1

6
1

文字

分享

1
6
1

用過手刀劈電視嗎?淺談「始祖螢幕」的誕生——如何從笨重的 CRT 進化到超薄液晶?

張瑞棋_96
・2021/09/01 ・4519字 ・閱讀時間約 9 分鐘

編按:顯示器在當代極其重要,哭鬧的孩子只要拿出 ipad 就能讓他瞬間破涕為笑(錯誤示範)。但你還記得童年時擺在客廳的電視嗎?就是有雜訊時要用手刀怒劈 45 度角的那種!這種電視使用的是 CRT(陰極射線管)技術,堪稱現在各種 3C 產品的「始祖銀幕」,本文將回顧它的前世今生,一睹螢幕對人類的卓越貢獻(?)。

《咒術迴戰》中的七海健人有云:「枕邊掉的頭髮越來越多,喜歡的夾菜麵包從便利商店消失,這些微小的絕望不斷積累,才會使人長大。」——泛科《童年崩壞》專題邀請各位讀者重新檢視童年時期的產物,讓你的童年持續崩壞不停歇 ψ(`∇´)ψ。

電腦發展日新月異,但至今仍不脫馮紐曼架構(Von Neumann architecture),也就是分為處理單元、控制單元、記憶單元、輸入裝置與輸出裝置,共五大單元。這裡面,以輸出裝置中的顯示器,由笨重的陰極射線管(cathode-ray tube, 簡稱 CRT)進展到輕薄的液晶顯示器(liquid-crystal display, 簡稱 LCD),在外觀上讓使用者感受到最明顯變化。

不過你知道嗎?它們的發明最初其實都和電腦無關。

顯示器的起源與演進

CRT 緣起於德國物理學家蓋斯勒(Heinrich Geissler)在 1857 年發明的「蓋斯勒管」(Geissler tube),這也是霓虹燈的始祖。蓋斯勒在密封的玻璃管中注入稀薄的氣體(約標準大氣壓的千分之一),例如氖或氬這類稀有氣體,然後對玻璃管兩端的電極施以高壓電,使氣體離子化。游離的電子會撞擊到周遭的氣體分子,產生更多游離電子,當電子落回原來的軌域,釋出的能量便會以光的型態出現;不同的氣體會散發出不同顏色的光芒。

後來英國物理學家克魯克斯(William Crookes)將蓋斯勒管內的氣體抽到只有大氣壓的千萬分之一,結果不再有均勻的光芒,而是只有陽極那端的玻璃發出光芒。此發光原理與蓋斯勒管不同,是失去電子的氣體離子被吸往陰極,陰極金屬片被撞擊後,電子脫離金屬原子,在陰極的斥力與陽極的吸力雙重作用下,高速射向陽極。由於近乎真空,電子不會被稀少的氣體分子阻擋,一路射向玻璃,撞出電子而產生發出光芒。

被自己的光所照亮的蓋斯勒管,來自 1869 年的法國物理學書籍的畫。圖/維基百科

不過當時連原子的結構都不清楚,根本不知其中原理,只能以實驗摸索光芒的由來。1869 年,德國物理學家希托夫(Johann Hittorf)發現若在靠近陽極處放置遮蔽物,會在玻璃管末端投下陰影,據以推斷產生光芒的能量必定是由陰極往陽極直線行進。1876 年,他的弟子戈德斯坦(Eugen Goldstein)確認這是從陰極金屬片產生,並將之命名為「陰極射線」。

1879 年,克魯克斯發現陰極射線的行進方向會受到磁場影響而偏折,不過這項特性要等到 1896 年,才由德國物理學家布勞恩(Ferdinand Braun)找到實際用途。他將克魯克斯管加以改造,把陽極那端的玻璃管面積加大,塗上螢光材料,並延長玻璃管長度,中間用電磁鐵產生磁場來控制電子的飛行方向,如此便可以在螢光玻璃上產生圖案。

克魯克斯管示意圖。從陰極直線發射出的陰極射線撞擊到玻璃壁,因此在玻璃壁顯示出磷光。在玻璃管內置入的蒙片會在磷光區域形成陰影。圖/維基百科

隔年二月,布勞恩發表他所設計的「布勞恩管」,並明確指出其用途:顯示電流/電壓隨著時間的變化。就這樣,布勞恩不但發明陰極射線管,同時也發明史上第一個示波器,以視覺方式具體呈現電流的週期、波形、相位等特性。值得注意的是,此時仍不知道電子的存在,直到三個月後,湯姆森(J. J. Thomson)才發表他用克魯克斯管所做的實驗,證實陰極射線是帶負電的基本粒子,也就是電子。

示波器畢竟只是顯示簡單的波形,要再過三十年,陰極射線管才有新的用途:做為電視機的映像管。你或許會以為既然都能做到動態影像了,再來應該很快就會用於電腦螢幕了吧?其實並不然,因為真正全程使用電子訊號的電腦直到二次大戰結束後才發明出來,在此之前,不可能採用 CRT 螢幕;反倒是二次大戰前剛發明的雷達系統先用 CRT 來顯示移動中的目標。

Tektronix 示波器。圖/Tektronix

西元1949年以後:OOXX——第一個視覺化的電腦遊戲

其實 1945 年問世的第一台通用型電腦「電子數值積分儀暨計算機」(Electronic Numerical Integrator And Computer,簡稱 ENIAC)也沒用到 CRT,它是靠插拔電纜與切換開關來設定程式,而計算結果則輸出到打孔紙帶。率先配備 CRT 螢幕的電腦是 1949 年啟用的「電子延遲存儲自動計算機」(Electronic Delay Storage Automatic Calculator,簡稱 EDSAC),它也是第一台採用馮紐曼架構的電腦。不過 EDSAC 的 CRT 螢幕只是做為示波器,監測電路之用;輸入程式與輸出計算結果都還是用打孔紙帶。

有趣的是,劍橋大學的博士生道格拉斯(Sandy Douglas)於 1952 年為 EDSAC 寫了井字遊戲的程式,利用 CRT 螢幕呈現井字與 ”O”、”X” 符號,成為史上第一個視覺化的電腦遊戲,也讓 CRT 螢幕首度在電腦上輸出運算結果。不過真正讓 CRT 螢幕專門做為輸出裝置的商用電腦,是迪吉多電腦公司(Digital Equipment)於 1959 年推出的 PDP-1,自此開始,CRT 螢幕逐漸成為電腦的標準配備。

OXO 井字遊戲。圖/Pexels

一個物質怎麼會有兩個熔點?液晶的崛起

CRT 技術不斷改善,從單色變為彩色、從低解析度進階到高解析度,但受限於陰極射線管的技術原理,仍難以擺脫笨重的身型。不過由於沒有其他替代性的技術,CRT 螢幕一直是電視與電腦的唯一選擇,直到 1990 年代,日益成熟的液晶顯示器才逐步加以取代。

其實液晶的發現早在陰極射線管發明之前。在 1880 年代,植物學家從胡蘿蔔中萃取出兩種胡蘿蔔素,一種是紅色的,另一種是無色的。有人認為無色的胡蘿蔔素就是植物性膽固醇,但缺乏確切證據而引發爭辯,沒有定論。1888 年,奧地利植物生理學家萊尼澤(Friedrich Reinitzer)決定進行實驗,分析比較兩者的物理化學特性,以釐清這個問題。

萊尼澤先從膽固醇的各種衍生物著手,結果他在加熱苯甲酸膽固醇酯(C34H50O2)時,發現兩個奇特的現象。首先它在 145.5°C 時會熔化成混濁的液體,接著繼續加熱到 178.5°C 的話,混濁突然消失,變成清澈透明。而在冷卻的過程中,原本透明的液體會變成藍紫色,然後顏色迅速消失,變為混濁。當溫度繼續下降,藍紫色再度出現,接著變為黃綠色、橙黃色、紅色,同時出現結晶的現象。

一個物質竟有兩個熔點,還會在冷卻結晶過程中變色,這完全超乎萊尼澤的理解,於是他寫信向晶體學專家雷曼(Otto Lehmann)請教。雷曼用偏光顯微鏡仔細觀察後,發現混濁的苯甲酸膽固醇酯液體中,有許多結晶體,使得不同偏振方向的光產生不同折射,也就是類似石英、寶石等固體晶體的雙折射現象。雷曼繼續研究哪些物質在液態時,也具有固體晶體光學的性質,並把這類液態下的物質稱為「液態晶體」,這就是液晶的名稱由來。

具結晶性的液體,液晶。圖/維基百科

雷曼發表實驗結果後,雖然有其他科學家繼續液晶的研究,包括以人工合成,但這些研究都僅限於科學上的好奇,沒有人想到將液晶的光學特性用於顯示文字或圖像。直到 1962 年 4 月,美國無線電公司(Radio Corporation of America,簡稱 RCA)的物理化學家威廉(Richard Williams)突發奇想,首度對液晶施加電場,才開啟了液晶顯示器的研究。

其實威廉的本意並非為了尋求液晶的顯示功能,恰恰相反,他是想讓液晶發揮遮蔽作用,才著手進行實驗。當時美蘇對峙,核子危機一觸即發,威廉設想飛行員出任務時,可能會被核彈強光傷害視力,於是想要發明一種類似高速快門的裝置,可以讓透明玻璃瞬間變黑,以保護飛行員的眼睛。威廉看上的是一種「向列型液晶」,這種分子就像火柴盒中的火柴棒那樣順向排列,除了自身轉動外,彼此也會相互滑動。他想試驗電場是否會改變它們的方向,吸收不同波長的光。

威廉在兩片耐熱玻璃之間塗上薄薄一層向列型液晶,加熱到 125°C,再接上電,結果發現原本透明的液晶有部分立即變暗,形成皺褶般的圖案。一關掉電源,圖案馬上消失,液晶又變回透明。威廉腦筋一轉,想到這或許可以用來替代電視機的映像管,於是在對公司內部演示時,主動提議開發液晶顯示器。

不過這個點子馬上被打回票,因為先不提各種技術障礙,光是機器得維持在一百多度的高溫這點,就太過危險,不可能做為一般消費商品。威廉只好放棄這個構想,轉而投入其它研究,所幸當時現場有位 28 歲的年輕人看了演示後念念不忘,液晶顯示器才沒有胎死腹中。

美國工程師兼商人 George Heilmeier

2009 年的 George Heilmeier。圖/維基百科

這位年輕人是擁有博士學位的海爾邁爾(George Heilmeier),他在 RCA 的工作是研究如何用雷射技術進行通訊傳輸。原本雷射是用紅寶石之類的晶體產生,但海爾邁爾不需要那麼大的功率,因此他一直想要找到成本更低的晶體代替。威廉的演示為他指出一個新的方向:或許可以用向列型液晶取代固態晶體。他帶領部門開始研究液晶,結果在 1966 年發現一種方法,可以在室溫下合成出向列型液晶,海爾邁爾立刻體認到:阻擋開發液晶顯示器的障礙已經排除。

海爾邁爾成功說服高層,成立液晶顯示器的研究團隊。隔年他們即做出小型的原型機,可以顯示靜態圖樣與簡單動畫。1968 年 5 月,RCA 召開盛大的記者會,對外公布他們已擁有將液晶用於顯示器的技術,並樂觀地預言再過幾年,科幻電影《2001太空漫遊》中的平面電視即可問世。

這個預言當然太過樂觀了,液晶顯示器的畫質要趕上 CRT 螢幕還有一大段距離要走,初期只能用於電子計算機與電子錶。不過 RCA 決定全力發展電腦事業,竟大幅縮減液晶顯示器部門,將液晶顯示器市場拱手讓予日本為首的其它國家。海爾邁爾也於 1970 年代離開 RCA,到國防部服務幾年後,轉任德州儀器副總經理,並於 1983 年升為技術長(順帶一提,張忠謀就在這一年離開服務了 25 年的德州儀器。)

無論如何,由於海爾邁爾開發出原型機,加上 RCA 大力宣傳,隨後又改變策略,對外授權液晶顯示器的技術,才加速了液晶時代的來臨。如今液晶顯示器以各種型態出現在我們生活中,除了用於電腦、筆電,從手機、電視,到各種電器用品也都處處可見,已是現代社會不可或缺的角色。或許有一天液晶顯示器也會步上被新技術淘汰的命運,但它與 CRT 螢幕絕對是未來人們回首過往科技產品時,一定會伴隨出現的記憶。

參考資料


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 1
張瑞棋_96
423 篇文章 ・ 487 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。


2

11
3

文字

分享

2
11
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
990 篇文章 ・ 707 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook