESA ClearMR 認證,是如何重新定義動態畫面的模糊比例,又有什麼測試重點呢?

本文轉載自宜特小學堂〈VESA 最新推出 ClearMR 認證 重新定義電競螢幕動態顯示規格〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

近十年全球電競產業可謂炙手可熱,吸引了大量的關注和投資。根據數據分析公司 Newzoo 的報告顯示,2022 年全球電競市場規模就已突破了 10 億美元的大關。而該公司也預測,到了 2025 年全球每 11 個人中,就有1人將成為電競賽事的觀眾,凸顯了電競產業的快速增長和受眾擴大,將帶來更多商機和成長潛力。

全神貫注比賽的電競選手
全神貫注的電競選手。圖/Insider Intelligence

而遊戲勝負的關鍵,除了依靠選手本身的反應力,設備優劣也是不可或缺的條件之一,尤其電競中極度仰賴的「畫面」的反應時間,輸贏往往就取決在短短幾毫秒的動態表現。當消費者在挑選顯示器時,會看到許多廠商都標榜「1ms 反應時間」,但是細看規格會發現,有些標示 1ms GtG,有些標示 1ms MPRT,由於業界對於影像動態模糊的顯示規格不一,讓消費者在購買時很容易產生混淆。

電商平台會以 "1ms 反應時間"作為消費者選購的參考
電商平台會以 1ms 反應時間作為消費者選購的參考。圖/momo購物網

有鑒於此,2022年,視訊電子標準協會(Video Electronics Standards Association,簡稱VESA)針對螢幕在動態顯示時的表現進行標準化,提出 ClearMR (Clear Motion Ratio Compliance Test Specification)認證,清楚地界定「螢幕在顯示快速移動影像時,清晰和模糊畫素的比例」,這是注重顯示器動態表現的電競選手與玩家們會關注的焦點。

那麼,兩種主流規格 GtG 和 MPRT 到底差在哪裡?ClearMR 又是怎麼定義動態畫面的模糊比例?它與市面上已有的其他規格有何不同?本文章將先介紹目前主流的兩種規格—MPRT 和 GtG,再進一步介紹最新 VESA ClearMR 測試規範的重點。

一、 GTG(灰階對灰階反應時間),僅針對灰階,無法定義畫面的模糊

LCD 液晶顯示器(Liquid-Crystal Display)就像拼圖一樣,是由大量像素點拼湊成一個完整的畫面,每個像素點中 RGB 三原色比例,決定了呈現的顏色。例如,紅色的比例越高就越紅,藍色比例提高、紅色下降則會變紫,如果想展現出亮紅或暗紅的差異,則是根據電壓大小來改變亮度。

LCD 液晶顯示器的像素放大圖及 RGB 比例改變後,顏色產生變化的示意圖
LCD 液晶顯示器的像素放大圖及 RGB 比例改變後,顏色產生變化的示意圖。圖/wiki & 宜特科技繪製

我們可以想像當白光通過紅色的亮度越高,就會顯示出亮紅色,反之光源越暗,就會呈現出暗紅色。如果畫面只有最暗跟最亮就會變得很極端,所以現在的顯示器,就是透過從最暗到最亮共有256個灰階的變化,呈現出各種精緻的色彩。

螢幕的256個灰階影像變化
256個灰階影像變化。圖/moblie01

前面講了那麼多,我們終於要講到正題的 GtG(Gray to Gray,灰階對灰階的反應時間),一般 LCD 液晶顯示器所標示的反應時間,是指液晶全開/全關所需的時間,但因液晶螢幕呈現的內容,其實就是不同灰階之間的轉換跟變化。最亮和最暗兩者中間的層次愈多,就愈能夠呈現出愈細膩的畫面。當轉換的時間越長畫面就容易產生殘影,相反的,轉換時間越短畫面就越乾淨,遊戲體驗也就越好。

然而,GtG 的數值只是針對不同灰階之間的反應時間,各家廠商的測試標準與定義也有些不同,GtG 也無法去定義畫面的模糊。那,什麼又是 MPRT 呢?

二、 用 MPRT(動態畫面反應時間)處理畫面殘影,卻導致螢幕變暗

由於 LCD 液晶顯示器的特性與人眼視覺暫留的關係,影像在移動時,使用者會看到殘影或拖影的畫面模糊現象,我們以下圖來舉例,當畫面從綠色切到藍色,中間的過度色在人眼的辨識上就會產生殘影,進而造成模糊。

ULMB 超低運動模糊技術的概念動圖
ULMB 超低運動模糊技術的概念圖。圖/宜特科技

為了解決此問題,於是透過開關螢幕的背光或是插入黑畫面,以縮減每幀畫面的顯示時間,來降低視覺暫留,讓畫面快速移動時較為清晰,暫且解決模糊問題,這個技術就被稱為 ULMB(Ultra Low Motion Blur,超低運動模糊技術)。在剛才舉例中,我們讓綠色切到藍色中間變成了黑畫面,快速的切換可以讓畫面更為清晰。而在 ClearMR 問世前,業界最常用 MPRT(Motion Picture Response Time,動態畫面反應時間)的數值來表示從 A 畫面切到 B 畫面的反應速度。

但是,透過 ULMB 去達到降低 MPRT 的反應時間,也就意味著頻繁的開關背光或是插入黑畫面,會造成螢幕亮度降低,也可能讓使用者看到螢幕閃爍的情形,並且會發生過衝(Overshoot)和下衝(Undershoot)等現象,最糟甚至會導致訊號失真,對圖像品質造成影響或是面板壽命變短。

訊號測試小知識

過衝(Overshoot):是指信號在從一個值轉變到另一個值時,瞬時值超過了最終(穩態)值,並產生在電源電平之上的額外電壓效應。這意味著信號在轉換過程中超過了預期的目標值。

下衝(Undershoot):則是指信號在從一個值轉變到另一個值時,瞬時值低於最終值,並產生在參考地電平之下的額外電壓效應。這意味著信號在轉換過程中低於了預期的目標值。

過衝和下衝都是電子訊號處理中不利的現象,常常發生在訊號轉換、開關操作或電路切換的過程中。它們可能導致訊號失真、噪音增加,甚至對電子元件和電路造成損壞。而在顯示器上,嚴重的過衝與下衝,會導致面板的壽命變短,畫面過於銳利,而導致失真。

三、 全新推出的 ClearMR,精準定義畫面模糊的標準

講完了 GtG 與 MPRT ,我們終於要來介紹,最新定義畫面模糊的標準規範,它就是 VESA 在去年發布的 ClearMR(Clear Motion Ratio)。

VESA 於2022年7月,正式發布一致性測試規範(ClearMR CTS)V1.0,總共定義了7種不同級距(ClearMR 3000 至 ClearMR 9000),該年底更往上延伸至11個級距,加入了 ClearMR 10000 至 ClearMR 13000。級距的數字,代表著清晰影像與模糊影像的性能比,例如30:1=ClearMR 3000,70:1=ClearMR 7000,90:1=ClearMR 9000。數字愈高,表示該產品在動態上的表現愈清晰。

VESA ClearMR 有11個級距
最新的 ClearMR 共有11個級距。圖/VESA ClearMR官網

(一) 不同級距下,清楚顯現出動態模糊的差異

ClearMR 可針對螢幕的動態模糊定義與分級,讓顯示器動態模糊有了更清楚的定義可依循,不但取代了現有僅基於時間的模糊指標(如前述提及的MPRT、GtG),針對畫面模糊的狀況,提供更完整且公平的比較基礎。

從下圖可看出在不同級距下,待測螢幕顯示的動態輪胎的模糊表現。Still image代表靜止畫面,我們比較從 ClearMR 3000 到 ClearMR 9000,可以明顯比較出模糊差異,等級越高則影像越清晰。

轉動的輪胎的模糊級距,從最低的 ClearMR 3000 到較清晰的 ClearMR 9000,最後一張為靜止畫面,可比較出其中的模糊差異
轉動的輪胎的模糊級距,從最低的 ClearMR 3000 到較清晰的 ClearMR 9000,最後一張為靜止畫面,可比較出其中的模糊差異。
圖/VESA ClearMR CTS and Logo Program Meda Slides FINAL3

(二)那 ClearMR 的數值是如何測量?

ClearMR 是利用可每秒拍攝10000張以上相片的高速攝影機,拍攝待測螢幕中,由左至右移動的亮光區塊(VESA協會提供的範例程式所產生),會區分為 Leading(領導)與 Trailing(尾隨)。

待測螢幕中亮光區塊 Leading(領導)與 Trailing(尾隨)端的畫面
待測螢幕中亮光區塊 Leading(領導)與 Trailing(尾隨)端的畫面。圖/VESA ClearMR CTS 1.0

再透過拍攝的圖片,產生所謂模糊的輪廓,再來計算其相對應的 CMR 值(Clear Motion Ratio)。我們可以從下圖看到結果,黃框中的 CMR 值是4782,就可以對應級距圖得到待測螢幕的ClearMR級距落在 ClearMR 5000的範圍內,即為螢幕的性能表現。

(a)上衝/下衝數值;(b)上衝/下衝轉折點,可做為工程師除錯參考;(c)決定 CMR 值的各參數列表;(e)黃框中的 CMR 值,即為待測螢幕的性能表現
(a)上衝/下衝數值;(b)上衝/下衝轉折點,可做為工程師除錯參考;(c)決定 CMR 值的各參數列表;(e)黃框中的 CMR 值,即為待測螢幕的性能表現。圖/CMR Tools User Guide v2022.0405

唯有通過測試認證的產品,才有資格使用 VESA ClearMR 的 LOGO ,此規範也在推出後的第一時間,獲得多家顯示器大廠如三星、HP、LG 響應並支持,目前獲得認證的產品都有名列在 VESA 的官方網站上。或許 ClearMR 還無法完全取代,現今主流的 GtG 或 MPRT 的「反應時間概念」,但對於市面上百家爭鳴、不斷強打的 1ms 的顯示器來說,它可以為消費者提供更直觀的評選指標。

宜特訊號測試實驗室也在今年獲得 VESA 授權成為 ClearMR 認證中心,具備所有 ClearMR 認證測試設備、測試環境(包含暗房)與技術能力,可以提供動態清晰率(Clear Motion Rate,CMR)、變異係數(Coefficient of Variation,CV)、過載(Overload)、亮度退化(Luminance Degradation)、背光掃描(Backlight Strobing)測試,可協助多家顯示器、筆電、電競品牌與代工廠進行 VESA ClearMR 測試,助其產品符合規範,取得認證標章。

文出自 www.istgroup.com

宜特科技_96
6 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室