1

6
2

文字

分享

1
6
2

用過手刀劈電視嗎?淺談「始祖螢幕」的誕生——如何從笨重的 CRT 進化到超薄液晶?

張瑞棋_96
・2021/09/01 ・4519字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

編按:顯示器在當代極其重要,哭鬧的孩子只要拿出 ipad 就能讓他瞬間破涕為笑(錯誤示範)。但你還記得童年時擺在客廳的電視嗎?就是有雜訊時要用手刀怒劈 45 度角的那種!這種電視使用的是 CRT(陰極射線管)技術,堪稱現在各種 3C 產品的「始祖銀幕」,本文將回顧它的前世今生,一睹螢幕對人類的卓越貢獻(?)。

《咒術迴戰》中的七海健人有云:「枕邊掉的頭髮越來越多,喜歡的夾菜麵包從便利商店消失,這些微小的絕望不斷積累,才會使人長大。」——泛科《童年崩壞》專題邀請各位讀者重新檢視童年時期的產物,讓你的童年持續崩壞不停歇 ψ(`∇´)ψ。

電腦發展日新月異,但至今仍不脫馮紐曼架構(Von Neumann architecture),也就是分為處理單元、控制單元、記憶單元、輸入裝置與輸出裝置,共五大單元。這裡面,以輸出裝置中的顯示器,由笨重的陰極射線管(cathode-ray tube, 簡稱 CRT)進展到輕薄的液晶顯示器(liquid-crystal display, 簡稱 LCD),在外觀上讓使用者感受到最明顯變化。

不過你知道嗎?它們的發明最初其實都和電腦無關。

顯示器的起源與演進

CRT 緣起於德國物理學家蓋斯勒(Heinrich Geissler)在 1857 年發明的「蓋斯勒管」(Geissler tube),這也是霓虹燈的始祖。蓋斯勒在密封的玻璃管中注入稀薄的氣體(約標準大氣壓的千分之一),例如氖或氬這類稀有氣體,然後對玻璃管兩端的電極施以高壓電,使氣體離子化。游離的電子會撞擊到周遭的氣體分子,產生更多游離電子,當電子落回原來的軌域,釋出的能量便會以光的型態出現;不同的氣體會散發出不同顏色的光芒。

後來英國物理學家克魯克斯(William Crookes)將蓋斯勒管內的氣體抽到只有大氣壓的千萬分之一,結果不再有均勻的光芒,而是只有陽極那端的玻璃發出光芒。此發光原理與蓋斯勒管不同,是失去電子的氣體離子被吸往陰極,陰極金屬片被撞擊後,電子脫離金屬原子,在陰極的斥力與陽極的吸力雙重作用下,高速射向陽極。由於近乎真空,電子不會被稀少的氣體分子阻擋,一路射向玻璃,撞出電子而產生發出光芒。

被自己的光所照亮的蓋斯勒管,來自 1869 年的法國物理學書籍的畫。圖/維基百科

不過當時連原子的結構都不清楚,根本不知其中原理,只能以實驗摸索光芒的由來。1869 年,德國物理學家希托夫(Johann Hittorf)發現若在靠近陽極處放置遮蔽物,會在玻璃管末端投下陰影,據以推斷產生光芒的能量必定是由陰極往陽極直線行進。1876 年,他的弟子戈德斯坦(Eugen Goldstein)確認這是從陰極金屬片產生,並將之命名為「陰極射線」。

1879 年,克魯克斯發現陰極射線的行進方向會受到磁場影響而偏折,不過這項特性要等到 1896 年,才由德國物理學家布勞恩(Ferdinand Braun)找到實際用途。他將克魯克斯管加以改造,把陽極那端的玻璃管面積加大,塗上螢光材料,並延長玻璃管長度,中間用電磁鐵產生磁場來控制電子的飛行方向,如此便可以在螢光玻璃上產生圖案。

-----廣告,請繼續往下閱讀-----
克魯克斯管示意圖。從陰極直線發射出的陰極射線撞擊到玻璃壁,因此在玻璃壁顯示出磷光。在玻璃管內置入的蒙片會在磷光區域形成陰影。圖/維基百科

隔年二月,布勞恩發表他所設計的「布勞恩管」,並明確指出其用途:顯示電流/電壓隨著時間的變化。就這樣,布勞恩不但發明陰極射線管,同時也發明史上第一個示波器,以視覺方式具體呈現電流的週期、波形、相位等特性。值得注意的是,此時仍不知道電子的存在,直到三個月後,湯姆森(J. J. Thomson)才發表他用克魯克斯管所做的實驗,證實陰極射線是帶負電的基本粒子,也就是電子。

示波器畢竟只是顯示簡單的波形,要再過三十年,陰極射線管才有新的用途:做為電視機的映像管。你或許會以為既然都能做到動態影像了,再來應該很快就會用於電腦螢幕了吧?其實並不然,因為真正全程使用電子訊號的電腦直到二次大戰結束後才發明出來,在此之前,不可能採用 CRT 螢幕;反倒是二次大戰前剛發明的雷達系統先用 CRT 來顯示移動中的目標。

Tektronix 示波器。圖/Tektronix

西元1949年以後:OOXX——第一個視覺化的電腦遊戲

其實 1945 年問世的第一台通用型電腦「電子數值積分儀暨計算機」(Electronic Numerical Integrator And Computer,簡稱 ENIAC)也沒用到 CRT,它是靠插拔電纜與切換開關來設定程式,而計算結果則輸出到打孔紙帶。率先配備 CRT 螢幕的電腦是 1949 年啟用的「電子延遲存儲自動計算機」(Electronic Delay Storage Automatic Calculator,簡稱 EDSAC),它也是第一台採用馮紐曼架構的電腦。不過 EDSAC 的 CRT 螢幕只是做為示波器,監測電路之用;輸入程式與輸出計算結果都還是用打孔紙帶。

有趣的是,劍橋大學的博士生道格拉斯(Sandy Douglas)於 1952 年為 EDSAC 寫了井字遊戲的程式,利用 CRT 螢幕呈現井字與 ”O”、”X” 符號,成為史上第一個視覺化的電腦遊戲,也讓 CRT 螢幕首度在電腦上輸出運算結果。不過真正讓 CRT 螢幕專門做為輸出裝置的商用電腦,是迪吉多電腦公司(Digital Equipment)於 1959 年推出的 PDP-1,自此開始,CRT 螢幕逐漸成為電腦的標準配備。

-----廣告,請繼續往下閱讀-----
OXO 井字遊戲。圖/Pexels

一個物質怎麼會有兩個熔點?液晶的崛起

CRT 技術不斷改善,從單色變為彩色、從低解析度進階到高解析度,但受限於陰極射線管的技術原理,仍難以擺脫笨重的身型。不過由於沒有其他替代性的技術,CRT 螢幕一直是電視與電腦的唯一選擇,直到 1990 年代,日益成熟的液晶顯示器才逐步加以取代。

其實液晶的發現早在陰極射線管發明之前。在 1880 年代,植物學家從胡蘿蔔中萃取出兩種胡蘿蔔素,一種是紅色的,另一種是無色的。有人認為無色的胡蘿蔔素就是植物性膽固醇,但缺乏確切證據而引發爭辯,沒有定論。1888 年,奧地利植物生理學家萊尼澤(Friedrich Reinitzer)決定進行實驗,分析比較兩者的物理化學特性,以釐清這個問題。

萊尼澤先從膽固醇的各種衍生物著手,結果他在加熱苯甲酸膽固醇酯(C34H50O2)時,發現兩個奇特的現象。首先它在 145.5°C 時會熔化成混濁的液體,接著繼續加熱到 178.5°C 的話,混濁突然消失,變成清澈透明。而在冷卻的過程中,原本透明的液體會變成藍紫色,然後顏色迅速消失,變為混濁。當溫度繼續下降,藍紫色再度出現,接著變為黃綠色、橙黃色、紅色,同時出現結晶的現象。

一個物質竟有兩個熔點,還會在冷卻結晶過程中變色,這完全超乎萊尼澤的理解,於是他寫信向晶體學專家雷曼(Otto Lehmann)請教。雷曼用偏光顯微鏡仔細觀察後,發現混濁的苯甲酸膽固醇酯液體中,有許多結晶體,使得不同偏振方向的光產生不同折射,也就是類似石英、寶石等固體晶體的雙折射現象。雷曼繼續研究哪些物質在液態時,也具有固體晶體光學的性質,並把這類液態下的物質稱為「液態晶體」,這就是液晶的名稱由來。

具結晶性的液體,液晶。圖/維基百科

雷曼發表實驗結果後,雖然有其他科學家繼續液晶的研究,包括以人工合成,但這些研究都僅限於科學上的好奇,沒有人想到將液晶的光學特性用於顯示文字或圖像。直到 1962 年 4 月,美國無線電公司(Radio Corporation of America,簡稱 RCA)的物理化學家威廉(Richard Williams)突發奇想,首度對液晶施加電場,才開啟了液晶顯示器的研究。

-----廣告,請繼續往下閱讀-----

其實威廉的本意並非為了尋求液晶的顯示功能,恰恰相反,他是想讓液晶發揮遮蔽作用,才著手進行實驗。當時美蘇對峙,核子危機一觸即發,威廉設想飛行員出任務時,可能會被核彈強光傷害視力,於是想要發明一種類似高速快門的裝置,可以讓透明玻璃瞬間變黑,以保護飛行員的眼睛。威廉看上的是一種「向列型液晶」,這種分子就像火柴盒中的火柴棒那樣順向排列,除了自身轉動外,彼此也會相互滑動。他想試驗電場是否會改變它們的方向,吸收不同波長的光。

威廉在兩片耐熱玻璃之間塗上薄薄一層向列型液晶,加熱到 125°C,再接上電,結果發現原本透明的液晶有部分立即變暗,形成皺褶般的圖案。一關掉電源,圖案馬上消失,液晶又變回透明。威廉腦筋一轉,想到這或許可以用來替代電視機的映像管,於是在對公司內部演示時,主動提議開發液晶顯示器。

不過這個點子馬上被打回票,因為先不提各種技術障礙,光是機器得維持在一百多度的高溫這點,就太過危險,不可能做為一般消費商品。威廉只好放棄這個構想,轉而投入其它研究,所幸當時現場有位 28 歲的年輕人看了演示後念念不忘,液晶顯示器才沒有胎死腹中。

美國工程師兼商人 George Heilmeier

2009 年的 George Heilmeier。圖/維基百科

這位年輕人是擁有博士學位的海爾邁爾(George Heilmeier),他在 RCA 的工作是研究如何用雷射技術進行通訊傳輸。原本雷射是用紅寶石之類的晶體產生,但海爾邁爾不需要那麼大的功率,因此他一直想要找到成本更低的晶體代替。威廉的演示為他指出一個新的方向:或許可以用向列型液晶取代固態晶體。他帶領部門開始研究液晶,結果在 1966 年發現一種方法,可以在室溫下合成出向列型液晶,海爾邁爾立刻體認到:阻擋開發液晶顯示器的障礙已經排除。

-----廣告,請繼續往下閱讀-----

海爾邁爾成功說服高層,成立液晶顯示器的研究團隊。隔年他們即做出小型的原型機,可以顯示靜態圖樣與簡單動畫。1968 年 5 月,RCA 召開盛大的記者會,對外公布他們已擁有將液晶用於顯示器的技術,並樂觀地預言再過幾年,科幻電影《2001太空漫遊》中的平面電視即可問世。

這個預言當然太過樂觀了,液晶顯示器的畫質要趕上 CRT 螢幕還有一大段距離要走,初期只能用於電子計算機與電子錶。不過 RCA 決定全力發展電腦事業,竟大幅縮減液晶顯示器部門,將液晶顯示器市場拱手讓予日本為首的其它國家。海爾邁爾也於 1970 年代離開 RCA,到國防部服務幾年後,轉任德州儀器副總經理,並於 1983 年升為技術長(順帶一提,張忠謀就在這一年離開服務了 25 年的德州儀器。)

無論如何,由於海爾邁爾開發出原型機,加上 RCA 大力宣傳,隨後又改變策略,對外授權液晶顯示器的技術,才加速了液晶時代的來臨。如今液晶顯示器以各種型態出現在我們生活中,除了用於電腦、筆電,從手機、電視,到各種電器用品也都處處可見,已是現代社會不可或缺的角色。或許有一天液晶顯示器也會步上被新技術淘汰的命運,但它與 CRT 螢幕絕對是未來人們回首過往科技產品時,一定會伴隨出現的記憶。

參考資料

文章難易度
所有討論 1
張瑞棋_96
423 篇文章 ・ 964 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
《奧本海默》中被遺忘的火星人數學家馮紐曼和波利亞——《科學月刊》
科學月刊_96
・2023/11/03 ・5466字 ・閱讀時間約 11 分鐘

  • 作者/劉柏宏
    • 勤益科技大學基礎通識教育中心教授
  • Take Home Message
    • 電影《奧本海默》中,對於幾位匈牙利數學家如馮紐曼、波利亞等人的描述篇幅較少,但他們其實對科學界影響深遠。
    • 馮紐曼在曼哈頓計畫中建議以內爆透鏡設計原子彈,不僅所需的裂變材料較少,又可以防止原子彈過早引爆,達成更對稱與高效的爆炸。
    • 波利亞提出以「捷思法」等強調歸納實驗的方式思考數學問題,例如觀察找出數學公式的形成,此法也掀起了數學教育革命。

遊艇緩緩流動在分隔布達區(Buda)與佩斯區(Pest)的多瑙河上,絲絨般的水波、柔棉沁涼的河風,兼容哥德式與文藝復興建築風格的匈牙利國會大廈(Hungarian Parliament Building)圓頂,在夕陽的烘托之下宛如紅寶石般璀璨,流瀉出昔日奧匈帝國的風華。

筆者來到此地,終於可以想像為何 100 年前這條河的兩岸能夠孕育出一批改變科學面貌,甚至改變人類歷史的數學家與科學家。趁著今(2023)年暑假到布達佩斯開會之便,筆者也試著踏尋這些科學家的足跡。

回臺灣之後恰逢電影《奧本海默》(Oppenheimer)上映,儘管許多人聚焦在主角奧本海默(Julius Oppenheimer)的內心世界,不過筆者更關心的是幾位被火星人遺留在地球上的匈牙利數學家。

地球上的火星遺民

20 世紀初歐美科學圈流傳著一個神祕的傳說,記錄下這傳說的是匈牙利物理學家馬克思(György Marx),但傳說起源卻得從義大利物理學家費米(Enrico Fermi)說起。

-----廣告,請繼續往下閱讀-----

1950 年某個夏日午後,費米在美國原子彈曼哈頓計畫(Manhattan Project)的基地——洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),和幾位科學家聊到當時有關幽浮的報導時,提出了一個問題:

「宇宙如此浩瀚,包含無數恆星,許多恆星和太陽沒什麼差別,也有行星圍繞著它們旋轉。一部分的行星地表也會有水和空氣,而來自恆星的能量將促使有機化合物合成。

這些化學物質將相互結合產生一個自我複製系統。最簡單的生物會通過自然選擇繁殖、進化並變得更加複雜,直到最終出現活躍的、會思考的生物,文明、科學和科技隨之而來。

由於對美麗新世界的渴求,他們會旅行到附近行星,然後到另一個恆星的行星。他們最終應該遍布整個銀河系。這些非凡和傑出的人很難忽視像地球這樣美麗的地方。

所以,如果真是如此,他們必定來過這裡。那麼,他們到底在哪裡?」

關於這個「費米問題」,匈牙利物理學家西拉德(Leo Szilard)的回應是:「他們就在我們身邊啊!只是他們自稱匈牙利人!」(They are among us, but they call themselves Hungarians.)。

西拉德的高級幽默,點燃匈牙利人是火星遺民的想像,各種附和的說法紛紛出籠。有一種說法是 19 世紀末至 20 世紀初,一艘來自火星的太空船降落在地球,由於發現匈牙利的女子美麗又性感因而定居下來,繼而繁衍後代。

後來太空船要返回火星時超重,不得不將一些人留下,這些人包括建議當時美國總統羅斯福(Franklin Roosevelt)發展原子彈的信函主要起草人西拉德、協助潤稿的泰勒(Edward Teller)和諾貝爾物理學獎得主維格納(Eugene Wigner),還有化學獎得主歐拉(George Olah)與波拉尼(John Polanyi)、經濟獎得主哈薩尼(John Harsanyi);以及數學家艾迪胥(Paul Erds)、波利亞(George Pólya)、馮紐曼(John von Neumann)、哈爾默斯(Paul Halmos)、拉克斯(Peter Lax)等人。

-----廣告,請繼續往下閱讀-----

這幾位科學界的火星遺民有許多共同點:他們都出生於匈牙利。

除了喜歡雲遊四海的艾迪胥外,他們後來都移居並任教於美國的大學;他們思考問題時都喜歡來回踱步;另有一個最不可思議的共同點——他們都是猶太人。

至於為何火星人特別鍾情猶太人?這可能又是另一個「費米問題」。

《奧本海默》的最大遺珠——馮紐曼

筆者本次開會的地點在羅蘭大學(Eötvös Loránd University),該校在過去不同時期曾名為布達佩斯大學(University of Budapest)、帕茲馬尼-彼得大學(Pázmány Péter Catholic University)。

-----廣告,請繼續往下閱讀-----

該校培育出不少數學家與科學家,而馮紐曼是箇中翹楚。

馮紐曼出身於布達佩斯的富裕猶太家庭,父親是位對他有很深期待的銀行家,希望兒子能往化學工程發展,但馮紐曼卻對數學情有獨鍾。有許多關於他的數學傳奇事蹟,例如 6 歲能心算八位數除法,8 歲熟悉微積分,15 歲開始學高等微積分,19 歲已經發表兩篇數學論文。

最後馮紐曼不違父願也無逆己志,不僅在蘇黎世理工學院(Eidgenössische Technische Hochschule Zürich, ETH)讀化工,同時也在帕茲馬尼-彼得大學研修數學博士。

有鑑於在 19 世紀末和 20 世紀初,德國數學家康托爾(Georg Cantor)的集合論導致某些推論會產生矛盾難題,即使在當時產生的矛盾並非集合論的核心,但在嚴格檢驗非核心的部分時,邏輯上還是會發現一些瑕疵,因此馮紐曼選定了與集合論基礎有關的內容深入研究。

-----廣告,請繼續往下閱讀-----

他的博士論題目為〈一般集合論的公理化構造〉(Az általános halmazelmélet axiomatikus felépítése),並於 1926 年同時取得兩所大學的博士學位。

而後在洛克菲勒基金會(Rockefeller Foundation)的資助下,他前往德國哥廷根大學(University of Göttingen),師從德國數學家希爾伯特(David Hilbert)。

1933 年為逃避納粹對猶太人的迫害,馮紐曼應聘前往美國普林斯頓高等研究院(Institute for Advanced Study),在那裡開始專研計算機科學,同時也結識了奧本海默。

馮紐曼(右)和奧本海默(左)。圖/科學月刊

建議原子彈採用「內爆式」設計的馮紐曼

由於馮紐曼的博學與優異數學計算能力,奧本海默聘請他作為曼哈頓計畫的顧問,主要負責兩項任務:一是研究內爆透鏡的概念和設計,二是負責預估炸彈爆炸的規模、死亡人數,以及炸彈爆炸的離地距離以達到最大效果。

-----廣告,請繼續往下閱讀-----

什麼是內爆透鏡?當時曼哈頓計畫考慮的核分裂方式有兩種,一種是「槍式核分裂」(gun-type fission)設計,另一種則是「內爆透鏡」(implosion lens)的設計。

槍式核分裂設計是仿造子彈的射擊方式,利用常規炸藥將一塊次臨界物質射向另一塊可裂變物質,使可裂變物質達到臨界質量(圖一)。

圖一、槍式核分裂設計的原子彈。原理是利用炸藥將一塊次臨界物質射向另一塊可裂變物質(鈾),使可裂變物質達到臨界質量,投擲於廣島的「小男孩」就是採用此設計。圖/科學月刊

槍式核分裂使用鈾(uranium, U)作為裂變材料,二戰時投擲於日本廣島的「小男孩」(Little Boy)就是採用槍式設計。但由於當時鈾的存量並不足夠,因此必須發展另一種形式的原子彈,也就是內爆透鏡設計。

內爆透鏡設計以鈽(plutonium, Pu)作為裂變材料,在空心的球狀空間內放置鈽,並在球形鈽彈周圍放置炸藥。這些炸藥爆炸同時產生的強大內推壓力將會擠壓球形鈽彈,引發連鎖反應造成核爆(圖二)。

-----廣告,請繼續往下閱讀-----
圖二、內爆透鏡設計的原子彈。它以鈽為裂變材料,空心的球狀空間內含鈽,並在鈽彈周圍放置炸藥,炸藥爆炸時產生的強大內推壓力會擠壓鈽彈,引發連鎖反應造成核爆,這也是投放到長崎的「胖子」設計原理。圖/科學月刊

馮紐曼評估之後,認為「內爆式」設計優於「槍式」設計,且內爆型原子彈所需的裂變材料較少,又可以防止過早引爆以達成更為對稱與高效的爆炸,因此建議奧本海默改發展內爆式核彈,這就是二戰時被投放到日本長崎的原子彈——「胖子」(Fat Man)。馮紐曼在曼哈頓計畫中的角色如此關鍵卻被電影所忽略,確實令許多人不平。

馮紐曼從小嶄露他的優異天賦且記憶力驚人,除數學領域之外在諸多科學分支也有所涉獵且精通。他的聰慧早已獲得同儕的認同與讚譽,常被稱為數學界最後一位通才。有一個流傳甚廣的傳說是某次宴會中女主人問馮紐曼一個問題:

「兩列相距 200 英里的火車正在相向行駛,每輛火車的行駛速度均為每小時 50 英里。一隻蒼蠅從其中一列火車的前面出發,以每小時 75 英里的速度在火車之間來回飛行,直到火車相撞並將蒼蠅壓死為止。蒼蠅在這段期間總共飛行了多少距離?」

一般人解這一題可能是先算第一段時間蒼蠅飛行的距離,再算第二段時間蒼蠅飛行的距離,由於蒼蠅來回飛行無限多次,距離愈來愈短,可以用無窮等比級數求和的方法得出解,但這樣的計算相當繁複。有一個更快捷的技巧是直接算出兩輛火車將於兩小時後相撞,因此得知蒼蠅總共飛行 150 英里。

馮紐曼聽完問題不一會兒就答出 150 英里,女主人對於馮紐曼沒有陷入計算無窮等比級數的陷阱感到失望,但馮紐曼竟回答:「我是用求和的啊!」若此傳說當真,顯見他驚人的計算能力。

-----廣告,請繼續往下閱讀-----

1963 年諾貝爾物理學獎得主維格納表示,他認識當代許多頂尖科學家,包含德國理論物理學家普朗克(Max Planck)、英國理論物理學家狄拉克(Paul Dirac)、西拉德、泰勒、愛因斯坦,但沒有一個人像馮紐曼般才思敏捷。曾有人問維格納為什麼匈牙利出現這麼多天才,維格納的回答是:「真正的天才只有馮紐曼一人。」

引發數學教育革命的波利亞

本文要介紹的第二位匈牙利數學家是波利亞。1912 年,他於布達佩斯大學取得數學博士學位後,便前往德國哥廷根大學從事博士後研究。他在哥廷根大學結識許多當代最傑出的數學家,例如希爾伯特和克萊因(Felix Klein),之後便到蘇黎世理工學院任教。相較於一般嚴謹木訥的數學家,波利亞相當擅長說故事,包含數學家的軼事和「說數學」的功力。

馮紐曼在蘇黎世理工學院修讀博士時,也曾上過波利亞的書報討論課。有次波利亞提到一個尚未解決的數學問題,他認為要證明這問題很困難,沒想到五分鐘之後馮紐曼舉手,然後在黑板上寫下證明,從此之後馮紐曼變成他最敬畏的學生。

另外,波利亞也曾談論有關希爾伯特的故事。在德國盛傳一個傳說,深受德國人敬愛的皇帝腓特烈一世(Friedrich I)沒有死亡、只是沉睡,等到德國需要他時他就會挺身而出。因此便有人問希爾伯特:「你若在死後 500 年復活,你會做什麼事?」希爾伯特說:「我會問是否有人證明了黎曼猜想(Riemann hypothesis)?」

黎曼猜想與質數分布具有密切的關係,是希爾伯特於 1900 年提出的 23 個最重要數學問題之一。有些數學家將證明黎曼猜想形容為「數學界的聖杯」,因此它的重要性可見一斑。2018 年 9 月 24 日,英國數學家阿蒂亞(Michael Francis Atiyah)宣稱他證明了黎曼猜想,此事件也曾轟動一時。

但阿蒂亞的證明還來不及得到同儕認證,便不幸於 2019 年 1 月 11 離世,截至目前為止數學界仍對阿蒂亞的證明有所質疑。所以如果希爾伯特現在真的死而復活,那他恐怕要失望了。

波利亞於 1945 年出版《怎樣解題》(How To Solve It)一書,展現他「說數學」的功力。他常強調數學有兩面,數學結果的呈現方式有如歐幾里得(Euclid)幾何學般的演繹論證形式,但數學知識發展過程卻更像是一門實驗歸納的科學。書中提倡以捷思法(heuristic)思考數學問題,例如高中時老師通常教學生如何證明 13+23+33+43+⋯+n3=,但卻很少說明究竟如何得到此公式。

波利亞則要學生先做探索觀察。例如從圖三可以發現前五個自然數的立方恰好都等於另一個自然數的平方,這樣的特殊性可以推廣為「前 n 個自然數的立方和等於某個自然數的平方嗎?」若可以推廣,某個自然數到底是哪個數?我們進一步觀察可以得到:1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, 15=1+2+3+4+5,將這觀察和圖三結合就得到圖四中令人驚訝的結果。

圖三、前五個自然數的立方和。圖/科學月刊
圖四、前五個自然數的立方和等於前五個自然數和的平方。圖/科學月刊

這麼美麗的結果應該不會只是巧合,所以一個合理的臆測也因此誕生:「前n個自然數的立方和等於前n個自然數和的平方」,也就是 13+23+33+43+⋯+n3=(1+2+3+4+⋯+n)2。由於 1+2+3+4+⋯+n=,所以得到 13+23+33+43+⋯+n3這個「合理的」公式,接著就可以證明此結果的正確性。

由此我們看到捷思法可以展現一個數學公式形成的過程,如同在《奧本海默》電影中丹麥物理學家波耳(Niels Bohr)建議奧本海默改到哥廷根大學跟從玻恩(Max Born)學習理論物理。

波耳問奧本海默數學程度如何,並提醒他:「代數就像一本樂譜,重點不是你能否讀懂音樂,而是能否聽懂音樂。」(Algebra is like a sheet music. The important thing isn’t if you can read music; it’s if you can hear it.),波利亞的捷思法就是教我們如何聽懂音樂而不光是讀懂音樂。

在 1960 年代,美國由於憂慮太空競賽落後蘇聯,因而發起所謂「新數學」的中學數學課程改革,強調數學的抽象性,試圖讓學生早一點熟悉數學邏輯的演繹過程,但這種罔顧知識發展脈絡的改革註定以失敗告終。

1980 年代,波利亞強調歸納實驗思考過程的捷思法逐漸受到重視,掀起一波「數學問題解決」(mathematical problem-solving)的浪潮,而這股浪潮的影響也猶如核分裂的連鎖反應,持續至今。

  • 〈本文選自《科學月刊》2023 年 11 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3561 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
驅動未來科技創新的運算平台領導廠商—Arm
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/26 ・2594字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Arm 委託,泛科學企劃執行。

Arm(安謀)是一家來自英國提供處理器 IP 架構設計的矽智財公司,你可能不清楚 Arm 在做什麼?但你可能在最近的新聞中聽過它,而且,你可能每天都在使用他們的產品!

實際上,90% 的智慧型手機使用的 CPU 晶片,其指令架構集(ISA)都是採用 Arm 架構,例如部分蘋果產品所使用的晶片、Android 手機常見的驍龍系列,以及聯發科技推出的天璣系列晶片,Arm 都是這些處理器架構的主要供應商。

每片 CPU 上,都有 ISA。圖/pixabay

不過這個指令架構集(ISA)到底是什麼?為什麼每台手機甚至電腦都要有呢?

-----廣告,請繼續往下閱讀-----

什麼是指令架構集(ISA)?

指令集架構(ISA)是電腦抽象模型的一部分,它定義了 CPU 如何被軟體控制。ISA 作為硬體和軟體之間的介面,既規定了處理器能夠執行的任務,又規定了如何執行這些任務。ISA 提供了使用者與硬體互動的唯一途徑。ISA 可以被視為程式設計師的手冊,透過 ISA,組合語言程式設計師、編譯器編寫者和應用程式程式設計師方能與機器溝通。

處理器的構建和設計稱為微架構(micro-architecture),微架構告訴您特定處理器的工作原理,例如,Arm Cortex-A53 和 Cortex-A73 都是 Armv8-A 架構的實現,這意味著它們具有相同的架構,但它們具有不同的微架構。

目前常見的 ISA 有用於電腦的 Intel/AMD x86_64 架構,以及在行動裝置是主流的 Arm 架構。而 Arm 本身不製造晶片只授權其架構給各個合作夥伴,授權的架構也被稱為「矽智財」(Semiconductor intellectual property core,簡稱 IP),並由合作夥伴依據規格打造合規的矽晶片。

Arm 成為全球關注的焦點

今年九月,Arm 在美國紐約那斯達克交易所掛牌上市,吸引大量投資者的目光,除了節能的設計,Arm 持續提升產品效能,使得 Arm 架構具有強大的競爭優勢,讓 Arm 的技術和產品,除了在行動裝置與物聯網應用佔據了重要地位,也在後續發展的其他產品持續協助產業推動技術革命。

-----廣告,請繼續往下閱讀-----

最早,Arm 架構是為了依靠電池運作的產品而設計的,隨著這十多年來的轉變,行動裝置成為主流,而 Arm 架構也成為了行動裝置的首選。

除了 Arm 原本行動裝置的通用 CPU 領域,Arm 亦著手開發專用 CPU 的架構,這些專用 CPU 的使用情境包含雲端基礎設施、車用和物聯網(IoT)。

現在 Arm 除了在手機處理器上有超過 90 % 的市占率外,在物聯網與嵌入式應用上有 65% 的市占率,目前車用晶片也逐步轉向由軟體來定義汽車的電子電氣架構,這凸顯了軟體在未來汽車架構的重要性。「嵌入式邊緣裝置使用的可擴充開放架構 (Scalable Open Architecture for Embedded Edge;SOAFEE) 」建立以雲原生的系統架構,透過雲端先行開發軟體,協助汽車產業業者在產品正式商品化前,能在基於 Arm 架構的晶片上進行虛擬環境測試,目前 Arm 在車用晶片上,市佔率超過四成。

由感測器至智慧製造系統設計,Arm 與生態系密切合作,推動技術創新

在雲端運算上,Arm 也推出了 Arm Neoverse 技術平台來協助雲端伺服器的晶片設計,並配合新推出的 Arm Neoverse 運算子系統(CSS),來簡化專用晶片的設計複雜性,減少晶片設計花費的時間。

-----廣告,請繼續往下閱讀-----

在 Arm 日益完整的產品組合下,透過與廣大生態系合作,能為市場提供許多軟硬體解決方案。首先,在行動裝置上,Arm 近乎霸占市場。而在 AI 發展與網路速度持續提升的趨勢下,許多運算都可以在雲端完成,最近的實例為 Nvidia 的 GeForce Now,只需一台文書機,就能暢玩 3A 大作,或是 Google 的 Colab,讓 AI 能在文書機上完成運算,造福了沒有高級顯卡的使用者。

未來,邊緣運算將陸續解開雲端運算的束縛,而 Arm 也在前期投入了雲端基礎開發,配合行動裝置的市占率,無論如何 Arm 都將在未來科技業占有一席之地。

Arm Tech Symposia 將在 11 / 1 與 11 / 2 盛大舉辦

2023 Arm 科技論壇(Arm Tech Symposia)即將在 11/1 台北萬豪酒店,11/2 新竹國賓飯店盛大舉辦!這是 Arm 每年最重要的實體活動之一,以【Arm is Building the Future of Computing】為主軸,探討在 AI 時代來臨之際,Arm 最新的技術如何驅動創新科技,為次世代的智慧運算、沉浸式視覺、AI 應用、自主體驗等帶來更多可能性。 

這次 Arm 科技論壇將圍繞在車用、物聯網、基礎設施、終端產品等熱門 AI 應用領域,並邀請台積公司、Cadence、瑞薩電子、新思科技、CoAsia 擎亞半導體等各領域專家,帶來產業第一手趨勢洞察。

-----廣告,請繼續往下閱讀-----

其次,也會分享 Arm 的新技術在 AI 的應用,包含如何透過軟體定義汽車降低汽車電子系統核心 EUC 整合的複雜性,同時維持汽車資安;以及介紹專為特定工作負載而設計的運算方式,如何讓企業不受外在環境與技術影響,處理更大規模的數據。

今年 11/1 在台北場的座談會,主題為 Edge computing on AI,探討邊緣運算在人工智慧上的應用,以及人工智慧對於半導體產業以及晶片研發帶來的影響,邀請 iKala 共同創辦人暨執行長程世嘉、聯發科技執行副總經理暨技術長周漁君,以及 Arm 台灣總裁曾志光與會。

Arm 科技論壇 11 月 1 日台北萬豪酒店。 圖 / Arm 

11/2 在新竹場的座談會主題為 The Keys of Automotive Transformation,探討汽車產業的轉型趨勢,邀請 Anchor Taiwan 執行長邱懷萱、友達光電執行長暨總經理/達擎董事長柯富仁、波士頓顧問公司董事總經理暨資深合夥人徐瑞廷,以及 Arm 台灣總裁曾志光與會。

Arm科技論壇 11月 2 日新竹國賓飯店。 圖 / Arm 

無論你是硬體工程師、軟體開發人員、晶圓代工、晶片設計商、OEM/ODM 還是相關產業人士,都能在這場論壇中互相交流,充實自己。

-----廣告,請繼續往下閱讀-----

2023 Arm 科技論壇報名連結

活動結束後填寫問卷的朋友,還有機會現場抽中 iPhone 15 Pro、 iRobot Roomba j7+ 掃地機器人、Sony WH-1000XM5 無線耳機、Dyson Purifier Big+Quiet Formaldehyde 空氣清淨機等精美好禮喔!

報名截止倒數中,現在就立刻報名吧!