0

0
0

文字

分享

0
0
0

為什麼微波爐加熱總是不均勻?—《解事者》

天下文化_96
・2016/11/29 ・1098字 ・閱讀時間約 2 分鐘 ・SR值 399 ・三年級

生活中常見的微波爐能快速加熱食物的秘密是什麼?圖/Jorge Sanz@flickr, CC-by2.0
生活中常見的微波爐能快速加熱食物的秘密是什麼?圖/Jorge Sanz@flickr, CC-by2.0

加熱食物的無線電箱子:微波爐

這種箱子用一種無線電波加熱食物。無線電波讓東西裡面很小很小的水滴搖動,愈搖愈快。當東西裡的很多小水滴都搖得很快, 東西就變熱了。如果讓很強的無線電波穿過水,水會變熱。 有了加熱食物的無線電箱子,你就可以買冷凍食品,在冰箱冰很久,要吃的時候,再用箱子加熱,把冰熔化。這對沒有時間煮飯的人很方便。你也可以用無線電箱子加熱新鮮的食物(例如魚) 做成各種菜,就跟用廚房其他加熱工具做菜一樣。不過用這種箱子做菜沒那麼簡單,尤其是煮肉時要小心一點。

無線電波

這種無線電箱子使用的電波,波長跟家裡電腦的無線網路「熱點」一樣。其實不同種類的無線電機器使用的電波波長都不一樣,但這兩種卻用完全一樣的波長,這是有原因的。 就在加熱食物的無線電箱子愈來愈普遍的時候,用無線電傳送資料的設備也開始變多。由於當時家家戶戶都已經在使用這種無線電箱子,各國決定把箱子用的波長(大約是手掌寬)開放,讓每個人都可以用。於是制定無線網路的人就用了這個波長,因為這是大家都能在家使用的少數波長。 如今全世界電腦傳送資料使用的波長,跟加熱食物的無線電箱子一樣。這不會有問題,除非你的無線電箱子有破洞,那你在加熱食物時,電腦上的影片可能就停了。

為什麼變熱的食物裡面還有冰?

無線電箱子很會把水加熱,對冰卻不大行。箱子可以加熱冰,但是要花很久的時間。 當你把冷凍食品放進無線電箱子加熱,過一會兒後, 有一部分開始變成水。因為無線電箱子很會把水加熱,這些水很快就變得更熱,甚至在冰還沒完全融化之前,這些水就變成水蒸氣了。 要避免這種情形,你可以把無線電箱子的強度調小一 點,這樣加熱過程中會有很多次暫停,因此有多一點時間讓熱傳送到其他部位,就不會有些地方特別燙了。

  • 從上文知道微波爐是靠著無線電波讓水滴搖動、使得食物被加熱,但你曾想過微波爐中的無線電波的分布狀況嗎?
加熱食物的無線電箱子:微波爐

解事者

本文摘自《解事者:複雜的事物我簡單說明白》,天下文化出版。本書獲選為泛科學 2016 年 11 月選書。

文章難易度
天下文化_96
129 篇文章 ・ 613 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
0

文字

分享

0
1
0
凍傷了?來微波加熱一下~
胡中行_96
・2023/02/20 ・1975字 ・閱讀時間約 4 分鐘

俄羅斯西伯利亞的科學家,於 2023 年 1 月的《科學報告》(Scientific Reports)期刊上,發表了一些看似能防止烤雞的外皮過焦,同時確保內部肉質鮮美多汁的技巧。比方說,一般作法「由外部加溫很危險,不是每次都能得到正向的結果…」。若改用微波,則「所需的溫度相對不高」,但要力求整體均衡,「不能只有外層受熱」。遺憾他們說了半天,卻跟食物無關,其實是在介紹如何安全又有效地,用特製的微波裝置,治療凍傷患者的四肢。[1]

當然不是把凍傷患者,丟進家用微波爐裡。圖/osseous on Flickr(CC BY 2.0)

微波的對象與裝置

就像料理烤雞,得先弄來雞隻和烘烤的設備;進行這項研究前,需要滿足兩個條件:

  1. 招募凍傷的人:在氣候冷冽的西伯利亞,要造成凍傷,難度並不高。不過,根據《赫爾辛基宣言》(Declaration of Helsinki),人體試驗應該符合倫理,將志願者可能受到的傷害降至最低。[2]不能隨便把人往雪地扔的研究團隊,在當地 Tomsk 市的 2 家醫院守株待兔,期望意外凍傷的人自己找上門。2018 至 2021 年間,每年的冬季他們都耐心等候,總共蒐集到 14 名超過 20 歲的男性,簽署受試同意書。[1]
  2. 製作微波裝置:研究團隊精心打造的裝置(下圖),簡單來說,就是一台方便手腳伸進去加熱的微波爐。前面的圓形入口,包覆著具隔絕效果的金屬材質,以保護傷患與研究人員,免於非必要的輻射暴露。此裝置的微波頻率為 2.45 吉赫(GHz);而功率可達 200 瓦特(watts;簡寫 W),即每秒產生200 焦耳(joule;縮寫 J)的熱能。[1]換句話說,頻率與家用微波爐無異,功率卻低了數倍。[3]

由於研究團隊只想幫傷患加溫,沒有要煮熟他們的意圖,便設定開到 60 瓦特。再加上操作時,會喪失些許熱能,最後傷患實際接收到的,大約僅有 30 至 40 瓦特每個患部加熱 1 至 3 次,每次 30 分鐘。雖然感覺微溫,但不至於難受。9 名傷患接受上述治療;另外 4 個嘗試了不同的功率;還有 1 人則是時間長度減半。[1]

可以把手腳伸進去加熱的微波爐。圖/參考資料 1,Figure 2(CC BY 4.0)

加溫的原理

平均而言,當人體組織的溫度低於攝氏 15 度左右,血液和淋巴循環會停止。身體各部位略有差異,手指的下限是 19 度;而腳趾為 15 度。為凍傷患者回溫時,目標溫度大約是 20 到 25 度上下,要觸及整個患部,而非僅有表層。讓身體恢復運作,才能透過循環,順利輸送藥物。以往從外部加溫的作法,會舒張表層血管,卻容易在深層血管收縮的情況下,導致壞死和截肢等問題。相對地,低功率的微波可以穿透到組織深層,逐漸舒張血管,促進血液與淋巴的循環,不會有上述副作用。[1]

天寒地凍的西伯利亞 Tomsk 市。圖/Артём Полоз on Wikimedia Commons(CC BY-SA 4.0)

凍傷的等級

凍傷依照程度,可以分為 4 個等級:[4]

  1. 第一級:麻木、脫屑、感覺異常、中央蒼白,以及周圍水腫或紅腫。[4]
  2. 第二級:起水泡,周圍紅腫或水腫。[4]
  3. 第三級:失去整層皮膚組織,還長了出血性水泡。[4]
  4. 第四級:不僅皮膚,連深層組織都喪失了。[4]

微波的療效

此研究受試者的凍傷程度涵蓋上述四級,治療時除了微波,也採用標準療程的消毒與藥物,並視情況選擇是否手術。整體來說,科學家對微波相當滿意,覺得能降低截肢的機率。此外,雖然第一、二級的傷勢輕微,效果比較不明顯;但是他們認為無論初步評估的凍傷程度,每個傷患最好都要接受微波。因為診斷難免失準,若因此錯過治療時機,實在得不償失。[1]

既然如此,未來遇到凍傷患者,是不是都該抓來微波一下?儘管研究證明了科學家的假設似乎可行,目前的受試者就區區幾名男性,不足以建立一套完善的操作指南。臨床上不同體型、年紀或性別的傷患,或許適合不同功率或時間長度的微波治療。這些都有待將來進一步試驗,才能推廣運用。[1]

  

參考資料

  1. Dunaevskiy G, Gavrilin E, Pomytkin A, et al. (2023) ‘Reduction of amputations of frostbitten limbs by treatment using microwave rewarming’. Scientific Reports, 13, 1362.
  2. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’. (06 SEP 2022) World Medical Association.
  3. Radiation: Microwave ovens’. (01 JUN 2005) World Health Organization.
  4. Basit H, Wallen TJ, Dudley C. (27 JUN 2022) ‘Frostbite’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
胡中行_96
150 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

9
6

文字

分享

0
9
6
誰在海邊蓋天文台啊(惱)──世界第一座電波干涉儀
全國大學天文社聯盟
・2022/04/15 ・4114字 ・閱讀時間約 8 分鐘

  • 文/玄冥
    曾經做過 Radio Astronomy,現在叛逃去 Structure Formation 了,但也許有天會再回去。喜歡的動物是樹懶。

1946 年 2 月的某個清晨,澳洲東海岸的一群無線電科學家嚴陣以待,將電波接收器對向海的彼岸。如果是幾年前,他們會膽顫心驚地觀察日軍戰機的動向,但是今天不一樣,他們滿懷期待地等著日出。因為科學家們知道,他們正將原本用於國家間內鬥的利器 —— 電波干涉術(Radio Interferometry),用於人類探索太空的共同嚮往。

電波干涉術原先是二戰時用來提高電波觀測準確度的技術,如果說大家對電波干涉術不熟悉的話,那麼對人類拍攝的第一張黑洞影像應該記憶猶新(圖一)。這張黑洞影像的成像原理便是電波干涉術,拍攝這張照片的電波干涉儀則是遍佈全球的「事件視界望遠鏡(EHT)」(圖二)。

圖一:事件視界望遠鏡拍攝之 M87 星系中心的超大質量黑洞。圖/EHT
圖二:事件視界望遠鏡。圖/NRAO

大家聽到「電波干涉儀」時,腦海中浮出的想像,可能都是如圖二中的碟狀接收器。然而實際上,電波干涉儀最初的樣貌是非常簡單的(圖三),以下這篇文章會分別介紹電波和干涉術,再介紹兩者結合的原理,一步步帶大家了解電波干涉儀的原型機是如何被設計出來的。

圖三:在澳洲 Dover Heights 岸邊的電波干涉儀。圖/CSIRO

什麼是無線電波?

無線電波(Radio wave,簡稱電波)是一種電磁波,它充斥於我們現代生活的各個角落。例如手機產生的信號、衛星轉播,以及藍牙、WIFI 等等。電波與可見光是唯二能在地球大氣中自由穿行的電磁波波段,因此大多數地面望遠鏡都以觀測可見光跟電波為主。重要的是,相對於可見光波,電波波長更長(約 1 mm 以上),較容易穿過障礙物,讓它更便於觀測藏在宇宙塵埃後的物體(如原恆星)。然而,能穿透障礙物的代價是,在相同的望遠鏡口徑下,電波望遠鏡的「角解析度(Angular resolution)」比較低。

角解析度(或稱角分辨率)是探知物體細微移動或分辨兩個鄰近物體的能力,白話的說就是它能看得多「清楚」。角解析度正比於望遠鏡的直徑,但反比於所觀測的電磁波波長。做一個誇張的比喻,如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。有限的角解析度,是電波天文台在 1930 年代剛出現時所面臨的主要困境之一。這個問題一直到二戰時期才得到解方 —— 干涉技術。

如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。圖/envato elements

光的干涉,相信大家在高中的物理實驗中都見過。在實驗中,我們將光源對準布幕,並將切有兩條平行狹縫的一塊紙板隔在光源與布幕之間。此時通過兩條狹縫的光,便會在布幕上產生黑白相間的干涉條紋。這些條紋,源自光通過不同狹縫抵達布幕所需的距離不同,因此不同狹縫發出的光波到達布幕時的震動方向會有所不同。如果兩道光波震動方向相反,會造成相消干涉而形成暗紋;若抵達布幕時震動方向相同,則造成相長干涉而形成亮紋。

利用動畫可能更好理解一些(見圖四、五)。從實驗設備的上方俯視,藍色的點代表光源,紅色的點則是紙板上的狹縫位置,圖片底端是布幕,白色與黑色的部分即為光波的亮紋和暗紋。從圖四我們發現,當狹縫間距越遠,布幕上亮紋就越細緻,而從圖五則可以看見,當光源橫向移動時,布幕上的亮紋及暗紋亦會大幅移動。結合這兩張圖可以看出,越細緻的亮紋對光源的移動就越敏感,電波作為一種波亦有相同的特性。

圖四(左)、圖五(右):雙狹縫干涉示意圖。

軍隊如何利用電波干涉偵測敵軍?

讓我們將焦點拉回二戰時期。當時的英國軍隊為了能預警敵機,通常會將電波接收器對準海平面,隨時觀察敵機的位置。圖六和圖七是電波接收器(紅點)跟敵機(藍點)以及海面(黑色區域)的相對位置圖,此時敵機發出的電波會從兩條不同路徑抵達電波接收器,其中較短的電波是從敵機直達接收器,而較長的則是經海面反射後抵達接收器,這兩條路徑的電波會互相干涉並形成明暗相間的條紋。

圖六(左)、圖七(右):海岸干涉儀示意圖。

這些干涉條紋如同雙狹縫干涉所產生的條紋一樣,對波源的移動非常敏感(圖六),因此可以非常準確的判斷出敵機的位置;而如圖七所示,當電波接收器與海平面之間的高度差愈大,干涉條紋愈細緻,這表示電波接收器的海拔高度正比於其角解析度。實際上,如果將電波接收器放在濱海的峭壁上,其影像的清晰度約為一台口徑為兩倍峭壁高度的電波接收器,這便是「電波干涉儀」最初的樣子——也就是圖三那一台在峭壁上的電波接收器。

隨著二戰結束,許多軍事科技被轉為民用或科研用途,電波干涉儀也不例外。對於研究太陽黑子的天文學家們來說,電波干涉儀在這一年轉為民用更是生逢其時,因為隔年恰好迎來了百年內規模最大的太陽極大期。

太陽活動通常以 9~14 年為週期。在太陽活動最旺盛的時候,往往會伴隨著許多太陽黑子的出現、以及被磁場束縛住的日冕物質所迸發的強電波。然而過去受限於電波觀測的低角解析度,人們只知道電波的強度與太陽黑子數量呈正相關,卻並不知道電波具體源自太陽的何處。隨著電波干涉儀的出現,天文學家得以精確地觀測出電波強度的分佈,其範圍比太陽小、且位置與太陽黑子高度重疊,這為此後的太陽黑子研究以及電波通訊應用提供了不少幫助。(1)(2)(3)

使用電波干涉儀探索宇宙吧!

銀河系和太陽,是天空中兩個最亮的電波源,因此是天文學家最先望向的目標。但天文學家們也注意到,較弱的電波源其實散佈於天空各個角落。這些電波源在沒有干涉儀的時代,因低角解析度以及來自銀河系的電波干擾而遲遲無法精確定位,而這一情況在電波干涉儀出現後得到改善。

二戰後,澳洲海軍負責雷達設備的軍官 John Bolton 以及他的助手,在澳洲沿海各處搭建了電波干涉儀,以觀測來自天鵝座的電波。他們將該電波源的位置精確度,由先前透過一般電波望遠鏡量測的五度推進至七角分(約 1/10 度),也得知這個天體的大小在八角分以下。

在美國新墨西哥州的無線電干涉儀:甚大天線陣Very Large Array。圖/Hajor, CC BY-SA 3.0

然而弔詭的是,如果量測到的電波源自於這八角分不到的天體,這個天體所蘊含的能量密度將遠超出任何已知的天體!更令人驚訝的是,該天體並沒有對應到任何可見光影像中的恆星,於是他們將這個只出現在電波影像的天體稱為天鵝座 A(4) 。隨後他們用電波干涉儀掃瞄了南方的天空,陸續發現了許多類似天鵝座 A 的天體。

在後續技術發展下,天文學家終於找出這些電波天體在可見光的真身 —— 電波星系(5)(圖八、九)。電波星系在可見光波段的影像如同一般星系,然而在電波望遠鏡下,時常能看見噴流從電波星系中心噴湧而出,噴流的痕跡可達星系本體的數倍。現在我們知道,噴流是在星系中心大質量黑洞進食(吸積)時所噴出的強烈電漿流,其中的帶電粒子在噴流磁場的加速下會發出強電波,從而被電波干涉儀接收。

圖八:由甚大天線陣列(VLA)拍攝之天鵝座A電波星系的電波影像。圖/Mhardcastle, VLA data
圖九:由歐洲南方天文台拍攝之人馬座 A 電波星系,結合可見光與電波的影像。圖/ESO

這些噴流能夠改變星系的氣體與能量分佈,因此對星系演化有著至關重要的影響,今日人們也在透過更先進的電波望遠鏡了解這些星系。

時過境遷,如今的電波干涉儀,已經能夠將遍布全球各地多個電波接收器收到的電波進行干涉,不再是依託於大海的孤立接收器;干涉儀技術的改良,立基於全世界探索宇宙深空的好奇與嚮往,而非國家間互相對抗的戰火。

回首過往,人們在戰爭中其實並未忘記對宇宙的嚮往,因此當硝煙散去,人們便互相合作,將戰時的科技化作探索太空的利器,揭開宇宙奧秘、滿足人類的好奇。如今,我們擁有更強大的科技,希望人們能夠繼承這份嚮往,一同探索更多宇宙的未知。

延伸閱讀

  1. 毀滅與新生:超大質量黑洞觸發的恆星形成- PanSci 泛科學
  2. 黑洞甜甜圈之後:宇宙噴火槍3C 279 黑洞噴流影像現蹤跡!——《科學月刊》 – PanSci 泛科學
  3. 黑洞攝影怎麼拍?七個問答來解謎——《黑洞捕手》 – PanSci 泛科學
  4. 仰望宇宙的好據點,大國爭相來插旗:「白山」毛納基亞——《黑洞捕手》
  5. 太陽升起前,把握最後的永夜!與時間賽跑的組裝任務——《黑洞捕手》 – PanSci 泛科學
  6. 人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的? – PanSci 泛科學

參考資料

  1. Some Highlights of Interferometry in early Radio Astronomy, Woodruff T. Sullivan III (2016)
  2. Pawsey, J. L., Payne-Soott, R., & McCready, L. L. (1946). Radio-frequency energy from the SunNature157(3980), 158-159.
  3. McCready, L. L., Pawsey, J. L., & Payne-Scott, R. (1947). Solar radiation at radio frequencies and its relation to sunspotsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences190(1022), 357-375.
  4. Bolton, J. G., & Stanley, G. J. (1948). Variable source of radio frequency radiation in the constellation of Cygnus. Nature161(4087), 312-313.
  5. Bolton, J. G., Stanley, G. J., & Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation. In Classics in Radio Astronomy (pp. 239-241). Springer, Dordrecht.

1

7
1

文字

分享

1
7
1
整個宇宙,都像是科學家的廣播電台!進化版的光波收音機
活躍星系核_96
・2021/03/26 ・2570字 ・閱讀時間約 5 分鐘 ・SR值 577 ・九年級

  • 文/ 蔡乃玉、游雨婕│ 臺灣大學物理學系學生

即使是目前發現最靠近地球的黑洞,也距離我們遠達上千光年,更別說那些上萬、上億光年的遙遠天體了,面對如此遙不可及的距離,你是否有想過,科學家究竟是得到來自它們的訊息呢?現今人類到底運用了什麼樣的科技,竟然可以獲得億萬光年之外的宇宙訊息?

無線電波,就是科學家的好工具!

整個宇宙,都像是科學家的廣播電台!

所謂的無線電波(Radio Wave),通常是指波長在 100000 公里(108 公尺)到 0.1 毫米(10-4 公尺)之間,頻率為 3 Hz~3000 GHz(3 THz)的電磁波段,一般通訊使用的頻段大約落在 3 kHz ~ 30 GHz,30~300 GHz 的頻段又因波長大小,稱為「毫米波」,是未來 5G 通訊使用的頻段。

(2021 / 4 / 1)編按:更正頻率與波長對應的錯誤,無線電波的定義以國際電信聯盟(ITU)的無線電頻譜為準,毫米波的頻段跟微波重疊,而 3 THz 也已經接近遠紅外線(FIR)的頻段。

事實上,無線電波不只可以拿來接收宇宙資訊,在我們的日常生活中,其實早就有很多使用無線電的裝置,像是廣播、無線電對講機、雷達、Wi-Fi 與藍芽都是透過無線電波來傳訊的唷!

大家在聆聽廣播時,多多少少都有聽過「AM、FM」這兩個字彙,你知道它們分別代表的意思是什麼嗎?

廣播、無線電對講機、雷達、Wi-Fi 與藍芽等日常生活中常見的設備,都是透過無線電波來傳訊。圖/Pexels

AM、FM 是兩種傳遞信號的技術,也是我們生活中最容易接觸到的傳訊技術之二,它們可以讓「電磁波的振幅」隨著不同的因素而變化,同樣的,我們也可以讓無線電透過這兩種方法來傳遞訊號。

首先,AM,是振幅調變 (amplitude modulation) 的簡寫,它會讓電磁波的振幅隨著聲波的「振幅」而改變,當聲波的振幅變大、電磁波的振幅也變大,早期無線電大多使用這種技術,它可以讓訊號傳遞到比較廣的地方,但缺點是噪音很多。

FM 即為調頻 (frequency modulation) ,它會讓電磁波的振幅隨著聲波的「頻率」而改變,雖然 FM 沒有辦法像 AM 傳遞到那麼遠,但 FM 的優點是噪音比較少。

然而,即使 FM 的噪音已經減少了很多,FM 的噪音仍然很難、很難完全去除,相信大家聆聽 FM 廣播電台時,也有這樣的困擾。對於科學家來說,這可是不能默默忍受的缺點!因此,科學家也不斷努力研發出降低、去除無線電噪音的技術。

無線電波不夠讚,把它變成「光」吧!

光學纖維(俗稱光纖)是一種使用石英玻璃或塑膠製成的纖維,會用「光」進行資料傳輸,比起剛剛所提到的 FM 和 AM ,光纖不僅速度更快、噪音也更少!

由此可知,「光」也是非常棒的傳訊技術,若我們可以將無線電波轉為光波,就可以像光纖一樣,更有效的降低噪音!目前已經有很多種方式能夠將這兩種電磁波進行轉換,在市面上,我們也早就可以很簡單的買到光電轉換器囉!

利用光在玻璃或塑料製成的纖維中以全反射原理傳輸的光纖,有效提升了訊號傳遞的效率。圖/Pixabay

為了讓光波傳訊的品質更上一層樓,科學家們研發出光學相位調變 (optical phase modulation) 技術,偵測光的「相位」變化來使得精密度提高,可以有效降低無線電噪音,進而提高訊息的完整度

以 T.Bagci 和 A.Simonsen 曾發表在 Nature 的論文為例,該研究團隊使用了奈米薄膜為材料,而奈米薄膜可以結合「無線電波頻率共振電路 」和 「薄膜表面反射的光」,使得這些無線電頻率訊號能夠透過光學的相位變化的形式被觀測到,也就是將無線電波轉換成了光波,以光波的形式傳遞。

以這種方式傳遞訊息的話,連極小的尺度都能被觀測,非常靈敏。

用數據來比較的話,噪音的單位 V/ √Hz (伏特/√赫茲),現在市面上的光電轉換器能將噪音降低到 nV 尺度(奈米級,10-9),而對這一項技術電路本身的噪音為 800pV/√Hz(飛米級,10-12),轉換成光波後最低可降至 5pV/√Hz!

5pV/√Hz 的噪音有多低呢?論文指出,對 MRI 而言,對噪音的要求只要低於200pV/Hz 就足夠了!噪音被大幅降低後,不但可以讓訊號不失真,也可以讓弱小的訊號更容易被偵測到。

光、電怎麼變身?就像大鼓變芝麻(X)

以下將簡述這個裝置的原理,以及轉換的進行過程。

實驗中使用了鍍了鋁的氮化矽的奈米薄膜,當輸入無線電訊號進去時,奈米薄膜就會像鼓面受到震動一樣,當輸入的訊號不同,鼓面震動的幅度也會不同。

此時,將雷射光照到薄膜上時,就像灑一把芝麻到鼓面上,隨著鼓面著震動,芝麻會跑到不同的地方去,而我們只要藉由觀察芝麻的反應,也就是反射光的變化,就可以得知輸入的訊號了。

科學家們就是透過這樣的方法,順利將無線電訊號以低噪音的方式轉換成光波。

實驗示意圖。

如同前文所提到的數據,在這個實驗進行時,電路本身還是會有些許噪音,大約800pV/√Hz 左右,主要來源為熱擾動,科學家們為了更進一步地減少噪音,除了光學相位調變技術之外,也搭配並採取了降低溫度、施加電壓以抵銷噪音頻率等等措施,成功讓無線電的噪音被降到極低的尺度。

當我們可以聽到更細膩的聲音後…?

這項技術將可以將無線電波轉換成低噪的光波,因此可以用已經建立好的測量模型來觀測這些信號,讓人類得以研究這些微小的電波,使我們可以得到比以前更精準的訊號,觀測到以前所無法得到的宇宙訊息,或是讓核磁共振圖像更精準,是電子學在訊號傳遞上的一大突破!

未來,隨著通訊技術日新月異,你覺得我們可以在宇宙之間得到讓人意想不到的訊息嗎?也許…來自外星生物的打招呼訊息?讓我們一起解開更多來自外太空的秘密吧!

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的協助。

參考資料:

  1. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).
  2. A. Horneff; B. Schlecker; M. Häberle; E. Hell; J. Ulrici; V. Rasche; J. Anders. “A New CMOS Broadband, High Impedance LNA for MRI Achieving an Input Referred Voltage Noise Spectral Density of 200pV/Hz√” IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  3. 無線電(Radio Waves)
所有討論 1
活躍星系核_96
752 篇文章 ・ 114 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia