0

3
1

文字

分享

0
3
1

2016諾貝爾化學獎:如何將分子變成機器

諾貝爾化學獎譯文_96
・2016/10/06 ・5096字 ・閱讀時間約 10 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

編譯/林宇軒、曹一允、蔡蘊明合譯

  • 林宇軒正於台大化學系攻讀碩士學位,在李弘文教授實驗室進行研究,目前於瑞典 Umeå 大學做交換學生
  • 曹一允在美國德州農工大學攻讀博士,在 Karen Wooley 教授實驗室進行研究,除翻譯本文外亦負責將其中圖片中文化
  • 蔡蘊明現為台大化學系名譽教授

2016諾貝爾獎_化學獎得主

2016 年的諾貝爾化學獎頒給了索瓦(Jean-Pierre Sauvage),史托達特爵士(Sir J. Fraser Stoddart),和費倫加(Bernard L. Feringa),這是因為他們開發出了比頭髮還要細上千倍的分子機器,這是關於他們如何將化學分子連結在一起並設計出各種機器,包括微型電梯,馬達以及微型肌肉的故事。

你到底能製造出多小的機器?這是得過諾貝爾獎的費曼(Richard Feynman)在 1984 年的一個前瞻性的演講中一開始所提出的問題,費曼著名的事蹟就是他在 1950 年代對奈米科技發展所做的預測。赤著腳,上身穿著一件粉紅色的 polo 衫,下身是一條嗶嘰短褲,他轉過身來面對聽眾說道「現在讓我們來談談那個製造具有可移動的零件的微小機器的可能性吧!」

他堅信製造奈米尺度大小的機器是可能的,其實這類機器在自然界本就存在,他用細菌的鞭毛為例,那是狀如木塞起子的螺旋狀巨大分子,當它們旋轉時可讓細菌向前進行。但是人類——擁有一雙巨大的手掌——真有可能製造出那種小到要用電子顯微鏡才能看到的機器嗎?

一個對未來的憧憬:分子機器將在 25~30 年內出現

一種可能性就是先製造出一雙比你的手要小的機器手,用來做出一雙更小些的手,繼續用之做出更小的手,如此持續做到產生一雙極度微小的手,用來製造同樣微小的機器。費曼說「這曾被試過,但未成功」。

-----廣告,請繼續往下閱讀-----

另一個費曼比較有信心的策略,那就是用由下而上的方法來製造這種機器。他的想法在理論上的架構方式是將不同的物質,例如矽,先噴灑在一個表面上,一層原子上面再噴上一層原子,接著將某些層中的部分原子溶解後移除,製造出一些可利用電流控制其移動的零件。費曼對未來的憧憬,是利用這樣的架構方法來製造一個微型相機的快門。

這個演講的目的是在鼓舞在座的研究工作者,讓他們對所相信的可能性去測試其極限。當費曼將講完而要闔上他的筆記時,他望向台下的聽眾,以有些淘氣的語調說道「…祝你們重新設計各種所熟悉的機器時會有一段快樂的時光,試試看你們是否能做到,給它 25~30 年,將會有一些實際的用途。到底可以有何用處,我也不知道」。

但是費曼以及在座中的研究工作者們在當時所不知道的,其實踏向分子機器的第一步已經跨出,只是以一個與費曼所預測的方法完全不同的方式來進行的。

機械式互鎖的分子

二十世紀中期,為了創造出更前端、更複雜的分子結構,化學家試著合成出一些鎖鏈狀分子,其結構是以環形的分子連鎖在一起。達成這項目標的人不僅僅是做出了一種驚人的新型分子,更引入了一種新的鍵結方式。一般而言,分子之間可經由很強的共價鍵連結在一起,那是一種原子之間共享電子所形成的鍵結。但一個夢想中新的機械式鍵結,則是利用「機械互鎖」的方式達成,不牽扯到原子之間直接的作用。

-----廣告,請繼續往下閱讀-----

許多實驗室在 1950 與 1960 年代紛紛發表了各式分子鎖鏈的合成,然而他們複雜的合成方法僅能製造少量的產物,大大侷限了應用方面的可能性。比起應用化學,這些研究的進展不如說是滿足了化學家們的好奇心而已。即便一直到 1980 年代早期,長期的挫折使得分子鎖鏈的研究徒剩一片愁雲慘霧。重大的突破發生在 1983 年,法國化學家索瓦所領導的研究,引入了一個很普通的銅離子,成功掌握了這個型態的分子。

索瓦利用銅離子吸引分子

如同時常發生在科學研究中的情形,重要的提示往往是從不怎麼相關的領域出現的。索瓦早期是在研究光化學,在此領域中,有化學家們利用一種分子錯合物捕捉太陽能來驅動化學反應。當索瓦正在建構一個具有光化學活性之錯合物的模型時,突然注意到這個模型和連鎖分子之間有著重要的連結:兩個分子圍繞著中心的銅離子。

這個靈光一現的想法使得索瓦的研究方向有了戲劇性的轉變。他的研究小組利用這個光化學的錯合物為模型,先合成出一個環形分子以及一個半月型的分子,接著使用銅離子將二者吸引過去(圖一),第二步是利用半月型的分子和第三個分子產生化學反應形成第二個環,也就合成了那個鎖鏈分子的頭一個連結。移除銅離子後,就成功產生了預期中的連鎖分子。

01

探討化學反應時,產率(反應物轉變為產物的比例)是化學家注重的關鍵之一。在索瓦導入這個合成方法前,化學家合成連鎖分子的產率僅僅只有很小的比例,而經由銅離子吸引分子的方法,可以讓連鎖分子的產率提高到 42%。突然間,連鎖分子就不再只是滿足化學家的好奇心的玩具了。

-----廣告,請繼續往下閱讀-----

藉由這個突破性的合成方法,索瓦就這麼為拓樸化學(topological chemistry)注入了一泉活水。這個領域的化學家——常透過金屬離子——可以製造出包含分子鎖鏈以及分子結在內的各種更趨複雜的連鎖分子。索瓦和史托達特(詳見後文)也成為了這個領域的先驅者,他們的研究室做出了包含三葉草形、波羅緬環(Borromean ring)以及所羅門環(Solomon’s knot)在內各式各樣的連鎖分子(圖二)。

02

然而這樣的藝術性不是 2016 年的諾貝爾化學獎強調的,讓我們把目光轉回分子機械吧。

邁向分子機械的第一步

索瓦很快就注意到這種被稱為交環烷(catenane,由拉丁文的鏈 catena 衍伸而來)的新型態分子,不僅僅是一個合成上的里程碑,更是通往分子機械的一大步。一個可以完成多項工作的「機械」,必須至少由數個可以相對移動的小零件組成,而兩個機械式互鎖形成的分子環便滿足了這個條件。1994 年,索瓦的研究小組成功製作出了可以經由外在施加能量,控制其中一個環轉動的交環烷,這正是非生物型的分子機械開始綻放枝枒的第一步。

通往分子機械的下一步,則是由一位成長在沒有電力和現代化設備的蘇格蘭農田的化學家所貢獻的。

-----廣告,請繼續往下閱讀-----

史托達特將分子輪軸穿過一個分子環

在孩提時期,史托達特並沒有電視或電腦。不過,為了讓自己有事情可忙,他玩拼圖,因此訓練出了化學家所需要的一個技能:辨認形狀以及觀察它們如何被連接在一起。他之所以被化學吸引,也因為期望有機會成為一位分子藝術家 ─ 能夠塑造出從未有人見過的形狀。

2016 年諾貝爾化學獎所表彰的這些分子創作中,史托達特發展的一個創新的分子也利用了化學的潛力來設計互相吸引的分子。在 1991 年,他的研究團隊建造了一個缺電子的開環分子以及一個具有兩個多電子位置的長棍,或可稱為輪軸(圖三)。當兩個分子在溶液中相遇時,缺電子分子會被多電子分子吸引過去,然後分子輪軸穿過開環分子。下一步,研究團隊將開環的開口兩端相接,使其成為完整的環狀而能留在分子輪軸上。他們因此以高產率創造出了輪烷(rotaxane),一種環狀並以機械的方式套接於輪軸上的分子。

03

史托達特於是利用環的自由度,使其沿著輪軸移動。當他加熱時,分子環就像一個微小的區間車,在多電子的兩端間前後跳動(圖三)。到了1994年,他能完全掌控分子環的移動,因而擺脫了化學系統中掌控分子移動的隨機性。

一台電梯、一塊肌肉與一個極小的電腦晶片

自 1994 年以來,史托達特的研究團隊已經使用多種輪烷來建造許多的分子機器,包括一台可將自己提高 0.7 奈米的分子電梯(2004 年,圖四)、一個能夠折彎金箔片的人造分子肌肉(2005 年)。

-----廣告,請繼續往下閱讀-----

04

與其他研究者合作的過程中,史托達特也發展出一個以輪烷為基礎、具有 20 kB 記憶體的電腦晶片。現在電腦中所使用的電晶體雖然非常微小,不過和以分子為基礎的電晶體相比則是巨大無比。研究者相信分子電腦晶片可能會像當年以矽為基礎的電晶體一樣,掀起電腦科技的大變革。

索瓦也在研究輪烷的潛力。在 2000 年時,他的研究團隊成功將兩個有環狀結構的分子穿在一起,形成一個具有彈性的結構,類似人體的肌肉纖維(圖五)。他們也建造了像是馬達一般的分子,其中輪烷分子的環可交替變換方向地旋轉。

05

費倫加建造了第一個分子馬達

就像史托達特,費倫加在農場長大,而且也被化學那無窮可能的創造力所吸引。如同他曾在一次訪問中所表達的:

「也許化學的力量不只在理解,也包括創造過去不存在的分子與材料……」

在 1999 年,當費倫加製作出第一個分子馬達時,他用了一些聰明的技巧使它只往同一個方向旋轉。一般而言,分子的運動是隨機的;平均來說,一個旋轉的分子往右轉和往左轉的次數相當。但是費倫加設計了一個在機械上受到限制的分子,使得它只能往特定的方向轉動(圖六)。

-----廣告,請繼續往下閱讀-----

06

該分子是由類似兩個小的轉子葉片(rotor blade)構成,並由兩個具有平面結構上的碳以雙鍵連結在一起。每個轉子葉片上都連接上一個甲基,轉子葉片的這個甲基以及葉片部分以類似棘輪(ratchet)的方式,強迫分子只能往同一個方向轉動。當分子受一道紫外光脈衝的照射,其中一個轉子葉片會以雙鍵為中心跳轉 180 度,接著棘輪移動到位。隨著下一道紫外光脈衝,轉子葉片會再轉180度,這個步驟接著持續下去,葉片便一圈又一圈的往同一個方向轉動。

最初的馬達並不快,但是費倫加的研究團隊優化了它。2014 年,馬達已經可以達到每秒一千兩百萬轉。2011 年,研究團隊也建造了一個四輪驅動的奈米車,分子底盤將四個具有輪子功能的馬達接在一起,當輪子轉動時,車子便能在一個表面上往前移動(圖七)。

07

分子馬達讓一個小玻璃圓柱轉動

在另一個令人驚嘆的實驗中,費倫加的實驗小組用了分子馬達去轉動一個長 28 微米(10~6 m)的玻璃圓柱(比分子馬達要大 10,000 倍)。在此實驗中,他們將這些馬達置入一個液晶(一種液體但具有晶體的整齊結構)中,只有百分之一的液晶中含有分子馬達,但是當研究者讓馬達開始轉動時,液晶的結構被馬達改變。當他們將玻璃圓柱放在液晶上時,它隨著馬達所提供的動作而轉動。(影片下載

一個用來製造的分子的工具箱

這些由索瓦,史托達特,費倫加在發展分子機器時所做的突破性方法,產生了一個含有各種化學結構的工具箱,可讓全世界各地的研究者用以建造出愈發先進的創作品。其中最精采的例子是做出一種分子機器人,能將胺基酸分子抓住然後將它們連接起來,那是在 2013 年運用輪烷所建造的。

-----廣告,請繼續往下閱讀-----

另有研究者將分子馬達接在聚合物的長鏈上,形成一個錯綜複雜的網狀結構,當那些分子馬達受到光的照射時,它們將聚合物捲成一些紊亂的束狀物,光的能量因此而儲存在分子中,假若這些研究者能找出方法回收這些能量,就可發展出一種新的太陽能電池。這種材料也會因為馬達造成的纏繞而收縮,可以用來發展對光有反應的感應器。

遠離平衡:朝一個新而有活力的化學邁進

一個 2016 年諾貝爾化學獎所表彰的重要發展,就是將分子系統帶離「平衡」。所有的化學反應都會趨向平衡——也就是一個較低能量的狀態——但這個過程也可以看成是一種僵局。這麼說或許有點難以理解,讓我們用生命這個簡單的例子解釋一下吧:當我們進食的時候,身體從食物中取得能量,並將體內的分子系統推離平衡狀態,進入具有較高能量的狀態,接著生物分子用這些能量驅動生命所需的化學反應。然而一旦我們體內的化學反應真正達到平衡時,我們卻將會死去。

正如生命中的化學分子,索瓦、史托達特以及費倫加所建構的人造分子系統也是在執行一個有控制的任務。化學因此朝著新的方向踏出了第一步,雖然在此初期階段我們還看不出來把機械縮小會帶來什麼樣的好處,但時間的潮流已經證明了同樣的想法可以為電腦科技帶來革命性的突破。從機械發展的觀點看來,現在的分子機械差不多正值1830年代電動馬達的處境 – 那時候的科學家仍然不曉得能夠轉來轉去的軸和輪胎,竟會是現代火車、洗衣機、電風扇,甚至是食物調理機的基石。

自費曼那前瞻性的演講到現在,已經過了 32 年,我們仍然只能猜測未來令人興奮的發展。然而我們已經有辦法回答費曼當初的問題:

「你到底能製造出多小的機器?」

至少比一根頭髮小了一千倍!

延伸閱讀資料:

Mark Peplow 著,蔡蘊明譯,〈化學與醫學和工程—向前邁進的機器〉,台灣大學化學系。

本文譯自諾貝爾化學獎委員會公佈給大眾的新聞稿,若有興趣可閱讀進階資料

本文轉載自台灣大學化學系〈2016年諾貝爾獎簡介〉。

 

-----廣告,請繼續往下閱讀-----
文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
上網也要有「技術」!從言論、隱私到國安,你我都該懂的界線
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/18 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

以為鍵盤俠天下無敵?小心一個不留神就觸法!人們常忽略「網路並非法外之地」這個重要事實。不只現實生活中的法律同樣適用於網路空間,隨著科技發展,更多應網路特性而生的法律規範也相繼出現。從基本的言論自由到隱私權保護,從智慧財產權到國家安全,法律體系正全面性地回應數位時代的種種挑戰。

在臺灣,網路上的言論自由權利源自《憲法》第 11 條的明確規定:「人民有言論、講學、著作及出版之自由。」釋字第 509 號則指出,「國家應給予最大限度之維護,俾其實現自我、溝通意見、追求真理及監督各種政治或社會活動之功能得以發揮。」網路快速傳播的特性放大了言論的影響力,而大法官的解釋將言論自由的邊際刻畫得更明確,這在數位時代裡顯得格外重要。

網路與社群媒體的快速傳播,放大了言論的影響力。圖/unsplash

網路上的性、暴力與未成年保護

顯然言論自由並非是毫無限制,2023 年 11 月的一起案件就展現其中一種界線的樣貌。當時,一名 36 歲男子將他和網友在網咖的性愛影片上傳至推特,還寫下「《網咖包廂實戰計 1》我跟某公司 OL 戰鬥」等文字。這段影片一經發布,當事女子立即採取法律行動。最終,法院依其以網際網路「供人觀覽猥褻影像」的罪名,判處該名男子拘役 30 日,得易科罰金。這個判決清楚說明了,即便在虛擬空間,散布猥褻影像仍須承擔實質的法律責任。

-----廣告,請繼續往下閱讀-----

特別是在保護未成年人方面,法律的規範更加嚴格。《刑法》第 235 條明文禁止散布、播送或販賣猥褻物品,無論形式是圖文、聲音還是影像。而《兒童及少年性剝削防制條例》第 36 條更進一步禁止任何形式的兒童色情製品被製造、散布和持有。2019年彰化縣曾層發生過這樣一起案件:一名陳姓中年男子將9歲女童帶往居所,不僅強迫她觀看色情影片,還對她進行猥褻行為,甚至將過程上傳至 Google 雲端。儘管他後來試圖以資助女童就學表達悔意,法院仍以加重強制猥褻等罪,判處他 4 年 4 個月有期徒刑。

不實言論的散布同樣可能觸犯法律。2021 年 9 月爆發的「台大狼師案」就是一個警示。一名女大生在網路上指控教師誘騙她發生關係並傳染性病,幾個月後又指控對方對她進行強制性行為。當她提出告訴時,檢方卻查無性侵事實,加上她反覆的說詞,不僅性侵告訴失敗,還因誹謗罪反被加重判刑。

當駭客、間諜都轉戰網路戰場

2013 年,一名退役空軍上校赴陸經商時被情治單位吸收,返台後透過人脈網絡發展組織、刺探軍事機密,並以空殼公司掩護非法報酬,這個情報網持續運作了 8 年之久。

在涉及國家安全的議題上,法律的態度更是嚴厲。根據《國家安全法》第 2 條的規定,任何人都不得為境外敵對勢力及其控制的組織、機構進行資助、主持、操縱、指揮或發展組織,更不能洩漏、交付或傳遞公務機密,違反者將面臨嚴厲的刑事處罰。《刑法》規定,意圖破壞國體、竊據國土,或以非法方法變更國憲、顛覆政府者,處7年以上有期徒刑,首謀更要判處無期徒刑。

-----廣告,請繼續往下閱讀-----

抄襲與轉貼的邊界在哪裡?

在智慧財產權的保護上,臺灣也經歷了數位時代的轉變。台灣第一個網路著作權相關判決,就發生在傳統出版與數位平台的碰撞之中。南方社區文化網路負責人陳豐偉等三人在中山大學 BBS 上發表的文章,未經同意就被《光碟月刊》收錄在隨刊光碟中發行。三人向台北地檢署提告後,《光碟月刊》發行人兼總經理黃俊義被判處七個月有期徒刑,緩刑三年。這個判決為數位時代的著作權保護樹立了重要典範。

臺灣首例網路著作權案判決,為數位時代智慧財產權保護樹立典範。圖/envato

近年來,影音平台的著作權爭議更趨複雜。2022 年,知名 YouTube 頻道「觸電網」就因為片商車庫娛樂檢舉七十多支未經授權的影片,導致經營 12 年的頻道被迫下架。車庫娛樂透過律師聲明,這是針對「未經合法授權影音內容」的標準處理,並表明將追究民事與刑事責任。

受害了怎麼辦?申訴管道報你知

當我們在網路上的權利受到侵害時,可以根據侵害類型尋求不同的救濟管道。最基本的言論自由權利受到侵犯時,可以先向社群平台提出檢舉。若遇到更嚴重的情況,如散布猥褻影像、非法性私密影片等,除了平台檢舉外,還可以向警方提告,或是尋求衛福部「性影像處理中心」的協助。

在面對網路霸凌、不實言論時,可以向台灣事實查核中心、MyGoPen 等組織求助,協助澄清真相。若發現有害兒少身心健康的不當內容,則可以向 iWIN 網路內容防護機構提出申訴。這個由國家通訊傳播委員會支持的組織,會在受理後進行查核、轉介業者改善或依法處理。

-----廣告,請繼續往下閱讀-----

智慧財產權的侵害在網路時代極為常見,就像「觸電網」遭片商檢舉下架的案例。這類情況可以透過平台既有的著作權保護機制處理,情節嚴重者也可以提起民事訴訟要求賠償。若發現可疑的廣告或不公平交易行為,則可以向公平交易委員會檢舉;若是特定領域的違規內容,則應該向各該主管機關反映,例如藥品廣告歸衛福部管轄、證券期貨廣告則由金管會負責。

網路時代的法律規範正不斷演進,從個人隱私到國家安全,從言論自由到智慧財產權,每個面向都在尋求數位環境下的最佳平衡點。作為網路使用者,我們必須理解並遵守這些法律界線,同時也要懂得運用各種救濟管道保護自身權益。唯有每個人都清楚了解並遵守這些規範,才能共同營造一個更安全、更有序的網路環境。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
【2005 諾貝爾化學獎】歧化 – 一個更換伴侶的舞蹈
諾貝爾化學獎譯文_96
・2022/09/13 ・5122字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

今年的諾貝爾化學獎由三位化學家所共同獲得,他們是法國的 Yves Chauvin,以及兩位美國的學者 Robert H. Grubbs 及 Richard R. Schrock,得獎的原因在表彰他們發展歧化(metathesis)反應在有機合成上的運用所造成的卓越貢獻。得獎者的成就已經在化學工業上成為一項重要的方法,並在合成化合物上開啟了新的機會而將使工業上製造藥物、塑膠以及其它材料的生產更為方便,這些物質的價格會因此降低而且減少對環境的衝擊。

歧化 — 一個更換伴侶的舞蹈

什麼是歧化?

在化學的反應中,原子之間的鍵結會斷裂而新的鍵結會生成。今年諾貝爾化學獎的焦點是稱為"歧化"的反應,這個名詞具有"改變位置"的意義。如(圖1)所示,在烯(一種含有碳-碳雙鍵的化合物)的歧化反應中,形成雙鍵的兩個碳會與另外一組雙鍵的兩個碳交換伴侶,形成另一個新的組合。在所示的反應中,一個丙烯的分子將其中的一個 CH2 基團與另一分子的丙烯中之 CH3CH 交換,結果就產生了丁烯及乙烯。這個反應需要使用一個催化劑(催化劑是一個能使反應加速進行但卻不會成為產物的一部份的分子)才會發生。

(圖1)兩個丙烯藉著催化劑的幫助進行烯的歧化反應,產生兩個新的烯化物即丁烯和乙烯。

其實化學家早就知道可以透過這種反應來製造新的化合物,只是他們並不瞭解催化劑在這個反應中扮演的角色為何。Yves Chauvin 提出的反應機制在對這個反應的認知上跨出了一大步,因為他解釋了催化劑是如何的運作。此時,研究者獲得了一個新的挑戰機會,那就是如何的去創造一個新的且更有效的催化劑。緊接著,Robert H. Grubbs 及 Richard R. Schrock 的基礎研究進場,由於他們的貢獻,才有今日那些非常有用的催化劑可供使用。

有機化合物 — 豐富的多樣性

碳元素能與碳元素以及其它的元素如氫、氧、氯和硫形成很強的鍵結,碳原子能以單鍵、雙鍵或三鍵的方式與其它的原子結合,可得到直鏈或分岔的結構,又可生成具有各種型態和大小的環狀結構。這個領域的化學稱為有機化學,因為在地球上生命的存在都是基於碳的這種多樣性。

眾多的有機化合物中,目前其實只有一小部份被研究過,但即使如此,我們現在已經可以得到各種新的藥物、材料、塗料等等,這是幾年前所無法想像的。

-----廣告,請繼續往下閱讀-----

有機合成

所謂的有機合成就是將不同的化合物以特定的方式反應而製造出其它的化合物;透過有機合成,我們可以從已知的化合物原料製造出新的化合物。許多的工業必需利用有機合成,例如製藥和生技的工業,以及纖維和特用化學品的工業。在(圖2)中,一個在癌症的研究中所需的化合物 A 需要用另一個化合物 B 來合成,而 B 又需要從別的分子來合成。在化合物 B 的結構中具有一個由碳原子所組成的長鏈,其中有一個碳原子被氧原子取代。在合成化合物 A 時,這個長鏈被轉變成了一個大環的結構,這個環狀的結構正是抗癌的活性所必需。

為了製造這個大環,催化性的歧化反應正好派上用場,而其使用的催化劑正是這次的諾貝爾獎得主之一所開發出來的。由化合物 B 的結構中之長鏈兩端的雙鍵(圖中圈出的部分),透過歧化反應可以製造出兩個新的雙鍵,其中一個雙鍵用在結合長鏈的兩端而形成大環,而另一個雙鍵則存在於另一個副產物乙烯當中。如果要用別的方法來形成這個大環,將需要非常複雜而冗長的步驟。

(圖2) 運用一個 Grubbs 催化劑進行的合成。在此透過歧化反應將化合物 B 中的長鏈結合成化合物 A 中的大環。化合物 A 被用在癌症的研究上,其中環狀的結構正是抗癌的活性所必需。

歧化反應是如何發現的

歧化反應的發現可回朔至 1950 年代,正如同許多有機化學反應的發現一般,它源自於工業界,有好些個專利描述了催化性的烯聚合反應,其中的一篇專利是由美國杜邦公司的 H. S. Eleuterio 在 1957 年所提出的,它描述了得到不飽和的碳鏈(鏈上具有許多雙鍵)的方法;在此之前,由乙烯聚合成聚乙烯只會得到飽和的碳鏈(鏈上不具雙鍵)。這個出人意外的發現造成了深遠的影響。

在同年,另一份專利顯示,當使用一個由三異丁基鋁(triisobutyl aluminum)與氧化鉬(molybdenum oxide)依附在氧化鋁上的催化系統時,丙烯可轉變成丁烯及乙烯,這個在(圖1)所示的反應被稱為菲利浦公司的三烯製程(Phillips triolefin process)。這兩個專利都成功的在工業界中使用。

-----廣告,請繼續往下閱讀-----

在許多年之後,這兩個發現的關聯性才被固特異輪胎及橡膠公司的 N. Calderon 發現,他指出,在上述的兩種製程中所發生的是同一種型態的反應,並稱之為烯的歧化反應(olefin metathesis),只不過在分子的層次,其中的催化劑之結構及其運作的機制在當時仍屬未知,因而由此所啟動之精采的催化劑獵捕行動,只能在黑暗中透過隨意擲擊四處碰觸的方式盲目的摸索。

Chauvin 的機制

越來越多的化學家開始注意到到歧化反應可能提供給有機合成的高度潛力,不過可能沒有人料想到它會成為如此的重要。雖然有許多的研究者提出各種歧化反應如何發生的可能機制,但真正的突破要等到 1970 年 Yves Chauvin 所發表的一份研究報告,他和他的學生 Jean-Louis Herrison 指出其中的催化劑是一個金屬碳烯(metal carbene),這種化合物具有一個金屬與碳形成的雙鍵。在之後的文獻中,金屬碳烯也被稱為金屬亞烷基(metal alkylidine)。在更早些年 E. O. Fisher(1973年諾貝爾化學獎)也發現過一些其它的金屬碳烯。Chauvin 也提出了一個嶄新的機制來解釋這個金屬化合物在反應中扮演何種功能。他們所進行的一些新的實驗結果完全符合這個新機制的運作,而無法用之前所提出的各種機制來解釋。在(圖3)(a )中,一個金屬亞甲基做為催化劑,造成兩個雙鍵上的亞烷基之交換,導致兩個新的雙鍵生成(圖中金屬 M 上所用的中括號代表金屬除了與碳之間有一個雙鍵之外其上還有其它的基團)。

(圖3) (a)由金屬亞甲基做為催化劑的烯歧化反應。產物是兩個新的烯化物:乙烯及一個含有兩個 R’ 基團的烯化物,這兩個 R’ 基團分別接在雙鍵的兩個碳上,曲折線代表它們可以在雙鍵的同邊或反邊。 (b)Chauvin 提出的烯歧化反應機制。在這個催化的循環中,會生成一個含有三個碳和一個金屬的四元環。

(圖3)(b)所示為此反應的機制,在反應的第一階段,金屬亞甲基與一個烯形成一個四元環,這個環含有一個金屬和三個碳,相互以單鍵結合。在下一個階段,其中的兩個單鍵斷裂並形成一個新的烯(即乙烯)和一個新的金屬亞烷基。在第三步驟,這個新的金屬亞烷基又與原先的烯結合成一個新的四元環。在最後的步驟中,這個含有金屬的四元環裂解產生歧化的產物並同時重新得回原先的金屬亞甲基,這個重新得回的金屬亞甲基又繼續投入另一個歧化反應的循環當中。這個反應的最終結果就是兩個烯的分子交換了它們的亞烷基,也就是進行了歧化反應(圖3)(a)。Chauvin 的機制一舉解釋了所有早先文獻中的結果,他的機制也得到了 Robert H. Grubbs、Thomas J. Katz 以及 Richard R. Schrock 等研究團隊的實驗之強烈支持,現已廣為大家所接受。

(圖4)一個有趣的歧化之舞。

上面所描述的 Chauvin 機制可以視為一種舞蹈(圖4),其中催化劑與烯這兩組在舞蹈中交換舞伴。金屬和他的舞伴雙手相牽,當碰到烯隊時這兩組人馬結合成一個圈圈跳舞,隔了一會兒,他們與原先的同伴鬆手然後與新的伴侶湊成一對共舞。現在新形成的金屬隊又開始尋找新的烯隊,再次組成圈圈跳舞,換句話說,金屬隊成為一個分歧化的媒介者。

-----廣告,請繼續往下閱讀-----

研發新的催化劑

到此時更多的化學家開始體認到,如果能找到更有效而可靠的催化劑,將可以使得這個反應在有機合成上成為一個極為重要的方法。早先所使用的催化劑結構並不明確,對空氣及濕氣極為敏感,穩定度很差而只能短暫的存在。一個好的催化劑必須是穩定的,並具有確定的結構,其化學活性要能針對需要而做調整,此外它們必須具有選擇性,也就是說只會與雙鍵反應而不會作用到分子上的其它部位。Chauvin 的研究結果顯示了有效率的催化劑可以如何的建立,但問題是在所有結構很明確的已知金屬亞烷基中,沒有一個可以成功的運用在烯的歧化反應上。雖然有好些位化學家在研發歧化反應的催化劑及其運用,並且也有重要的貢獻,不過,在此研究領域中關鍵性的進展則出自於 Robert H. Grubbs 及 Richard R. Schrock 的團隊。

Schrock 的第一個實用的催化劑

Schrock 在 1970 年代初期開始研究新的金屬亞烷基錯合物,但是到底哪一種金屬最適合製造出最有效的催化劑呢?他嘗試了含有鉭(tantalum)、鎢及鉬的催化劑,逐漸的掌握了哪些金屬可以使用以及它們如何的運作。對 Schrock 而言,鎢及鉬很快的顯示出是最適當的金屬,雖然用這些金屬合成了一些催化劑,但對於在金屬上到底要放上什麼基團才能製造出穩定而活性又高的催化劑仍不確定。在 1990 年,Schrock 的團隊終於得到突破而發表了一系列活性又高而結構又很明確的含鉬之催化劑(圖5)。

(圖5)一個 Schrock 的含鉬催化劑。藉著選擇適當的基團接在金屬上可以得到極高的化學活性。在此 i-Pr 代表異丙基,Ph 代表苯基。

由於他的發現,化學家開始體認到烯的歧化反應可以普遍的運用在有機合成上,歧化反應越來越受到那些活躍的有機合成化學家們的注意,他們發現歧化反應可以取代許多傳統的合成方法,而在同時也提供了一種嶄新的方式來合成有機化合物。在(圖5)中所示的含鉬催化劑雖然對氧氣及濕氣是很敏感的,但只要透過適當的處理方式,不失為一個在有機合成上威力強大的工具。

一種由 Grubbs 所研發的通用催化劑

另一個突破則發生在 1992 年,Robert Grubbs 的研究團隊報導了他們所發現的一個含釕(ruthenium)的催化劑,它在空氣中是穩定的,表現出很高的化學選擇性,但是化學活性較 Schrock 的催化劑為低,這個新的催化劑可以在醇、水及有機酸的存在下催化歧化反應(參考圖2),在此之後 Grubbs 進一步的改進了他的催化劑,在(圖6)中所示的是幾個很有效而又容易合成的催化劑中的一個。

-----廣告,請繼續往下閱讀-----
(圖6) 一個由 Grubbs 開發的含釕的催化劑。在此 Cy 代表環己基。

Grubbs 的催化劑已成為在普通的實驗室中,被普遍使用在歧化反應上,而且功能明確的催化劑。在(圖6)中所示的催化劑被稱為 Grubbs 催化劑,並成為一個被其它新的催化劑用來比對的標準。Grubbs 催化劑的通用性導致其後在有機合成上新的展望。Grubbs 對催化劑的設計是基於詳細的反應機制研究,他持續的開發以釕為基礎的催化劑,朝著製造合成上最具威力的催化劑而努力,這些合成包括了具有特殊性質的聚合物。

運用以及影響

這幾位諾貝爾獎得主所發展的合成方法,已經在學術研究上迅速的成為普遍使用的工具。為了製造新化合物所設計的工業製程,在這方面也有熱烈的發展,利用催化性的歧化反應可以縮短合成的步驟,得到更高的產率及更少的廢物,這導致更乾淨而對環境衝擊較小的製程。這種反應開啟了更多的機會去探索更多樣性的有機分子。除了他們之外,許多其他的研究者也提供了重要的貢獻,並持續的為了解決特定的問題例如合成複雜的天然物及其類似物,而開發新的歧化反應催化劑。

歧化反應在製藥工業、生技工業及食品工業上具有極大的商業潛力;新的催化劑亦可廣泛的運用在聚合物的合成上,雖然截至目前許多最有用的聚合物仍然是用傳統的方式來合成,但最近在聚合物合成的研究顯示,某些歧化反應催化劑在合成具有特殊性質的聚合物方面具有光明的前景。

雖然 Schrock 與 Grubbs 所發展的催化劑問世不過短短數年,但是他們所發展的應用性之深入的確是令人驚訝,這包括了昆蟲費洛蒙、除草劑、聚合物和燃料的添加劑、具有特殊性質的聚合物以及各種在藥物發展上很有潛力的各種分子之合成。有關一些可以對付各種人體疾病所發展的各種分子尤其值得一提,因為許多的研究者正投入於製造可能的藥物來治療各種狀況,例如細菌感染、C 型肝炎、癌症、阿茲海默症、唐氏症、骨質疏鬆、風濕、發炎、纖維症、HIV/AIDS、偏頭痛等等,歧化反應也因此成為一項重要的武器來尋找新的藥物以治療這世界上許多主要的疾病。

-----廣告,請繼續往下閱讀-----

參考資料

蔡蘊明譯自諾貝爾化學獎委員會公佈給大眾的參考資料:

http://nobelprize.org/chemistry/laureates/2005/info.html

若要參考更深入的說明請見:

http://nobelprize.org/chemistry/laureates/2005/adv.html

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列