Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

瑞德西韋治療 COVID-19 有效嗎?來看看兩個初步研究結果

miss9_96
・2020/04/29 ・3173字 ・閱讀時間約 6 分鐘 ・SR值 575 ・九年級

最受矚目的瑞德西韋,臨床試驗如何進行?

多國研究團隊於 4 月 10 日發佈了對於瑞德西韋(Remdesivir)初步療效的結果。初步顯示,使用瑞德西韋(Remdesivir)治療 53 名罹患新型冠狀病毒之疾病(COVID-19)的重症病人,有 36 例(約 68%)好轉。 1

瑞德西韋的臨床試驗設計:觀察疾病的變化,藉此判斷瑞德西韋的療效。

  1. 研究限制:僅有實驗組(即提供 Remdesivir),缺少對照組(不給藥)。
  2. 研究人數:53 名重症患者
  3. 療效判定:以供應氧氣的狀態,區分疾病嚴重程度。
  4. 嚴重程度分為 6 種等級
    • 等級1:不須住院/出院(discharged)
    • 等級2:住院,無須給氧(not requiring supplemental oxygen)
    • 等級3:住院,低流量給氧(low-flow oxygen)
    • 等級4:住院,非侵入式給氧(noninvasive mechanical ventilation)
    • 等級5:住院,侵入式給氧(invasive mechanical ventilation, ECMO)
    • 等級6:死亡(Death)

治療前患者的狀態

狀態/級別 等級 1 等級 2 等級 3 等級 4 等級 5 等級 6
住院與否 住院 住院 住院 住院 死亡
治療措施 無須給氧 低流量給氧 非侵入式給氧 侵入式給氧
人數(人) 0 2 10 7 34 0

瑞德西韋(Remdesivir)的臨床試驗結果

本研究中的 53 人、治療 18 天,有 36 人好轉(68%),若拉長觀察至 28 天,則好轉比例提升至 84 %。

而 7 例(13%)給藥後仍然死亡。32 位患者(60%)出現副作用,為肝酶升高(暗示肝臟損傷),腹瀉,皮膚出疹,腎功能不全和低血壓。

-----廣告,請繼續往下閱讀-----

治療後患者的狀態(追蹤 18 天)

狀態 嚴重程度級別/人數 治療前
等級 5 等級 4 等級 3 等級 2
34 人 7 人 10 人 2 人
死亡 治療後 等級 6 6 人(18%) 1 人(14%) 0 0
侵入式給氧 等級 5 9 人(26%) 1 人(14%) 0 0
非侵入式給氧 等級 4 3 人( 9%) 0 0 0
低流量給氧 等級 3 0 0 0 0
未額外給氧 等級 2 8 人(24%) 0 0 0
出院 等級 1 8 人(24%) 5 人(71%) 10 人(100%) 2 人(100%)
改善比例 19 人(56%) 5 人(71%) 10 人(100%) 2 人(100%)

由上表知,34 例嚴重等級 5 的患者(使用葉克膜,或侵入式給氧),總共有 19 人改善(8人出院、8人移除給氧裝置、3人改以非侵入式給氧)。無改善計 9 人,死亡 6 人。

與過往的紀錄比較,如:武漢市住院且接受侵入式給氧的 67 例患者,其死亡率為 66%(44 例死亡)。相較於本研究的瑞德西韋治療,約 13% 的死亡率而言,瑞德西韋似乎展現了治療潛力。

療效比較:越年輕、症狀越輕微越有效

再以「侵入式給氧」和「非侵入式給氧」分組,發現「非侵入式給氧」組好轉速度較快。而以年齡分組,可發現越年輕、好轉的更快。因此可知,即使給予瑞德西韋,年長患者仍有較高的風險。

-----廣告,請繼續往下閱讀-----

初步結果中,有 84% 重症患者好轉,似乎瑞德西韋就是人類期待的真.勇者。但再次說明,此非最終結果,我們仍須保持冷靜。

上圖:以給氧的支持程度分組,觀察患者好轉的速度。From: 參考文獻1
以年齡分組,觀察患者好轉的程度。From: 參考文獻1

使用瑞德西韋在受感染的猴子上,有療效嗎?

美國國家衛生院在 4/17 發佈新聞,說明讓猴子感染新型冠狀病毒後,用瑞德西韋治療,展現了療效2,3

瑞德西韋的猴子試驗設計:觀察猴子肺部病毒量、X 光、犧牲後肺臟狀況,發現瑞德西韋對治療新型冠狀病毒疾病有幫助

  • 研究限制:尚未通過同儕審核,為預先公佈
  • 研究數量:12 隻猴子,6 隻給藥(實驗組)、6隻不給藥(對照組)
  • 實驗設計:猴子感染新型冠狀病毒(SARS-CoV-2),感染 12 小時後開始給藥。靜脈注射瑞德西韋,每日給藥。觀察七天後犧牲動物。
實驗組(給藥) 對照組(不給藥) 總計
數量 6 6 12

瑞德西韋的猴子試驗結果

在首次治療 12 小時(感染後第 1 天)後,兩組病猴的支氣管沖洗液裡,其病毒RNA 量無差異。但瑞德西韋組的支氣管沖洗液,檢體的病毒感染力降低了約 100 倍,且第 3 天時,用藥組就再也沒有活病毒了(6 隻對照組病猴,仍有 4 隻驗出活病毒)。兩組的病毒 RNA 量沒有差異,但給藥組的病毒感染力較弱,顯示瑞德西韋可能阻礙了病毒的繁殖,讓它們無法產出活的下一代 註1

另一個值得注意的是,儘管下呼吸道的活病毒減少,但用藥組的上呼吸道或直腸的病毒 RNA 量、感染力均未降低。研究團隊認為,此現象可能是藥物在體內組織分佈濃度的差異,可考慮設計其他給藥途徑,提高藥物在上呼吸道的濃度,從而減少患者透過鼻水、口水傳播活病毒的風險。

-----廣告,請繼續往下閱讀-----
感染後,兩組病猴的支氣管沖洗液裡的病毒量,和感染力檢測。
橫軸皆為感染後時間 (天),縱軸皆為病毒 RNA 量 (對數尺度) (copies/mL);紅圓圈為實驗組,藍方塊為對照組。圖/參考文獻3

而從 X 光判斷肺部浸潤或病變,也發現用藥組的肺部病變較少。

兩組實驗動物的 X 光影像,紅圈處為肺部病變處,R 處為猴子的右側。
上圖為實驗組,下圖為對照組。圖/參考文獻3

治療第 7 天,犧牲動物。發現給藥組的「肺臟重量/體重比值」較低,顯示瑞德西韋改善了肺臟發炎(肺部發炎、充斥體液的現象越嚴重,肺臟重量越大)。

兩組實驗動物的肺臟重量/體重比值。圖/參考文獻3

而肺臟外觀和組織學裡,6 隻給藥組的病猴,有 1 隻觀察到肺部病變;未給藥組則是 6 隻病猴全都發現肺部病變。在定性和定量層面,都暗示了瑞德西韋似乎有減輕病毒攻擊肺臟的潛力。

兩組實驗動物的肺臟外觀、組織學影像。
右上圖中的白色圓圈處是肺臟出現異樣的外觀。右中圖可觀察到肺組織間的空隙,因水腫和充斥發炎細胞而擴大。圖/參考文獻3

綜合兩篇研究,筆者觀點

  • 兩篇研究皆有設計限制,因此瑞德西韋究竟是否有療效,或僅對感染初期有效?仍有待討論。
  • 以人體試驗結果而言,瑞德西韋對重症患者可能有效。但並非靈丹妙藥,對年長者、呼吸能力非常衰弱的患者,仍有治療的極限。
  • 以恆河猴的研究而言,筆者認為,關注的重點是「接觸病毒 12 小時後,立即給藥」,因此「即早投藥,避免發展重症」,可能是使用瑞德西韋的關鍵。
  • 綜合兩篇研究,使用瑞德西韋治療最好的族群,可能是「感染初期的輕症患者」。而重症患者的治療,可能仍待科學界努力。

保持冷靜,繼續前進。Keep Calm and Carry On.

註釋

  1. 感染力的實驗,是將檢體和活細胞(Vero E6 cell)共同培養,觀察活細胞被殺死的程度。RNA量未降低,但病毒感染力降低的現象,推測的原因可參考〈出現症狀就有高病毒量?新型冠狀病毒感染者體內的病毒量如何變化?〉一文。

參考資料

  1. Jonathan Grein, M.D., Norio Ohmagari, M.D., Ph.D., Daniel Shin, M.D., George Diaz, M.D., Erika Asperges, M.D., Antonella Castagna, M.D., Torsten Feldt, M.D., Gary Green, M.D., Margaret L. Green, M.D., M.P.H., François-Xavier Lescure, M.D., Ph.D., Emanuele Nicastri, M.D., Rentaro Oda, M.D., Kikuo Yo, M.D., D.M.Sc., Eugenia Quiros-Roldan, M.D., Alex Studemeister, M.D., John Redinski, D.O., Seema Ahmed, M.D., Jorge Bernett, M.D., Daniel Chelliah, M.D., Danny Chen, M.D., Shingo Chihara, M.D., Stuart H. Cohen, M.D., Jennifer Cunningham, M.D., Antonella D’Arminio Monforte, M.D., Saad Ismail, M.D., Hideaki Kato, M.D., Giuseppe Lapadula, M.D., Erwan L’Her, M.D., Ph.D., Toshitaka Maeno, M.D., Sumit Majumder, M.D., Marco Massari, M.D., Marta Mora-Rillo, M.D., Yoshikazu Mutoh, M.D., Duc Nguyen, M.D., Pharm.D., Ewa Verweij, M.D., Alexander Zoufaly, M.D., Anu O. Osinusi, M.D., Adam DeZure, M.D., Yang Zhao, Ph.D., Lijie Zhong, Ph.D., Anand Chokkalingam, Ph.D., Emon Elboudwarej, Ph.D., Laura Telep, M.P.H., Leighann Timbs, B.A., Ilana Henne, M.S., Scott Sellers, Ph.D., Huyen Cao, M.D., Susanna K. Tan, M.D., Lucinda Winterbourne, B.A., Polly Desai, M.P.H., Robertino Mera, M.D., Ph.D., Anuj Gaggar, M.D., Ph.D., Robert P. Myers, M.D., Diana M. Brainard, M.D., Richard Childs, M.D., and Timothy Flanigan, M.D. (2020) Compassionate Use of Remdesivir for Patients with Severe Covid-19. New England Journal of Medicine. DOI: 10.1056/NEJMoa2007016
  2. Antiviral remdesivir prevents disease progression in monkeys with COVID-19. 2020/04/17. National Institutes of Health
  3. Brandi N. Williamson, Friederike Feldmann, Benjamin Schwarz, Kimberly Meade-White, Danielle P. Porter, Jonathan Schulz, Neeltje van Doremalen, Ian Leighton, Claude Kwe Yinda, Lizzette Pérez-Pérez, Atsushi Okumura, Jamie Lovaglio, Patrick W. Hanley, Greg Saturday, Catharine M. Bosio, Sarah Anzick, Kent Barbian, Tomas Cihlar, Craig Martens, Dana P. Scott, View ORCID ProfileVincent J. Munster, Emmie de Wit (2020) Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. BioRxiv. DOI: https://doi.org/10.1101/2020.04.15.043166
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1087 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
凍傷了?來微波加熱一下~
胡中行_96
・2023/02/20 ・1975字 ・閱讀時間約 4 分鐘

俄羅斯西伯利亞的科學家,於 2023 年 1 月的《科學報告》(Scientific Reports)期刊上,發表了一些看似能防止烤雞的外皮過焦,同時確保內部肉質鮮美多汁的技巧。比方說,一般作法「由外部加溫很危險,不是每次都能得到正向的結果…」。若改用微波,則「所需的溫度相對不高」,但要力求整體均衡,「不能只有外層受熱」。遺憾他們說了半天,卻跟食物無關,其實是在介紹如何安全又有效地,用特製的微波裝置,治療凍傷患者的四肢。[1]

當然不是把凍傷患者,丟進家用微波爐裡。圖/osseous on Flickr(CC BY 2.0)

微波的對象與裝置

就像料理烤雞,得先弄來雞隻和烘烤的設備;進行這項研究前,需要滿足兩個條件:

  1. 招募凍傷的人:在氣候冷冽的西伯利亞,要造成凍傷,難度並不高。不過,根據《赫爾辛基宣言》(Declaration of Helsinki),人體試驗應該符合倫理,將志願者可能受到的傷害降至最低。[2]不能隨便把人往雪地扔的研究團隊,在當地 Tomsk 市的 2 家醫院守株待兔,期望意外凍傷的人自己找上門。2018 至 2021 年間,每年的冬季他們都耐心等候,總共蒐集到 14 名超過 20 歲的男性,簽署受試同意書。[1]
  2. 製作微波裝置:研究團隊精心打造的裝置(下圖),簡單來說,就是一台方便手腳伸進去加熱的微波爐。前面的圓形入口,包覆著具隔絕效果的金屬材質,以保護傷患與研究人員,免於非必要的輻射暴露。此裝置的微波頻率為 2.45 吉赫(GHz);而功率可達 200 瓦特(watts;簡寫 W),即每秒產生200 焦耳(joule;縮寫 J)的熱能。[1]換句話說,頻率與家用微波爐無異,功率卻低了數倍。[3]

由於研究團隊只想幫傷患加溫,沒有要煮熟他們的意圖,便設定開到 60 瓦特。再加上操作時,會喪失些許熱能,最後傷患實際接收到的,大約僅有 30 至 40 瓦特每個患部加熱 1 至 3 次,每次 30 分鐘。雖然感覺微溫,但不至於難受。9 名傷患接受上述治療;另外 4 個嘗試了不同的功率;還有 1 人則是時間長度減半。[1]

可以把手腳伸進去加熱的微波爐。圖/參考資料 1,Figure 2(CC BY 4.0)

加溫的原理

平均而言,當人體組織的溫度低於攝氏 15 度左右,血液和淋巴循環會停止。身體各部位略有差異,手指的下限是 19 度;而腳趾為 15 度。為凍傷患者回溫時,目標溫度大約是 20 到 25 度上下,要觸及整個患部,而非僅有表層。讓身體恢復運作,才能透過循環,順利輸送藥物。以往從外部加溫的作法,會舒張表層血管,卻容易在深層血管收縮的情況下,導致壞死和截肢等問題。相對地,低功率的微波可以穿透到組織深層,逐漸舒張血管,促進血液與淋巴的循環,不會有上述副作用。[1]

-----廣告,請繼續往下閱讀-----
天寒地凍的西伯利亞 Tomsk 市。圖/Артём Полоз on Wikimedia Commons(CC BY-SA 4.0)

凍傷的等級

凍傷依照程度,可以分為 4 個等級:[4]

  1. 第一級:麻木、脫屑、感覺異常、中央蒼白,以及周圍水腫或紅腫。[4]
  2. 第二級:起水泡,周圍紅腫或水腫。[4]
  3. 第三級:失去整層皮膚組織,還長了出血性水泡。[4]
  4. 第四級:不僅皮膚,連深層組織都喪失了。[4]

微波的療效

此研究受試者的凍傷程度涵蓋上述四級,治療時除了微波,也採用標準療程的消毒與藥物,並視情況選擇是否手術。整體來說,科學家對微波相當滿意,覺得能降低截肢的機率。此外,雖然第一、二級的傷勢輕微,效果比較不明顯;但是他們認為無論初步評估的凍傷程度,每個傷患最好都要接受微波。因為診斷難免失準,若因此錯過治療時機,實在得不償失。[1]

既然如此,未來遇到凍傷患者,是不是都該抓來微波一下?儘管研究證明了科學家的假設似乎可行,目前的受試者就區區幾名男性,不足以建立一套完善的操作指南。臨床上不同體型、年紀或性別的傷患,或許適合不同功率或時間長度的微波治療。這些都有待將來進一步試驗,才能推廣運用。[1]

  

-----廣告,請繼續往下閱讀-----
  1. Dunaevskiy G, Gavrilin E, Pomytkin A, et al. (2023) ‘Reduction of amputations of frostbitten limbs by treatment using microwave rewarming’. Scientific Reports, 13, 1362.
  2. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’. (06 SEP 2022) World Medical Association.
  3. Radiation: Microwave ovens’. (01 JUN 2005) World Health Organization.
  4. Basit H, Wallen TJ, Dudley C. (27 JUN 2022) ‘Frostbite’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

2
0

文字

分享

0
2
0
BNT 疫苗跌跌撞撞的開發過程——《光速計畫》
天下文化_96
・2022/05/28 ・4306字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/米勒(Joe Miller)、吳沙忻(Ugur Sahin)、圖雷西(Özlem Türeci)
  • 譯者/陸維濃

跌跌撞撞

2020 年 1 月 11 日,多虧了任職於上海公共衛生臨床中心且思緒敏捷的張永振教授,他將新型冠狀病毒基因編碼的定序結果上傳至 virological.org 這個開源網站,跟其他所有的疫苗製造商一樣,BioNTech 也從中受惠。

在 1 月底那個重要的週末,吳沙忻研究了這份分子藍圖,並藉此草擬了幾種候選疫苗,但這些都只是紙上(或者該說螢幕上更為恰當)談兵而已。

要製造實際的疫苗材料,第一步就是為候選疫苗打造出 DNA 的原版複本,再以此為模板製造出 RNA。海茵(Stephanie Hein),也就是負責管理 BioNTech「RNA 倉庫」(一個用來為公司的疫苗及療法儲存抗原或疫苗目標的實際倉庫)的分子生物學家,很快制定了這些模板的基因序列。它們共含有多達四千個核苷酸,由五十到八十個核苷酸構成的小區塊組合而成,是一段完美無瑕的基因編碼。完成這個步驟之後,接著便進入選殖程序,並檢查序列的準確度。

候選疫苗 DNA 模板的基因序列含有多達四千個核苷酸,由五十到八十個核苷酸構成的小區塊組合而成。圖/Pixabay

這就是所謂的基因合成(gene synthesis),BioNTech 在多年前就針對這個方法建立了實驗室的作業程序,到了此時,這已是他們的常規作業。然而,某些候選疫苗的 DNA 模板選殖作業,其過程卻是出乎意料地曲折。海茵和她的團隊已經竭盡所能,卻仍無法讓個別核苷酸或序列片段以正確的方式接合起來。他們試過各種可能的方法,但每次分析選殖模板時,序列總是有問題。

-----廣告,請繼續往下閱讀-----

另一個團隊早已急切地等著接收這些 DNA,好讓他們準備生產實際的候選疫苗,DNA 作業的遲滯有可能導致吳沙忻雄心勃勃的計畫有所拖延。雖然前面還有更大的挑戰等著他們,但是在 2 月中,光速團隊身處險境,他們被一項本該是最小的障礙給拖慢進度。

回想起這個意料之外的挑戰,吳沙忻非常冷靜。「有時候,」他若有所思地說:「實驗室就像是遭逢厄運。突然之間,久經試驗的日常程序不再有效,開始出現錯誤。這時你得排除問題,你會開始懷疑一切。你更換試劑,重複每個步驟,結果還是失敗。你覺得整個團隊就像一支連簡單傳球都做不好的足球隊,這顆球一直到處彈跳,啃蝕著你的自信心。在這種情況下,不能給團隊施加壓力。你不能批評他們,你必須鼓勵他們,建立他們的自信心。接著,突然間,球又滾動起來,每個人都像世界冠軍一樣地踢球。」

一開始,這種突然的轉折似乎難以捉摸。事實上,發現一位同事懷孕時,海茵又遭遇了進一步的挫折。因為選殖過程中會用到的康黴素(Kanamycin)對胎兒有毒,所以這位同事立刻被請出實驗室。海茵這麼說:「我們從三人團隊變成兩人團隊,其中一個還是兼職員工。」兩年來,這是她第一次不得不穿上實驗衣,親自動手做實驗。

在分子生物學研究中,具有康黴素耐藥性的基因常用於篩選標記。圖/Wikipedia

接著, 在 2 月的某一天, 兩位生物化學家, 齊根哈斯(Thomas Ziegenhals)和德格慕勒(Johanna Drögemüller),想出了一個巧妙的解決方法。與其期待接合成功,他們建議製造團隊不如使用 BioNTech「RNA 倉庫」中現有的 DNA 模板來規畫流程,這些模板的特徵及長度,都和冠狀病毒疫苗所需要的模板很相似。這麼一來就減輕了海茵基因合成團隊的壓力,讓他們在知道自己沒有拖延整體計畫進度的前提下,可以專心地矯正錯誤。就跟選殖過程中遇到的其他問題一樣,這件事情來得突然,去得也快。

結果證實,新製造出來的序列是正確的。海茵的團隊開始製造出一個又一個完美的殖株。2 月底,他們完成了第一個疫苗建構體。

-----廣告,請繼續往下閱讀-----

疫苗選拔賽

3 月 2 日,以齊根哈斯和德格慕勒的「倉庫」解決方案進行準備的疫苗製造專家,用海茵成功製造的 DNA 模板生產出第一批產出 RNA。他們將材料倒入一個五十毫升的袋子裡,並立即在攝氏零下七十度進行超低溫冷凍,以確保分子的穩定性。

BioNTech 梅因茲總部外,有輛車子正等著運送這批 RNA 前往位在維也納的保立馬,這趟運送過程所費不貲。家族企業保立馬已與 BioNTech 建立合作關係,並擁有專業技術能將 mRNA 與阿奎塔斯脂質做結合。幾天後,裝滿疫苗的冷凍小玻璃瓶會被放在保麗龍盒裡,越過邊境運回 BioNTech。

BioNTech 的二十個疫苗建構體,每一個都會重複這樣的運送過程。電子郵件持續往返,以一種特勤工作人員護送總統的方式不斷更新狀況,像是「RNA 已經離開建築物」,或是簡單的一句「移動中」。

這顆球又開始滾動了,BioNTech 的團隊像冠軍球隊般地進行著這場比賽。

第一批裝著疫苗的小玻璃瓶很快就回到了梅因茲,由芙格領導的團隊開始設計一場疫苗選拔賽。

-----廣告,請繼續往下閱讀-----

二十個候選疫苗互別苗頭,目標是找出能以極低的劑量引發免疫反應的疫苗,光速團隊會以這個方法選出後續用來進行臨床試驗的疫苗建構體。在未來幾個月,這些選拔標準也會影響 BioNTech 決定以哪一個疫苗建構體來進行第三期臨床試驗,以及最終會向全世界提供哪一個疫苗建構體。

一開始,BioNTech 團隊計畫進行最簡單的「體外」試驗,其實就是在玻璃培養皿上進行。由兩位技術人員對細胞進行 mRNA 轉染,觀察細胞是否產生新型冠狀病毒棘蛋白的完美複製品。從科學的角度而言,這是很普通的試驗,但說到對後續供臨床試驗或商業用途而批量生產的疫苗進行品質檢查時,這些試驗就顯得非常重要。

體外試驗是在玻璃培養皿上進行。圖/Pixabay

動物試驗

接下來要在另外的地點進行動物試驗。以八隻小鼠為一組,將候選疫苗以低、中、高三種不同的劑量分別注入小鼠體內。注射完成後即開始監測有無副作用的跡象,六週的試驗期間內,研究人員每隔一段時間就會抽取小鼠的血液,進行數百次非成即敗的試驗。

由克蘭茲(Lena Kranz)和沃梅(Mathias Vormehr)率領的團隊則是在血液樣本中尋找兩種 T 細胞:CD4 T 細胞,又稱為輔助型 T 細胞,也就是扮演免疫反應發起者和指揮者角色。以及在外巡邏,天生具備「X 光視覺」,可以辨識並殺死施展偽裝術敵人的 CD8 T 細胞

-----廣告,請繼續往下閱讀-----

經常讓對方無法接話的克蘭茲和沃梅,就像是 BioNTech 的「穆德和史考利」(譯注:影集《X 檔案》的主角),他們在研究生期間就對 BioNTech 的癌症疫苗開發有所貢獻,此後也成為領先全球的 T 細胞偵探。

影集《X 檔案》的主角穆德和史考利。圖/IMDB

他們能夠判斷候選疫苗中所表現的新型冠狀病毒棘蛋白是否引發 T 細胞做出反應、免疫系統是否執行了它們所需的免疫反應,或是產生讓新冠肺炎患者病情惡化的反應。不過,克蘭茲和沃梅負責的試驗相當複雜,需要一段時間才能完成。

與此同時,芙格的團隊將利用技術已經相當成熟的酵素免疫吸附法(enzyme-linked immunosorbent assay,在生技界常以如人名般親切的字首縮寫 ELISA 表示)來判斷疫苗建構體是否能在小鼠體內誘發足夠的抗體。

ELISA 跟新冠肺炎疫情大流行後常用來檢測無症狀傳播,以及用來確定康復患者體內是否有抗體的檢驗方式很相似,但做法相對簡單。不過,ELISA 無法區別抗體是單純地與病毒結合,或者是以一種能夠中和威脅、阻止病毒進入健康細胞的方式與病毒結合。為了查明抗體是否發揮功效,芙格的團隊必須設計出具有「金標準」的實驗,也就是病毒中和檢測(virus neutralization test,VNT)。

-----廣告,請繼續往下閱讀-----
File:Microtiter plate.JPG
用來檢測酵素免疫吸附法的微量多孔盤。圖/Wikipedia

BioNTech 已經具備檢測中和抗體的技術能力,他們在與輝瑞合作開發流感疫苗的早期階段就做過這類試驗:將培養出來的病毒,以及含有具備中和潛力的抗體血清一起注入健康細胞中,五天後進行檢查,觀察細胞是否死亡,或者抗體是否發揮了預防感染的效用。

這些過程都是在 BioNTech 的實驗室裡完成的,操作流感病毒的法規限制並不多。但面對具有高度傳染性的新型病毒,監管機構得採取更多保護措施,截至 2020 年 2 月底,全球已有三千人因新型冠狀病毒而喪命。

自 1970 年代開始,操作危險微生物時就要遵循分級制度,並採取相應安全措施。致死率約為 90% 的伊波拉病毒,被歸類為最危險的病原體,相關實驗必須在「生物安全等級第四級」(biosafety level four,BSL-4)的專門實驗室裡進行,操作人員必須穿著在災難電影場景裡會看到的全身防護衣,並使用獨立的呼吸裝備。

至於存在已有幾個世紀的流感病毒,如今大多數人體內已具備一些對抗流感病毒的自然防禦機制,則被歸類為「生物安全等級第二級」的病原體。操作這類病毒時,人員必須採取標準的防護措施,如穿戴手套和口罩,但幾乎不需要其他專業設備。

-----廣告,請繼續往下閱讀-----

新冠肺炎的活體病毒樣本則歸類在生物安全等級第三級,也就是只能在「生物安全櫃」(biosafety cabinet)(譯注:或稱無菌操作台)中進行相關操作,生物安全櫃是一個由玻璃隔屏保護的工作空間,操作人員透過一個小縫隙將手臂伸入其中。

生物安全櫃是一個由玻璃隔屏保護的工作空間,操作人員透過一個小縫隙將手臂伸入其中。圖/Wikipedia

生物安全等級第三級實驗室的牆面、天花板和地板需要使用不透氣的建材,並設置附有密封門的前室,以及抗震的結構設計。實驗室的氣流必須嚴格受控,所有固定裝置都要能夠承受使用工業強度的化學物質進行定期清潔。

BioNTech 沒有生物安全等級第三級的實驗室,中和抗體檢測必須在外部承包商提供的空間進行。這麼做的花費相當昂貴,因為得將數千個樣本放在超低溫冷凍容器中來回運送,計畫進行的速度也會因此慢下來。不用懷疑的是,承包公司只會在正常工作時間內上班,對疫苗建構體進行依序地而非同時的檢測。待數據蒐集、配方調整和再次檢查錯誤等工作都完成後,光速團隊才會初次看到相關數據,那會是三至四週後的事,疫苗評估作業的速度將大幅減緩。

——本文摘自《光速計畫:BioNTech疫苗研發之路》,2022 年 3 月,天下文化
-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。