0

0
0

文字

分享

0
0
0

石墨烯攻佔遠紅外波段

NanoScience
・2012/05/25 ・898字 ・閱讀時間約 1 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

只有一層原子厚的石墨烯(graphene)能吸收超過 2% 的可見光,已經夠令人意外,最近美國科學家還有更驚人的發現─石墨烯在遠紅外光和微波波段的吸收率高達 40%。這項發現開啟了石墨烯在透明兆赫光電子學、兆赫頻率與紅外光波段的超穎材料、隱形斗蓬(cloaking)以及轉換光學(transformation optics)的應用契機。

研究發現,石墨烯在遠紅外光和微波波段的吸收率高達 40%。圖片來源:維基百科(http://0rz.tw/PcQ7n)

石墨烯是單原子厚的二維碳材料。自 2004 年問世後,此『神奇材料』持續以其獨特的電子和機械性質驚豔科學界。有人認為石墨烯未來將取代矽成為電子產業的新寵,原因是電子在石墨烯內的行為類似無靜止質量的迪拉克(Dirac)粒子,能以極高速度運動。迪拉克電子也讓石墨烯具有非常寬的光吸收頻譜,範圍從可見光到紅外光,遠比 III-V 族半導體來得寬,因此石墨烯也是光電應用的理想材料。

紅外光波段的電磁波在光通訊上頗為重要,兆赫波則可應用於生物造影、材料分析以及安檢系統。,因此了解石墨烯在這些波段的特性,對於發展應用在些波段的石墨烯光電元件為極重要。由 Phaedon Avouris 領軍的 IBM 研究團隊最近發現,石墨烯在遠紅外光和微波波段的吸收率高達 40%。

該團隊先前已研究過石墨烯的紅外光輻射,他們測量了溫度分佈、載子密度與迪拉克點(Dirac point)的位置。迪拉克點為石墨烯能帶結構內的電荷中性(charge neutrality)點,也就是線性價帶與線性導帶的交點,由於未摻雜石墨烯的費米能階(Fermi level)與迪拉克點重疊,故此點位置對石墨烯性質有決定性的影響。

-----廣告,請繼續往下閱讀-----

最近,此團隊進一步利用紅外光譜儀來研究少層晶圓級磊晶石墨烯與化學氣相沉積法(CVD)製作的單層石墨烯。由於載子在遠紅外波段的吸收能力與石墨烯的光導率(optical conductivity)成正比,研究人員得以確定樣本的電阻。此外,他們也透過光導率的頻率關係,計算出自由載子在傳輸時的散射率。

該團隊目前正著手改良 CVD 石墨烯的摻雜品質,並試圖得到更高的遠紅外光吸收效率。他們同時也計畫以石墨烯製作透明兆赫元件。詳見 ACS Nano|DOI: 10.1021/nn203506n。

譯者:劉家銘(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:Graphene absorbs infrared light—nanotechweb.org

本文來自 NanoScience 奈米科學網 [2011-12-16]

-----廣告,請繼續往下閱讀-----
文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3418 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
凍傷了?來微波加熱一下~
胡中行_96
・2023/02/20 ・1975字 ・閱讀時間約 4 分鐘

俄羅斯西伯利亞的科學家,於 2023 年 1 月的《科學報告》(Scientific Reports)期刊上,發表了一些看似能防止烤雞的外皮過焦,同時確保內部肉質鮮美多汁的技巧。比方說,一般作法「由外部加溫很危險,不是每次都能得到正向的結果…」。若改用微波,則「所需的溫度相對不高」,但要力求整體均衡,「不能只有外層受熱」。遺憾他們說了半天,卻跟食物無關,其實是在介紹如何安全又有效地,用特製的微波裝置,治療凍傷患者的四肢。[1]

當然不是把凍傷患者,丟進家用微波爐裡。圖/osseous on Flickr(CC BY 2.0)

微波的對象與裝置

就像料理烤雞,得先弄來雞隻和烘烤的設備;進行這項研究前,需要滿足兩個條件:

  1. 招募凍傷的人:在氣候冷冽的西伯利亞,要造成凍傷,難度並不高。不過,根據《赫爾辛基宣言》(Declaration of Helsinki),人體試驗應該符合倫理,將志願者可能受到的傷害降至最低。[2]不能隨便把人往雪地扔的研究團隊,在當地 Tomsk 市的 2 家醫院守株待兔,期望意外凍傷的人自己找上門。2018 至 2021 年間,每年的冬季他們都耐心等候,總共蒐集到 14 名超過 20 歲的男性,簽署受試同意書。[1]
  2. 製作微波裝置:研究團隊精心打造的裝置(下圖),簡單來說,就是一台方便手腳伸進去加熱的微波爐。前面的圓形入口,包覆著具隔絕效果的金屬材質,以保護傷患與研究人員,免於非必要的輻射暴露。此裝置的微波頻率為 2.45 吉赫(GHz);而功率可達 200 瓦特(watts;簡寫 W),即每秒產生200 焦耳(joule;縮寫 J)的熱能。[1]換句話說,頻率與家用微波爐無異,功率卻低了數倍。[3]

由於研究團隊只想幫傷患加溫,沒有要煮熟他們的意圖,便設定開到 60 瓦特。再加上操作時,會喪失些許熱能,最後傷患實際接收到的,大約僅有 30 至 40 瓦特每個患部加熱 1 至 3 次,每次 30 分鐘。雖然感覺微溫,但不至於難受。9 名傷患接受上述治療;另外 4 個嘗試了不同的功率;還有 1 人則是時間長度減半。[1]

可以把手腳伸進去加熱的微波爐。圖/參考資料 1,Figure 2(CC BY 4.0)

加溫的原理

平均而言,當人體組織的溫度低於攝氏 15 度左右,血液和淋巴循環會停止。身體各部位略有差異,手指的下限是 19 度;而腳趾為 15 度。為凍傷患者回溫時,目標溫度大約是 20 到 25 度上下,要觸及整個患部,而非僅有表層。讓身體恢復運作,才能透過循環,順利輸送藥物。以往從外部加溫的作法,會舒張表層血管,卻容易在深層血管收縮的情況下,導致壞死和截肢等問題。相對地,低功率的微波可以穿透到組織深層,逐漸舒張血管,促進血液與淋巴的循環,不會有上述副作用。[1]

-----廣告,請繼續往下閱讀-----
天寒地凍的西伯利亞 Tomsk 市。圖/Артём Полоз on Wikimedia Commons(CC BY-SA 4.0)

凍傷的等級

凍傷依照程度,可以分為 4 個等級:[4]

  1. 第一級:麻木、脫屑、感覺異常、中央蒼白,以及周圍水腫或紅腫。[4]
  2. 第二級:起水泡,周圍紅腫或水腫。[4]
  3. 第三級:失去整層皮膚組織,還長了出血性水泡。[4]
  4. 第四級:不僅皮膚,連深層組織都喪失了。[4]

微波的療效

此研究受試者的凍傷程度涵蓋上述四級,治療時除了微波,也採用標準療程的消毒與藥物,並視情況選擇是否手術。整體來說,科學家對微波相當滿意,覺得能降低截肢的機率。此外,雖然第一、二級的傷勢輕微,效果比較不明顯;但是他們認為無論初步評估的凍傷程度,每個傷患最好都要接受微波。因為診斷難免失準,若因此錯過治療時機,實在得不償失。[1]

既然如此,未來遇到凍傷患者,是不是都該抓來微波一下?儘管研究證明了科學家的假設似乎可行,目前的受試者就區區幾名男性,不足以建立一套完善的操作指南。臨床上不同體型、年紀或性別的傷患,或許適合不同功率或時間長度的微波治療。這些都有待將來進一步試驗,才能推廣運用。[1]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. Dunaevskiy G, Gavrilin E, Pomytkin A, et al. (2023) ‘Reduction of amputations of frostbitten limbs by treatment using microwave rewarming’. Scientific Reports, 13, 1362.
  2. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’. (06 SEP 2022) World Medical Association.
  3. Radiation: Microwave ovens’. (01 JUN 2005) World Health Organization.
  4. Basit H, Wallen TJ, Dudley C. (27 JUN 2022) ‘Frostbite’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

6
2

文字

分享

0
6
2
出來單挑啊!同樣都是鼎鼎大名的太空望遠鏡,哈伯與韋伯到底誰比較強?
htlee
・2022/09/21 ・2029字 ・閱讀時間約 4 分鐘

最近,韋伯太空望遠鏡發布首批科學影像,終於看到敲碗好久的結果——韋伯拍到了人類從未見過的許多東西!有人說,韋伯是哈伯的繼任者,但不知道大家是否好奇過,哈伯和韋伯到底誰比較強?

哈伯望遠鏡和韋伯望遠鏡之戰,正式開打!

這個問題有點難回答,因為兩部望遠鏡都是當代科技的結晶。哈伯是 1990 年升空的王者,韋伯是 30 年後科技進步下的產物,我試著用客觀的方式來比較這兩部太空望遠鏡。

哈伯觀測可見光,韋伯觀測紅外光

哈伯的主鏡直徑是 2.4 公尺,韋伯則是 6.5 公尺,韋伯的主鏡直徑比哈伯大 2.7 倍,這也是大家最常比較的部分。可是,如果主鏡大就比較厲害,那麼夏威夷大島上的凱克 10 公尺望遠鏡,不就比哈伯和韋伯更強?

哈伯的主鏡直徑是 2.4 公尺(左),韋伯的則是 6.5 公尺(右)。圖/維基百科

哈伯與韋伯觀測的波段不同,用途也不一樣。哈伯主要觀測的波段在可見光,可見光是指人類眼睛可以看見的光或顏色範圍,也就是紅、橙、黃、綠、藍、靛和紫。從紅光到紫光,光的波長由長到短,紅光的波長大約是 0.62–0.74 微米(1 微米=0.001 公釐),紫光的範圍則是 0.38–0.45 微米。

紅外光是指比紅光波長更長的光,也就是波長比 0.7 微米更長,這是韋伯望遠鏡主要觀測宇宙的波段。

-----廣告,請繼續往下閱讀-----

哈伯和韋伯太空望遠鏡觀測的波段,一個在可見光,另一個在紅外光,所以在功用上本來就不一樣,如果要比較的話就要小心,不然就像拿橘子跟蘋果相比,拿不同的東西做比較顯得很突兀。

誰看得比較清楚?來比一比解析度吧!

哈伯與韋伯可以拿來做比較的是解析度,解析度的值(角秒)愈低,表示能看到天體愈細微的部分,解析度跟主鏡直徑和觀測的波長有關。望遠鏡主鏡愈大,解析度愈好;另外也跟觀測的波長成正比。

解析度的計算公式。

以下兩張影像分別是史匹哲太空望遠鏡(Spitzer Space Telescope)和韋伯拍的天空中同一區域紅外光影像,拍攝的紅外波長也差不多(史匹哲:8 微米,韋伯 7.7 微米),不過兩幅影像的解析度卻差很多,韋伯的影像中可以看到更多的細節,史匹哲則好像糊成一團。

史匹哲與韋伯望遠鏡的影像解析度比較,顯然韋伯的影像解析度高很多。圖/NASA

當觀測的波長一樣時,解析度跟觀測望遠鏡的主鏡直徑成反比。史匹哲的主鏡是 0.85 公尺,所以韋伯的解析力是史匹哲的 6.5/0.85=7.8 倍!主鏡的大小直接反應在解析度上,韋伯與史匹哲在解析度上高下立判!

-----廣告,請繼續往下閱讀-----

解析度除了跟主鏡的直徑成反比,也跟觀測的波長成正比。所以同一面主鏡觀測天體,用愈短的波長觀測解析度愈好。下圖是史匹哲望遠鏡觀測 M81 星系的結果,同樣 0.85 公尺的主鏡觀測,隨著觀測波長的增加,解析度變差。

史匹哲望遠鏡拍攝的 M81 星系,拍攝的波段是 24(上)、70(中)、160 微米(下),拍攝的波段愈長,解析度愈差。圖/NASA

答案揭曉——哈伯的解析度略勝一籌!

前面提到解析度跟主鏡直徑與觀測波長的關係有一個重要前提,主鏡必須研磨到完美、光滑,也就是主鏡上不能出現高低起伏。如果主鏡不完美,像遊樂場裡的哈哈鏡,不能聚焦成像,解析度自然不好。

波長愈短對鏡面的要求愈高。哈伯太空望遠鏡的鏡面對 0.5 微米波長更長的光是完美的,比 0.5 微米波長更短的光波則呈現不完美,韋伯望遠鏡的主鏡則是對 2 微米更長的波長是光滑的。(光學上,物理學家的說法是哈伯和韋伯分別在 0.5 和 2 微米達到繞射極限。)

哈伯和韋伯望遠鏡最佳解析度分別在 0.5 微米和 2 微米,根據前面的解析度公式,哈伯在 0.5 微米的解析度是 0.05 角秒,而韋伯在 2 微米的解析度是 0.08 角秒,結論是哈伯的解析度比韋伯稍微好一點!也就是哈伯老當益壯,一點也不比韋伯差。

-----廣告,請繼續往下閱讀-----
史蒂芬五重星系,哈伯(左)與韋伯(右)拍攝的影像,從解析度來看,兩部太空望遠鏡不相上下。圖/NASA

從哈伯到韋伯,有如長江後浪推前浪

天文學家從 1990 年開始,透過哈伯望遠鏡研究宇宙,這三十年來科學家已經把哈伯的功能發揮到極致,我們對宇宙的了解很多都來自哈伯的觀測。不過這三十年的努力也讓天文學家發現哈伯不足的地方,科學家知道關鍵在紅外線觀測能力。前一代的紅外望遠鏡史匹哲無法達到需求,天文學家只能殷殷期盼韋伯。

韋伯首批公布的影像中,幾乎都是哈伯曾經拍過的天體,從科學上來說,比較可見光和紅外影像資料可以對目標天體更多了解,不過我認為這應該是韋伯對哈伯致敬的方式,感謝哈伯三十多年的貢獻!

韋伯站在巨人的肩膀上,必定能看得更暗、更遠!

htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!