如果你對於「走進診所、排隊、跟掛號的護士小姐說自己是來檢查性病的、然後進診間跟醫生說想檢查自己是否得了性病」的這整個過程感到害羞或難以面對…放心好了,你不是唯一一個。衛報記者Denis Campbell報導了一種正在研發的科技檢測法[英],為了讓更多人知道自己是否感染性病,減少持續攀高的感染人數,不久的未來你只要將自己的尿液或唾液放進一個USB大小的晶片,然後連接電腦或手機,遠方的「醫療雲」就會在幾分鐘內傳email或手機簡訊告訴你結果。
如果你對於「走進診所、排隊、跟掛號的護士小姐說自己是來檢查性病的、然後進診間跟醫生說想檢查自己是否得了性病」的這整個過程感到害羞或難以面對…放心好了,你不是唯一一個。衛報記者Denis Campbell報導了一種正在研發的科技檢測法[英],為了讓更多人知道自己是否感染性病,減少持續攀高的感染人數,不久的未來你只要將自己的尿液或唾液放進一個USB大小的晶片,然後連接電腦或手機,遠方的「醫療雲」就會在幾分鐘內傳email或手機簡訊告訴你結果。
當晶片結構內部有問題,想要進行切片觀察,但方式有好幾種,該如何針對樣品的屬性,選擇正確分析手法呢?
本文轉載自宜特小學堂〈 哪種 IC 切片手法 最適合我的樣品〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!
IC 設計後,在進行後續的產品功能性測試、可靠度測試(Reliability Test)或故障分析除錯(Failure Analysis & Debug)前,必須對待測試的樣品先做樣品製備(Sample preparation),透過 IC 切片方式,進行斷面/橫截面觀察(Cross-section)。此步驟在確認晶片內的金屬接線、晶片各層之間結構(Structure)、錫球接合(Solder Joint)、封裝打線(Wire Bonding)和元件(Device)異常等各種可疑缺陷(Defect),扮演相當關鍵性重要角色。
然而觀察截面的方式有好多種,有傳統機械研磨(Grinding)方式,透過機械手法拋光(Polish)至所需觀察的該層位置;或是透過離子束(Ion Beam)方式來進行切削(Milling);那麼,每一種分析手法到底有那些優勢呢?又該如何選擇哪一種切片手法,才能符合工程師想要觀察的樣品型態呢?本文將帶來四大分析手法,從針對尺寸極小的目標觀測區(如奈米等級的先進製程缺陷),或是大面積結構觀察(如微米等級的矽穿孔 TSV),幫大家快速找到適合的分析手法,進行斷面/橫截面觀察更得心應手!
傳統機械研磨最大優勢,是可以達到大面積的觀察範圍(<15cm 皆可),跨越整顆晶粒(Die),甚至是封裝品(Package),當需要檢視全面性結構的堆疊或是尺寸量測等等,就適合使用 Grinding 手法(如下圖)。這個手法可透過機械切割、冷埋、研磨、拋光四步驟置備樣品到所需觀察的位置。
不過傳統研磨也有兩項弱點,除了有機械應力容易產生結構損壞,如變形、刮痕外,此項操作也非常需要依靠操作人員的執行經驗,經驗不足者,恐導致研磨過頭而誤傷到目標觀測區,影響後續分析。
相較於傳統機械研磨(Grinding),Cross-section Polisher(簡稱 CP)的優點在於,是利用離子束做最後的精細切削(Fine milling),可以減低多餘的人為損傷,避免傳統研磨機械應力產生的結構損壞。除了切片外,CP 還有另一延伸應用,就是針對樣品進行表面微蝕刻,能夠解決研磨後造成的金屬延展或變形問題。因此,若是想觀察金屬堆疊型之結構、介金屬化合物 Intermetallic Compound(IMC),CP 是非常適合的分析手法。
CP 的手法,是先利用研磨(Grinding)將樣品磨至目標區前,再使用氬離子 Ar+,切削至目標觀測區,此做法不僅能有效縮短分析時間,後續再搭配掃描式電子顯微鏡(Scanning Electron Microscope,簡稱 SEM)進行拍攝,將能夠呈現較為清晰的層次邊界。
案例一的待測樣品為 BGA 封裝形式,目標是針對特定的錫球(Solder bump)進行分析。透過 CP,可在 1 小時內完成 1mm 範圍的面積切片。後續搭配 SEM 分析,即可清楚呈現錫球表面材料的分布情況。
下圖是案例中的 SEM 影像,圖(a)是 CP 後的樣品截面,可將整顆 bump 完整呈現。圖(b)是用傳統機械研磨(Grinding)完成之 BGA,雖然可以看到 bump 的介金屬化合物(IMC),但因研磨延展無法完整呈現。而圖(c)是用 CP 完成之 BGA,bump 下方的IMC對比清晰,可清楚看到材料對比的差異。
常見的 PCB 板疊孔結構中,若盲孔(Blind Via Hole,簡稱 BVH)與銅層(Cu layer)之間的結合力較弱時,在製程後期的熱處理過程中,容易導致盲孔與銅層拉扯出裂縫(Crack),造成阻值不穩定等異常情形。一般常見是透過傳統機械研磨(Grinding)來檢測此類問題,但這種處理方式往往會造成銅延展變形而影響判斷。我們可以使用 CP 針對 BVH 結構進行 CP milling,有效解決問題,並且處理範圍可達 10mm 以上之寬度。
在 3D-IC 半導體製程技術中,如果擔心研磨(Grinding)在去層(Delayer or Deprocess)過程傷到目標區,或是擔心樣品研磨時均勻性不佳,會影響到觀察重點,這時就可考慮用電漿聚焦離子束顯微鏡(Plasma FIB,簡稱 PFIB)分析手法!
PFIB 結合了電漿離子蝕刻加工與 SEM 觀察功能,適用於分析範圍在 50-500 µm 的距離內,可進行截面分析與去層觀察,並針對特定區域能邊切邊觀察,有效避免因盲目切削而誤傷到目標區的狀況,確保異常結構或特定觀察結構的完整性。(閱讀更多:先進製程晶片局部去層找 Defect 可用何種工具)
結合鎵離子束與 SEM 的雙束聚焦離子顯微鏡(Dual Beam FIB,簡稱 DB-FIB),可針對樣品中的微細結構進行奈米尺度的定位及觀察,適用於分析範圍在 50µm 以下的結構或異常區域。同時,DB-FIB 還能進行能量散佈 X-ray 能譜儀(Energy Dispersive X-ray Spectroscopy,簡稱 EDX)分析及電子背向散射(Electron Backscatter Diffraction,簡稱 EBSD),以獲得目標區域的成分與晶體結構相關資訊。
此外,當觀察的異常區域或結構過於微小,用 SEM 無法得到足夠資訊時,DB-FIB 也可以執行穿透式電子顯微鏡(Transmission Electron Microscope,簡稱 TEM)的試片製備,後續可供 TEM 進行更高解析度的分析。
若想更認識各種工具的應用,歡迎來信索取宜特精心製作的四大切片分析工具圖表marketing_tw@istgroup.com,希望透過本文能幫助讀者,對IC截面分析手法有更多了解,例如 CP 設備新增了 Milling 功能,使其用途更加多元;而 PFIB 增加了去層功能,為先進製程的異常分析開啟了全新的可能性!
本文出自 www.istgroup.com。
討論功能關閉中。
本文由 國立臺灣師範大學 委託,泛科學企劃執行。
摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?
讓我們來探討行動通信是如何從 3G 發展到 6G 的。
1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。
行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。
下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!
更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!
討論功能關閉中。
本文由 國立臺灣師範大學 委託,泛科學企劃執行。
你多久沒有用手機打電話了呢?現代人大多將手機當作上網的工具,每天接到最多的電話應該也是快遞、推銷跟詐騙吧。但其實以前電話可以說是最重要的溝通方式。畢竟比起電報只能傳遞幾個字,能一口氣說出想傳遞的內容,不是方便許多了嗎?
這樣在通訊史上扮演著舉足輕重的角色,他的發明改變了人們的生活方式,也開啟了全新的溝通時代。今天我們就來介紹,讓大家能說話的那位關鍵科學家,亞歷山大.貝爾(Alexander Bell)。
貝爾不僅是一位發明家,他同時也是一位教育家,他擔任私人家教時曾教導過海倫凱勒。海倫凱勒與貝爾一生保持聯繫,她在回憶錄中寫道,貝爾全心投入於聾啞教育,做出了許多貢獻,卻從不以此自豪。
亞歷山大.貝爾最了不起的地方是他既擁有卓越的科技發明能力,又持續關心著聾啞教育。也許正是因為他如此關心人,才能發現各種尚未被滿足的需求,從而成為他發明的靈感來源。
更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!
討論功能關閉中。
[DEBUG] 12:16:11:866 [ "Breaktime au.js ver: v20250603 Copyright © 2025 Breaktime. All rights reserved." ]
[LOG] 12:16:12:185 MobileLogger initialized
[ERROR] 12:16:12:211 [ "getGtmTags error", {} ]
[ERROR] 12:16:12:212 [ "executeGtm error:", {} ]