Loading [MathJax]/extensions/tex2jax.js

1

6
2

文字

分享

1
6
2

用過手刀劈電視嗎?淺談「始祖螢幕」的誕生——如何從笨重的 CRT 進化到超薄液晶?

張瑞棋_96
・2021/09/01 ・4519字 ・閱讀時間約 9 分鐘

編按:顯示器在當代極其重要,哭鬧的孩子只要拿出 ipad 就能讓他瞬間破涕為笑(錯誤示範)。但你還記得童年時擺在客廳的電視嗎?就是有雜訊時要用手刀怒劈 45 度角的那種!這種電視使用的是 CRT(陰極射線管)技術,堪稱現在各種 3C 產品的「始祖銀幕」,本文將回顧它的前世今生,一睹螢幕對人類的卓越貢獻(?)。

《咒術迴戰》中的七海健人有云:「枕邊掉的頭髮越來越多,喜歡的夾菜麵包從便利商店消失,這些微小的絕望不斷積累,才會使人長大。」——泛科《童年崩壞》專題邀請各位讀者重新檢視童年時期的產物,讓你的童年持續崩壞不停歇 ψ(`∇´)ψ。

電腦發展日新月異,但至今仍不脫馮紐曼架構(Von Neumann architecture),也就是分為處理單元、控制單元、記憶單元、輸入裝置與輸出裝置,共五大單元。這裡面,以輸出裝置中的顯示器,由笨重的陰極射線管(cathode-ray tube, 簡稱 CRT)進展到輕薄的液晶顯示器(liquid-crystal display, 簡稱 LCD),在外觀上讓使用者感受到最明顯變化。

不過你知道嗎?它們的發明最初其實都和電腦無關。

顯示器的起源與演進

CRT 緣起於德國物理學家蓋斯勒(Heinrich Geissler)在 1857 年發明的「蓋斯勒管」(Geissler tube),這也是霓虹燈的始祖。蓋斯勒在密封的玻璃管中注入稀薄的氣體(約標準大氣壓的千分之一),例如氖或氬這類稀有氣體,然後對玻璃管兩端的電極施以高壓電,使氣體離子化。游離的電子會撞擊到周遭的氣體分子,產生更多游離電子,當電子落回原來的軌域,釋出的能量便會以光的型態出現;不同的氣體會散發出不同顏色的光芒。

後來英國物理學家克魯克斯(William Crookes)將蓋斯勒管內的氣體抽到只有大氣壓的千萬分之一,結果不再有均勻的光芒,而是只有陽極那端的玻璃發出光芒。此發光原理與蓋斯勒管不同,是失去電子的氣體離子被吸往陰極,陰極金屬片被撞擊後,電子脫離金屬原子,在陰極的斥力與陽極的吸力雙重作用下,高速射向陽極。由於近乎真空,電子不會被稀少的氣體分子阻擋,一路射向玻璃,撞出電子而產生發出光芒。

被自己的光所照亮的蓋斯勒管,來自 1869 年的法國物理學書籍的畫。圖/維基百科

不過當時連原子的結構都不清楚,根本不知其中原理,只能以實驗摸索光芒的由來。1869 年,德國物理學家希托夫(Johann Hittorf)發現若在靠近陽極處放置遮蔽物,會在玻璃管末端投下陰影,據以推斷產生光芒的能量必定是由陰極往陽極直線行進。1876 年,他的弟子戈德斯坦(Eugen Goldstein)確認這是從陰極金屬片產生,並將之命名為「陰極射線」。

1879 年,克魯克斯發現陰極射線的行進方向會受到磁場影響而偏折,不過這項特性要等到 1896 年,才由德國物理學家布勞恩(Ferdinand Braun)找到實際用途。他將克魯克斯管加以改造,把陽極那端的玻璃管面積加大,塗上螢光材料,並延長玻璃管長度,中間用電磁鐵產生磁場來控制電子的飛行方向,如此便可以在螢光玻璃上產生圖案。

-----廣告,請繼續往下閱讀-----
克魯克斯管示意圖。從陰極直線發射出的陰極射線撞擊到玻璃壁,因此在玻璃壁顯示出磷光。在玻璃管內置入的蒙片會在磷光區域形成陰影。圖/維基百科

隔年二月,布勞恩發表他所設計的「布勞恩管」,並明確指出其用途:顯示電流/電壓隨著時間的變化。就這樣,布勞恩不但發明陰極射線管,同時也發明史上第一個示波器,以視覺方式具體呈現電流的週期、波形、相位等特性。值得注意的是,此時仍不知道電子的存在,直到三個月後,湯姆森(J. J. Thomson)才發表他用克魯克斯管所做的實驗,證實陰極射線是帶負電的基本粒子,也就是電子。

示波器畢竟只是顯示簡單的波形,要再過三十年,陰極射線管才有新的用途:做為電視機的映像管。你或許會以為既然都能做到動態影像了,再來應該很快就會用於電腦螢幕了吧?其實並不然,因為真正全程使用電子訊號的電腦直到二次大戰結束後才發明出來,在此之前,不可能採用 CRT 螢幕;反倒是二次大戰前剛發明的雷達系統先用 CRT 來顯示移動中的目標。

Tektronix 示波器。圖/Tektronix

西元1949年以後:OOXX——第一個視覺化的電腦遊戲

其實 1945 年問世的第一台通用型電腦「電子數值積分儀暨計算機」(Electronic Numerical Integrator And Computer,簡稱 ENIAC)也沒用到 CRT,它是靠插拔電纜與切換開關來設定程式,而計算結果則輸出到打孔紙帶。率先配備 CRT 螢幕的電腦是 1949 年啟用的「電子延遲存儲自動計算機」(Electronic Delay Storage Automatic Calculator,簡稱 EDSAC),它也是第一台採用馮紐曼架構的電腦。不過 EDSAC 的 CRT 螢幕只是做為示波器,監測電路之用;輸入程式與輸出計算結果都還是用打孔紙帶。

有趣的是,劍橋大學的博士生道格拉斯(Sandy Douglas)於 1952 年為 EDSAC 寫了井字遊戲的程式,利用 CRT 螢幕呈現井字與 ”O”、”X” 符號,成為史上第一個視覺化的電腦遊戲,也讓 CRT 螢幕首度在電腦上輸出運算結果。不過真正讓 CRT 螢幕專門做為輸出裝置的商用電腦,是迪吉多電腦公司(Digital Equipment)於 1959 年推出的 PDP-1,自此開始,CRT 螢幕逐漸成為電腦的標準配備。

-----廣告,請繼續往下閱讀-----
OXO 井字遊戲。圖/Pexels

一個物質怎麼會有兩個熔點?液晶的崛起

CRT 技術不斷改善,從單色變為彩色、從低解析度進階到高解析度,但受限於陰極射線管的技術原理,仍難以擺脫笨重的身型。不過由於沒有其他替代性的技術,CRT 螢幕一直是電視與電腦的唯一選擇,直到 1990 年代,日益成熟的液晶顯示器才逐步加以取代。

其實液晶的發現早在陰極射線管發明之前。在 1880 年代,植物學家從胡蘿蔔中萃取出兩種胡蘿蔔素,一種是紅色的,另一種是無色的。有人認為無色的胡蘿蔔素就是植物性膽固醇,但缺乏確切證據而引發爭辯,沒有定論。1888 年,奧地利植物生理學家萊尼澤(Friedrich Reinitzer)決定進行實驗,分析比較兩者的物理化學特性,以釐清這個問題。

萊尼澤先從膽固醇的各種衍生物著手,結果他在加熱苯甲酸膽固醇酯(C34H50O2)時,發現兩個奇特的現象。首先它在 145.5°C 時會熔化成混濁的液體,接著繼續加熱到 178.5°C 的話,混濁突然消失,變成清澈透明。而在冷卻的過程中,原本透明的液體會變成藍紫色,然後顏色迅速消失,變為混濁。當溫度繼續下降,藍紫色再度出現,接著變為黃綠色、橙黃色、紅色,同時出現結晶的現象。

一個物質竟有兩個熔點,還會在冷卻結晶過程中變色,這完全超乎萊尼澤的理解,於是他寫信向晶體學專家雷曼(Otto Lehmann)請教。雷曼用偏光顯微鏡仔細觀察後,發現混濁的苯甲酸膽固醇酯液體中,有許多結晶體,使得不同偏振方向的光產生不同折射,也就是類似石英、寶石等固體晶體的雙折射現象。雷曼繼續研究哪些物質在液態時,也具有固體晶體光學的性質,並把這類液態下的物質稱為「液態晶體」,這就是液晶的名稱由來。

具結晶性的液體,液晶。圖/維基百科

雷曼發表實驗結果後,雖然有其他科學家繼續液晶的研究,包括以人工合成,但這些研究都僅限於科學上的好奇,沒有人想到將液晶的光學特性用於顯示文字或圖像。直到 1962 年 4 月,美國無線電公司(Radio Corporation of America,簡稱 RCA)的物理化學家威廉(Richard Williams)突發奇想,首度對液晶施加電場,才開啟了液晶顯示器的研究。

-----廣告,請繼續往下閱讀-----

其實威廉的本意並非為了尋求液晶的顯示功能,恰恰相反,他是想讓液晶發揮遮蔽作用,才著手進行實驗。當時美蘇對峙,核子危機一觸即發,威廉設想飛行員出任務時,可能會被核彈強光傷害視力,於是想要發明一種類似高速快門的裝置,可以讓透明玻璃瞬間變黑,以保護飛行員的眼睛。威廉看上的是一種「向列型液晶」,這種分子就像火柴盒中的火柴棒那樣順向排列,除了自身轉動外,彼此也會相互滑動。他想試驗電場是否會改變它們的方向,吸收不同波長的光。

威廉在兩片耐熱玻璃之間塗上薄薄一層向列型液晶,加熱到 125°C,再接上電,結果發現原本透明的液晶有部分立即變暗,形成皺褶般的圖案。一關掉電源,圖案馬上消失,液晶又變回透明。威廉腦筋一轉,想到這或許可以用來替代電視機的映像管,於是在對公司內部演示時,主動提議開發液晶顯示器。

不過這個點子馬上被打回票,因為先不提各種技術障礙,光是機器得維持在一百多度的高溫這點,就太過危險,不可能做為一般消費商品。威廉只好放棄這個構想,轉而投入其它研究,所幸當時現場有位 28 歲的年輕人看了演示後念念不忘,液晶顯示器才沒有胎死腹中。

美國工程師兼商人 George Heilmeier

2009 年的 George Heilmeier。圖/維基百科

這位年輕人是擁有博士學位的海爾邁爾(George Heilmeier),他在 RCA 的工作是研究如何用雷射技術進行通訊傳輸。原本雷射是用紅寶石之類的晶體產生,但海爾邁爾不需要那麼大的功率,因此他一直想要找到成本更低的晶體代替。威廉的演示為他指出一個新的方向:或許可以用向列型液晶取代固態晶體。他帶領部門開始研究液晶,結果在 1966 年發現一種方法,可以在室溫下合成出向列型液晶,海爾邁爾立刻體認到:阻擋開發液晶顯示器的障礙已經排除。

-----廣告,請繼續往下閱讀-----

海爾邁爾成功說服高層,成立液晶顯示器的研究團隊。隔年他們即做出小型的原型機,可以顯示靜態圖樣與簡單動畫。1968 年 5 月,RCA 召開盛大的記者會,對外公布他們已擁有將液晶用於顯示器的技術,並樂觀地預言再過幾年,科幻電影《2001太空漫遊》中的平面電視即可問世。

這個預言當然太過樂觀了,液晶顯示器的畫質要趕上 CRT 螢幕還有一大段距離要走,初期只能用於電子計算機與電子錶。不過 RCA 決定全力發展電腦事業,竟大幅縮減液晶顯示器部門,將液晶顯示器市場拱手讓予日本為首的其它國家。海爾邁爾也於 1970 年代離開 RCA,到國防部服務幾年後,轉任德州儀器副總經理,並於 1983 年升為技術長(順帶一提,張忠謀就在這一年離開服務了 25 年的德州儀器。)

無論如何,由於海爾邁爾開發出原型機,加上 RCA 大力宣傳,隨後又改變策略,對外授權液晶顯示器的技術,才加速了液晶時代的來臨。如今液晶顯示器以各種型態出現在我們生活中,除了用於電腦、筆電,從手機、電視,到各種電器用品也都處處可見,已是現代社會不可或缺的角色。或許有一天液晶顯示器也會步上被新技術淘汰的命運,但它與 CRT 螢幕絕對是未來人們回首過往科技產品時,一定會伴隨出現的記憶。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

5
0

文字

分享

1
5
0
《奧本海默》中被遺忘的火星人數學家馮紐曼和波利亞——《科學月刊》
科學月刊_96
・2023/11/03 ・5466字 ・閱讀時間約 11 分鐘

  • 作者/劉柏宏
    • 勤益科技大學基礎通識教育中心教授
  • Take Home Message
    • 電影《奧本海默》中,對於幾位匈牙利數學家如馮紐曼、波利亞等人的描述篇幅較少,但他們其實對科學界影響深遠。
    • 馮紐曼在曼哈頓計畫中建議以內爆透鏡設計原子彈,不僅所需的裂變材料較少,又可以防止原子彈過早引爆,達成更對稱與高效的爆炸。
    • 波利亞提出以「捷思法」等強調歸納實驗的方式思考數學問題,例如觀察找出數學公式的形成,此法也掀起了數學教育革命。

遊艇緩緩流動在分隔布達區(Buda)與佩斯區(Pest)的多瑙河上,絲絨般的水波、柔棉沁涼的河風,兼容哥德式與文藝復興建築風格的匈牙利國會大廈(Hungarian Parliament Building)圓頂,在夕陽的烘托之下宛如紅寶石般璀璨,流瀉出昔日奧匈帝國的風華。

筆者來到此地,終於可以想像為何 100 年前這條河的兩岸能夠孕育出一批改變科學面貌,甚至改變人類歷史的數學家與科學家。趁著今(2023)年暑假到布達佩斯開會之便,筆者也試著踏尋這些科學家的足跡。

回臺灣之後恰逢電影《奧本海默》(Oppenheimer)上映,儘管許多人聚焦在主角奧本海默(Julius Oppenheimer)的內心世界,不過筆者更關心的是幾位被火星人遺留在地球上的匈牙利數學家。

地球上的火星遺民

20 世紀初歐美科學圈流傳著一個神祕的傳說,記錄下這傳說的是匈牙利物理學家馬克思(György Marx),但傳說起源卻得從義大利物理學家費米(Enrico Fermi)說起。

-----廣告,請繼續往下閱讀-----

1950 年某個夏日午後,費米在美國原子彈曼哈頓計畫(Manhattan Project)的基地——洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),和幾位科學家聊到當時有關幽浮的報導時,提出了一個問題:

「宇宙如此浩瀚,包含無數恆星,許多恆星和太陽沒什麼差別,也有行星圍繞著它們旋轉。一部分的行星地表也會有水和空氣,而來自恆星的能量將促使有機化合物合成。

這些化學物質將相互結合產生一個自我複製系統。最簡單的生物會通過自然選擇繁殖、進化並變得更加複雜,直到最終出現活躍的、會思考的生物,文明、科學和科技隨之而來。

由於對美麗新世界的渴求,他們會旅行到附近行星,然後到另一個恆星的行星。他們最終應該遍布整個銀河系。這些非凡和傑出的人很難忽視像地球這樣美麗的地方。

所以,如果真是如此,他們必定來過這裡。那麼,他們到底在哪裡?」

關於這個「費米問題」,匈牙利物理學家西拉德(Leo Szilard)的回應是:「他們就在我們身邊啊!只是他們自稱匈牙利人!」(They are among us, but they call themselves Hungarians.)。

西拉德的高級幽默,點燃匈牙利人是火星遺民的想像,各種附和的說法紛紛出籠。有一種說法是 19 世紀末至 20 世紀初,一艘來自火星的太空船降落在地球,由於發現匈牙利的女子美麗又性感因而定居下來,繼而繁衍後代。

後來太空船要返回火星時超重,不得不將一些人留下,這些人包括建議當時美國總統羅斯福(Franklin Roosevelt)發展原子彈的信函主要起草人西拉德、協助潤稿的泰勒(Edward Teller)和諾貝爾物理學獎得主維格納(Eugene Wigner),還有化學獎得主歐拉(George Olah)與波拉尼(John Polanyi)、經濟獎得主哈薩尼(John Harsanyi);以及數學家艾迪胥(Paul Erds)、波利亞(George Pólya)、馮紐曼(John von Neumann)、哈爾默斯(Paul Halmos)、拉克斯(Peter Lax)等人。

-----廣告,請繼續往下閱讀-----

這幾位科學界的火星遺民有許多共同點:他們都出生於匈牙利。

除了喜歡雲遊四海的艾迪胥外,他們後來都移居並任教於美國的大學;他們思考問題時都喜歡來回踱步;另有一個最不可思議的共同點——他們都是猶太人。

至於為何火星人特別鍾情猶太人?這可能又是另一個「費米問題」。

《奧本海默》的最大遺珠——馮紐曼

筆者本次開會的地點在羅蘭大學(Eötvös Loránd University),該校在過去不同時期曾名為布達佩斯大學(University of Budapest)、帕茲馬尼-彼得大學(Pázmány Péter Catholic University)。

-----廣告,請繼續往下閱讀-----

該校培育出不少數學家與科學家,而馮紐曼是箇中翹楚。

馮紐曼出身於布達佩斯的富裕猶太家庭,父親是位對他有很深期待的銀行家,希望兒子能往化學工程發展,但馮紐曼卻對數學情有獨鍾。有許多關於他的數學傳奇事蹟,例如 6 歲能心算八位數除法,8 歲熟悉微積分,15 歲開始學高等微積分,19 歲已經發表兩篇數學論文。

最後馮紐曼不違父願也無逆己志,不僅在蘇黎世理工學院(Eidgenössische Technische Hochschule Zürich, ETH)讀化工,同時也在帕茲馬尼-彼得大學研修數學博士。

有鑑於在 19 世紀末和 20 世紀初,德國數學家康托爾(Georg Cantor)的集合論導致某些推論會產生矛盾難題,即使在當時產生的矛盾並非集合論的核心,但在嚴格檢驗非核心的部分時,邏輯上還是會發現一些瑕疵,因此馮紐曼選定了與集合論基礎有關的內容深入研究。

-----廣告,請繼續往下閱讀-----

他的博士論題目為〈一般集合論的公理化構造〉(Az általános halmazelmélet axiomatikus felépítése),並於 1926 年同時取得兩所大學的博士學位。

而後在洛克菲勒基金會(Rockefeller Foundation)的資助下,他前往德國哥廷根大學(University of Göttingen),師從德國數學家希爾伯特(David Hilbert)。

1933 年為逃避納粹對猶太人的迫害,馮紐曼應聘前往美國普林斯頓高等研究院(Institute for Advanced Study),在那裡開始專研計算機科學,同時也結識了奧本海默。

馮紐曼(右)和奧本海默(左)。圖/科學月刊

建議原子彈採用「內爆式」設計的馮紐曼

由於馮紐曼的博學與優異數學計算能力,奧本海默聘請他作為曼哈頓計畫的顧問,主要負責兩項任務:一是研究內爆透鏡的概念和設計,二是負責預估炸彈爆炸的規模、死亡人數,以及炸彈爆炸的離地距離以達到最大效果。

-----廣告,請繼續往下閱讀-----

什麼是內爆透鏡?當時曼哈頓計畫考慮的核分裂方式有兩種,一種是「槍式核分裂」(gun-type fission)設計,另一種則是「內爆透鏡」(implosion lens)的設計。

槍式核分裂設計是仿造子彈的射擊方式,利用常規炸藥將一塊次臨界物質射向另一塊可裂變物質,使可裂變物質達到臨界質量(圖一)。

圖一、槍式核分裂設計的原子彈。原理是利用炸藥將一塊次臨界物質射向另一塊可裂變物質(鈾),使可裂變物質達到臨界質量,投擲於廣島的「小男孩」就是採用此設計。圖/科學月刊

槍式核分裂使用鈾(uranium, U)作為裂變材料,二戰時投擲於日本廣島的「小男孩」(Little Boy)就是採用槍式設計。但由於當時鈾的存量並不足夠,因此必須發展另一種形式的原子彈,也就是內爆透鏡設計。

內爆透鏡設計以鈽(plutonium, Pu)作為裂變材料,在空心的球狀空間內放置鈽,並在球形鈽彈周圍放置炸藥。這些炸藥爆炸同時產生的強大內推壓力將會擠壓球形鈽彈,引發連鎖反應造成核爆(圖二)。

-----廣告,請繼續往下閱讀-----
圖二、內爆透鏡設計的原子彈。它以鈽為裂變材料,空心的球狀空間內含鈽,並在鈽彈周圍放置炸藥,炸藥爆炸時產生的強大內推壓力會擠壓鈽彈,引發連鎖反應造成核爆,這也是投放到長崎的「胖子」設計原理。圖/科學月刊

馮紐曼評估之後,認為「內爆式」設計優於「槍式」設計,且內爆型原子彈所需的裂變材料較少,又可以防止過早引爆以達成更為對稱與高效的爆炸,因此建議奧本海默改發展內爆式核彈,這就是二戰時被投放到日本長崎的原子彈——「胖子」(Fat Man)。馮紐曼在曼哈頓計畫中的角色如此關鍵卻被電影所忽略,確實令許多人不平。

馮紐曼從小嶄露他的優異天賦且記憶力驚人,除數學領域之外在諸多科學分支也有所涉獵且精通。他的聰慧早已獲得同儕的認同與讚譽,常被稱為數學界最後一位通才。有一個流傳甚廣的傳說是某次宴會中女主人問馮紐曼一個問題:

「兩列相距 200 英里的火車正在相向行駛,每輛火車的行駛速度均為每小時 50 英里。一隻蒼蠅從其中一列火車的前面出發,以每小時 75 英里的速度在火車之間來回飛行,直到火車相撞並將蒼蠅壓死為止。蒼蠅在這段期間總共飛行了多少距離?」

一般人解這一題可能是先算第一段時間蒼蠅飛行的距離,再算第二段時間蒼蠅飛行的距離,由於蒼蠅來回飛行無限多次,距離愈來愈短,可以用無窮等比級數求和的方法得出解,但這樣的計算相當繁複。有一個更快捷的技巧是直接算出兩輛火車將於兩小時後相撞,因此得知蒼蠅總共飛行 150 英里。

馮紐曼聽完問題不一會兒就答出 150 英里,女主人對於馮紐曼沒有陷入計算無窮等比級數的陷阱感到失望,但馮紐曼竟回答:「我是用求和的啊!」若此傳說當真,顯見他驚人的計算能力。

-----廣告,請繼續往下閱讀-----

1963 年諾貝爾物理學獎得主維格納表示,他認識當代許多頂尖科學家,包含德國理論物理學家普朗克(Max Planck)、英國理論物理學家狄拉克(Paul Dirac)、西拉德、泰勒、愛因斯坦,但沒有一個人像馮紐曼般才思敏捷。曾有人問維格納為什麼匈牙利出現這麼多天才,維格納的回答是:「真正的天才只有馮紐曼一人。」

引發數學教育革命的波利亞

本文要介紹的第二位匈牙利數學家是波利亞。1912 年,他於布達佩斯大學取得數學博士學位後,便前往德國哥廷根大學從事博士後研究。他在哥廷根大學結識許多當代最傑出的數學家,例如希爾伯特和克萊因(Felix Klein),之後便到蘇黎世理工學院任教。相較於一般嚴謹木訥的數學家,波利亞相當擅長說故事,包含數學家的軼事和「說數學」的功力。

馮紐曼在蘇黎世理工學院修讀博士時,也曾上過波利亞的書報討論課。有次波利亞提到一個尚未解決的數學問題,他認為要證明這問題很困難,沒想到五分鐘之後馮紐曼舉手,然後在黑板上寫下證明,從此之後馮紐曼變成他最敬畏的學生。

另外,波利亞也曾談論有關希爾伯特的故事。在德國盛傳一個傳說,深受德國人敬愛的皇帝腓特烈一世(Friedrich I)沒有死亡、只是沉睡,等到德國需要他時他就會挺身而出。因此便有人問希爾伯特:「你若在死後 500 年復活,你會做什麼事?」希爾伯特說:「我會問是否有人證明了黎曼猜想(Riemann hypothesis)?」

黎曼猜想與質數分布具有密切的關係,是希爾伯特於 1900 年提出的 23 個最重要數學問題之一。有些數學家將證明黎曼猜想形容為「數學界的聖杯」,因此它的重要性可見一斑。2018 年 9 月 24 日,英國數學家阿蒂亞(Michael Francis Atiyah)宣稱他證明了黎曼猜想,此事件也曾轟動一時。

但阿蒂亞的證明還來不及得到同儕認證,便不幸於 2019 年 1 月 11 離世,截至目前為止數學界仍對阿蒂亞的證明有所質疑。所以如果希爾伯特現在真的死而復活,那他恐怕要失望了。

波利亞於 1945 年出版《怎樣解題》(How To Solve It)一書,展現他「說數學」的功力。他常強調數學有兩面,數學結果的呈現方式有如歐幾里得(Euclid)幾何學般的演繹論證形式,但數學知識發展過程卻更像是一門實驗歸納的科學。書中提倡以捷思法(heuristic)思考數學問題,例如高中時老師通常教學生如何證明 13+23+33+43+⋯+n3=,但卻很少說明究竟如何得到此公式。

波利亞則要學生先做探索觀察。例如從圖三可以發現前五個自然數的立方恰好都等於另一個自然數的平方,這樣的特殊性可以推廣為「前 n 個自然數的立方和等於某個自然數的平方嗎?」若可以推廣,某個自然數到底是哪個數?我們進一步觀察可以得到:1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, 15=1+2+3+4+5,將這觀察和圖三結合就得到圖四中令人驚訝的結果。

圖三、前五個自然數的立方和。圖/科學月刊
圖四、前五個自然數的立方和等於前五個自然數和的平方。圖/科學月刊

這麼美麗的結果應該不會只是巧合,所以一個合理的臆測也因此誕生:「前n個自然數的立方和等於前n個自然數和的平方」,也就是 13+23+33+43+⋯+n3=(1+2+3+4+⋯+n)2。由於 1+2+3+4+⋯+n=,所以得到 13+23+33+43+⋯+n3這個「合理的」公式,接著就可以證明此結果的正確性。

由此我們看到捷思法可以展現一個數學公式形成的過程,如同在《奧本海默》電影中丹麥物理學家波耳(Niels Bohr)建議奧本海默改到哥廷根大學跟從玻恩(Max Born)學習理論物理。

波耳問奧本海默數學程度如何,並提醒他:「代數就像一本樂譜,重點不是你能否讀懂音樂,而是能否聽懂音樂。」(Algebra is like a sheet music. The important thing isn’t if you can read music; it’s if you can hear it.),波利亞的捷思法就是教我們如何聽懂音樂而不光是讀懂音樂。

在 1960 年代,美國由於憂慮太空競賽落後蘇聯,因而發起所謂「新數學」的中學數學課程改革,強調數學的抽象性,試圖讓學生早一點熟悉數學邏輯的演繹過程,但這種罔顧知識發展脈絡的改革註定以失敗告終。

1980 年代,波利亞強調歸納實驗思考過程的捷思法逐漸受到重視,掀起一波「數學問題解決」(mathematical problem-solving)的浪潮,而這股浪潮的影響也猶如核分裂的連鎖反應,持續至今。

  • 〈本文選自《科學月刊》2023 年 11 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
所有討論 1
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。